2 research outputs found

    Delivering Consistent Network Performance in Multi-tenant Data Centers

    Get PDF
    Data centers are growing rapidly in size and have recently begun acquiring a new role as cloud hosting platforms, allowing outside developers to deploy their own applications on large scales. As a result, today\u27s data centers are multi-tenant environments that host an increasingly diverse set of applications, many of which have very demanding networking requirements. This has prompted research into new data center architectures that offer increased capacity by using topologies that introduce multiple paths between servers. To achieve consistent network performance in these networks, traffic must be effectively load balanced among the available paths. In addition, some form of system-wide traffic regulation is necessary to provide performance guarantees to tenants. To address these issues, this thesis introduces several software-based mechanisms that were inspired by techniques used to regulate traffic in the interconnects of scalable Internet routers. In particular, we borrow two key concepts that serve as the basis for our approach. First, we investigate packet-level routing techniques that are similar to those used to balance load effectively in routers. This work is novel in the data center context because most existing approaches route traffic at the level of flows to prevent their packets from arriving out-of-order. We show that routing at the packet-level allows for far more efficient use of the network\u27s resources and we provide a novel resequencing scheme to deal with out-of-order arrivals. Secondly, we introduce distributed scheduling as a means to engineer traffic in data centers. In routers, distributed scheduling controls the rates between ports on different line cards enabling traffic to move efficiently through the interconnect. We apply the same basic idea to schedule rates between servers in the data center. We show that scheduling can prevent congestion from occurring and can be used as a flexible mechanism to support network performance guarantees for tenants. In contrast to previous work, which relied on centralized controllers to schedule traffic, our approach is fully distributed and we provide a novel distributed algorithm to control rates. In addition, we introduce an optimization problem called backlog scheduling to study scheduling strategies that facilitate more efficient application execution

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande
    corecore