12 research outputs found

    On the Estimation of Averages Over Infinite Intervals with an Application to Average Persistence in Population Models

    Get PDF
    We establish a general result for estimating the upper average of a continuous and bounded function over an infinite interval. As an application, we show that a previously studied model of microbial growth in a chemostat with time–varying nutrient input admits solutions (populations) that exhibit weak persistence but not weak average persistence

    Dynamics of a Stochastic Functional System for Wastewater Treatment

    Get PDF
    The dynamics of a delayed stochastic model simulating wastewater treatment process are studied. We assume that there are stochastic fluctuations in the concentrations of the nutrient and microbes around a steady state, and introduce two distributed delays to the model describing, respectively, the times involved in nutrient recycling and the bacterial reproduction response to nutrient uptake. By constructing Lyapunov functionals, sufficient conditions for the stochastic stability of its positive equilibrium are obtained. The combined effects of the stochastic fluctuations and delays are displayed

    Modelling and Analysis of a Pest-Control Pollution Model with Integrated Control Tactics

    Get PDF
    A hybrid impulsive pest control model with stage structure for pest and Holling II functional response is proposed and investigated, in which the effects of impulsive pesticide input in the environment and in the organism are considered. Sufficient conditions for global attractiveness of the pest-extinction periodic solution and permanence of the system are obtained, which show that there exists a globally asymptotically stable pest-extinction periodic solution when the number of natural enemies released is more than some critical value, whereas the system can be permanent when the number of natural enemies released is less than another critical value. Furthermore, numerical simulations are carried out to illustrate our theoretical results and facilitate their interpretation

    Chaos to Permanence-Through Control Theory

    Get PDF
    Work by Cushing et al. \cite{Cushing} and Kot et al. \cite{Kot} demonstrate that chaotic behavior does occur in biological systems. We demonstrate that chaotic behavior can enable the survival/thriving of the species involved in a system. We adopt the concepts of persistence/permanence as measures of survival/thriving of the species \cite{EVG}. We utilize present chaotic behavior and a control algorithm based on \cite{Vincent97,Vincent2001} to push a non-permanent system into permanence. The algorithm uses the chaotic orbits present in the system to obtain the desired state. We apply the algorithm to a Lotka-Volterra type two-prey, one-predator model from \cite{Harvesting}, a ratio-dependent one-prey, two-predator model from \cite{EVG} and a simple prey-specialist predator-generalist predator (for ex: plant-insect pest-spider) interaction model \cite{Upad} and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve a desirable state for all species involved

    Chaos to Permanence - Through Control Theory

    Get PDF
    Work by Cushing et al. [18] and Kot et al. [60] demonstrate that chaotic behavior does occur in biological systems. We demonstrate that chaotic behavior can enable the survival/thriving of the species involved in a system. We adopt the concepts of persistence/permanence as measures of survival/thriving of the species [35]. We utilize present chaotic behavior and a control algorithm based on [66, 72] to push a non-permanent system into permanence. The algorithm uses the chaotic orbits present in the system to obtain the desired state. We apply the algorithm to a Lotka-Volterra type two-prey, one-predator model from [30], a ratio-dependent one-prey, two-predator model from [35] and a simple prey-specialist predator-generalist predator (for ex: plant-insect pest-spider) interaction model [67] and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve a desirable state for all species involved

    Stochastic Dynamics of an SIRS Epidemic Model with Ratio-Dependent Incidence Rate

    Get PDF
    We investigate the complex dynamics of an epidemic model with nonlinear incidence rate of saturated mass action which depends on the ratio of the number of infectious individuals to that of susceptible individuals. We first deal with the boundedness, dissipation, persistence, and the stability of the disease-free and endemic points of the deterministic model. And then we prove the existence and uniqueness of the global positive solutions, stochastic boundedness, and permanence for the stochastic epidemic model. Furthermore, we perform some numerical examples to validate the analytical findings. Needless to say, both deterministic and stochastic epidemic models have their important roles

    Dynamical Systems; Proceedings of an IIASA Workshop, Sopron, Hungary, September 9-13, 1985

    Get PDF
    The investigation of special topics in systems dynamics -- uncertain dynamic processes, viability theory, nonlinear dynamics in models for biomathematics, inverse problems in control systems theory -- has become a major issue at the System and Decision Sciences Research Program of IIASA. The above topics actually reflect two different perspectives in the investigation of dynamic processes. The first, motivated by control theory, is concerned with the properties of dynamic systems that are stable under variations in the systems' parameters. This allows us to specify classes of dynamic systems for which it is possible to construct and control a whole "tube" of trajectories assigned to a system with uncertain parameters and to resolve some inverse problems of control theory within numerically stable solution schemes. The second perspective is to investigate generic properties of dynamic systems that are due to nonlinearity (as bifurcations theory, chaotic behavior, stability properties, and related problems in the qualitative theory of differential systems). Special stress is given to the applications of nonlinear dynamic systems theory to biomathematics and ecology. The proceedings of a workshop on the "Mathematics of Dynamic Processes", dealing with these topics is presented in this volume

    PERMANENCE, AVERAGE PERSISTENCE AND EXTINCTION IN NONAUTONOMOUS SINGLE-SPECIES GROWTH CHEMOSTAT MODELS

    No full text
    Non-autonomous single-species growth chemostat models with general response functions are considered. In the models, the dilution rate and removal rate are allowed to be different from each other. A series of new criteria on the boundedness, permanence, persistence, average persistence and extinction of the population is established. In particular, when models degenerate into the almost periodic case, the equivalences of the permanence, persistence and average persistence of species are obtained. These results improve and extend some well-known corresponding results obtained in Refs. 1, 14 and 17.Nonautonomous model, chemostat, boundedness, permanence, persistence, average persistence, extinction, removal rate, dilution rate, almost periodic model

    Book of abstracts

    Get PDF
    corecore