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Abstract

Work by Cushing et al. [18] and Kot et al. [60] demonstrate that chaotic

behavior does occur in biological systems. We demonstrate that chaotic behavior

can enable the survival/thriving of the species involved in a system. We adopt the

concepts of persistence/permanence as measures of survival/thriving of the species

[35]. We utilize present chaotic behavior and a control algorithm based on [66, 72]

to push a non-permanent system into permanence. The algorithm uses the chaotic

orbits present in the system to obtain the desired state. We apply the algorithm to a

Lotka-Volterra type two-prey, one-predator model from [30], a ratio-dependent one-

prey, two-predator model from [35] and a simple prey-specialist predator-generalist

predator (for ex: plant-insect pest-spider) interaction model [67] and demonstrate its

effectiveness in taking advantage of chaotic behavior to achieve a desirable state for

all species involved.
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Chapter 1

Introduction

Extinction or survival of the species are important points to consider for any

ecological system. Mathematical biologists are also concerned about this very ques-

tion when they develop models based on an ecological system. Stability notions have

been introduced and studied in different manners:“cooperativity” by Schuster et al.

[43], “permanent coexistence” by Hutson and Vickers [69], “permanence and viabil-

ity” by Aubin and Sigmund [5]. Permanence simply means the species remain at a

safe threshold from extinction.

Certain ecologists have also been worried when chaotic behavior occurs in the

system (such behavior does occur as shown in [18, 60]). They prefer to see either

periodic or stable behavior. However, chaos need not be harmful to the system and

can be used as a control as we will demonstrate. There is in fact an evolutionary

advantage of using chaos as a control [19]. Very small changes in the initial conditions

of a chaotic system can greatly alter the system’s trajectory. Thus, we won’t need to

change the system completely to obtain our desired outcome.
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In the literature, chaos and permanence have always been studied as separate enti-

ties. A few papers deal with both, but they derive conditions for permanence indepen-

dently of any chaotic behavior and only observe chaos in their numerical simulations

without tying it to permanence. In this thesis, we study chaos and permanence in

tandem and use the properties of a chaotic trajectory to push a system which is

non-permanent to become permanent.

Chapter 2 gives a description of dynamical systems and the different kinds of such

systems. It then goes to give a definition of chaos in terms of Lyapunov exponents

and defines such exponents. A method to calculate Lyapunov exponents [6] is also

provided.

The next chapter (Chapter 3) gives a summary of some biologically relevant sys-

tems, namely the Lotka-Volterra model [35], ratio-dependent models [2], predator-

prey models that have the Leslie-Gower type functional response [52] and Crowley-

Martin type functional response [15]. These are only a few of the many different

types of biologically relevant models that have been proposed throughout the litera-

ture. Further references to other models can be found in chapter 3.

We are using the concepts of permanence/persistence to describe the thriving/sur-

vival of the species. Chapter 4 presents some background information on how these

concepts were developed. The chapter then goes on to give three methods to prove

permanence: one for Lotka-Volterra equations and two for systems with boundary

rest points. Examples of the applications of these methods are also provided. In each

system, together with permanence, chaos is also observed.
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There are situations where chaotic behavior and non-permanence are observed. In

such a scenario, we use control theory to use the chaotic orbits to obtain permanence.

An overview of some control theory methods and a chaotic control algorithm [66] is

provided in Chapter 5.

In Chapter 6, we utilize present chaotic behavior and a control algorithm based

on [66, 72] to push a non-permanent system into permanence. The algorithm uses

the chaotic orbits present in the system to obtain the desired state. We apply

the algorithm to a Lotka-Volterra type two-prey, one-predator model from [30], a

ratio-dependent one-prey, two-predator model from [35] and a simple prey-specialist

predator-generalist predator (for ex: plant-insect pest-spider) interaction model [67]

and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve

a desirable state for all species involved.

In the Conclusions chapter, possible future work is given.
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Chapter 2

Chaos in dynamical Systems

This chapter gives a brief description of dynamical systems, the different types

of dynamical systems, types of behavior of one-dimensional, two-dimensional and

higher dimensional continuous dynamical systems. Chaos will be indicated by a

positive Lyapunov exponent. The definition of Lyapunov exponents and a method to

find such exponents [6] is also provided.

2.1 Introduction to dynamical systems

A dynamical system consists of a set of possible states, together with a rule

determining the present state based on the previous state [7]. For example consider

a simple dynamical system given by xt+1 = axt. Here the variable t stands for time

and xt may denote the population at time t or a price of a commodity at a time t.

The real number a is a parameter of the system, which determines the population

growth rate or the price hike, respectively.
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A deterministic dynamical system is one in which the present state is deter-

mined uniquely from the past states. In our previous examples, the present popu-

lation/price is completely determined by the previous one.

Types of Dynamical Systems

If the rule is applied at discrete times, the system is called a discrete-time dynamical

system. Our examples above represent discrete systems.

Continuous-time Dynamical Systems are the limiting case of discrete system with

smaller and smaller updating times. In this case, the governing rule will become a set

of differential equations. Instead of expressing the current state as a function of the

previous state, the differential equation expresses the rate of change of the current

state as a function of the previous state [7].

We will be considering continuous dynamical systems with ordinary differen-

tial equations.

An ordinary differential equation is one in which the solutions are functions of an

independent variable. In our case the independent variable will be time denoted by

t. Such equations come in two types:

An autonomous differential equation is one in which t does not appear explicitly. An

example for this would be the equation of pendulum given by:

dx

dt
= − sinx,

where x denotes the displacement angle from the position at rest (x0).
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A non-autonomous differential equation is one where t explicitly appears. The

equation of the forced damped pendulum

ẍ = −cẋ− sinx+ ρ sin t

is an example of such an equation. Here x again denotes the displacement angle

from the position at rest; −cẋ denotes the friction at the pivot where c is the friction

constant; and ρ sin t is a periodic term which is an external force providing energy to

the pendulum [7].

Any non-autonomous system can be transformed into an autonomous system by in-

troducing a new variable y and setting it to be equal to t. So for the above example

the autonomous version would be

ẍ = −cẋ− sinx+ ρ sin y

ẏ = 1

We shall be dealing with autonomous continuous dynamical systems with

ordinary differential equations unless stated otherwise.

2.2 Types of behavior in continuous dynamical

systems

We shall denote x′ = f(x), where x ∈ Rn as an autonomous continuous dynam-

ical system of ordinary differential equations. Also we will assume f is a continuous

vector-valued function with continuous derivatives in Rn, i.e. f ∈ Ck(M,Rn), k ≥ 1,

6



where M is an open subset of Rn [65].

A fixed point is given by the zeroes of the function f , the right hand side of the

system. In other words, they are obtained by solving f(x) = 0.

The fixed points are also called equilibria, rest, or critical points. If a dynamical

system is tuned to a fixed point, its rate of change becomes zero and therefore the

system stays in this state forever.

2.2.1 One dimension: fixed points

We consider first a continuous one-dimensional system x′ = f(x), where

x, f(x) ∈ R. We can have a fixed point or the other possibilities at a point are

f(x) > 0 or f(x) < 0.

Lemma 2.2.1. No periodic behavior is possible (except for fixed points) in one-

dimensional continuous systems [59].

Proof. Consider a state x1 which we allegedly visit at times s and t, with s < t.

This is possible if x1 is a fixed point, but otherwise we have f(x1) either positive or

negative.

If f(x1) is positive, then at least in a short run, the system moves to a state x2 > x1.

Since f is continuous, we may assume that f is positive over the entire interval [x1, x2].

So in order to return to x1, since we are in one dimension, the solution curve must

“walk” back through a region with f(x) > 0 which repels it. Therefore, we are at x2,

x(t) still increasing and cannot come back to x1. Similarly for f(x1) < 0.
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To summarize, the one-dimensional systems either “explode” or tend to a fixed

point. That is, the fixed point is either attracting or repelling in nature.

2.2.2 Two dimensions:

Poincaré-Bendixson theorem

Now we consider two-dimensional (2D) autonomous systems. A solution curve

to the system x′ = f(x), where x ∈ R2 and f is a vector valued function of two scalar

variables, is called a trajectory (or orbit) of the system. As in the case of one-

dimensional systems, if we start at a fixed point, we are stuck there.

Two-dimensional dynamical systems demonstrate another behavior, namely peri-

odic. The periodic solutions are possible owning to the fact that a trajectory could

leave a point through a repelling direction and return to the point along the attract-

ing direction. A dynamical system exhibits periodic behavior when it returns to a

previously visited state. We can write this as x(t) = x(t + T ) for some T > 0. The

smallest positive number T for such behavior is called the period of the curve. So-

lution curves which exhibit periodic behavior are called periodic orbits or closed

orbits.

For example, for the system

x′1
x′2

 =

 0 1

−1 0


x1

x2


the trajectories are periodic with period 2π which is seen in Fig. 2.2.1 (generated

using MAPLE).
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Figure 2.2.1: Periodic orbit

Certain trajectories may not exhibit periodic behavior but may approach a peri-

odic orbit. To be more specific, let x1(t) and x2(t) be two different trajectories of

a system x′ = f(x). We say that trajectory x1 approaches trajectory x2 provided

|x1(t)− x2(t+ c)| → 0 (where c is a constant and | · | denotes the Euclidean distance)

as t→∞.

Two trajectories of a dynamical system, however, cannot cross under certain condi-

tions [59]. Consider the point of intersection if two trajectories actually did intersect.

The trajectory of the system starting at that point of intersection is completely de-

termined and therefore must proceed along a unique path. Otherwise it violates the

theorem of uniqueness.

Definitions

• ω−limit (forward limit set): Let ẋ = f(x) be an autonomous ODE where

x ∈ R2 and let x(t) be a solution defined for all t ≥ 0 with initial condition

9



x(0) = x. The ω−limit of x is the set of all accumulation points of x(t), for t→

+∞:

ω(x) =
{
y ∈ R2 : x(tk)→ y for some sequence tk → +∞

}
.

• α− limit (backward limit set): The definition is similar as above except

tk → −∞ [35].

The definitions of the forward and backward limit set are valid for Rn, n ≥ 2 as well.

One of the famous theorems in dynamical systems, the Poincaré-Bendixson Theo-

rem [65] is stated below:

Theorem 2.2.2. Let M be an open subset of R2 and f ∈ C1(M,R2). Fix x ∈ M

and suppose the ω−limit set (α−limit set) is compact, connected and contains only

finitely many fixed points. Then one of the following cases holds:

• ω(x) (α(x)) is an equilibrium, or

• ω(x) (α(x)) is a periodic orbit, or

• ω(x) (α(x)) consists of (finitely many) fixed points xj and non-closed orbits γ(y)

such that ω(y) (α(y)) ∈ xj.

In other words, according to the Poincaré-Bendixson Theorem, two-dimensional

systems will either converge to a fixed point, diverge to infinity or approach a periodic

orbit.

Heuristically, an aperiodic trajectory can approach a rest point or diverge to

infinity. If however, a trajectory is converging to a periodic orbit, it cannot diverge

10



from its limit since this would require crossing itself.

2.2.3 Higher dimensions and chaos

In dimensions greater than 2, we see another interesting behavior other than

rest points or periodic orbits. These orbits are called chaotic orbits defined below.

In three or higher dimensions, an aperiodic trajectory could escape the manifold which

bounds it to a periodic orbit through a repelling direction, along an extra dimension

transversal to the manifold and returns via attracting path.

A chaotic orbit is one that experiences an unstable behavior, but that is not itself

fixed or periodic. By unstable behavior, we mean at any point in such an orbit, there

are points on the orbit arbitrarily near that will move away from the point during

further iteration. In terms of solutions, it means they are very sensitive to small

perturbations in the initial conditions and almost all of the orbits do not appear to

be either periodic or converge to equilibrium solutions [7].

A dynamical system (X, f) has sensitive dependence on initial conditions

on a subset X ′ ⊂ X if there is ε > 0, such that for every x ∈ X ′ and δ > 0 there are

y ∈ X and n ∈ N for which d(x, y) < δ and d(fn(x), fn(y)) > ε [13].

Sensitive dependence on initial conditions is usually associated with positive

Lyapunov exponents. Let f be a differentiable map of an open subset U ⊂ Rm into

itself, and let df(x) denote the derivative of f at x. For x ∈ U and a non-zero vector

v ∈ Rm define the Lyapunov exponent [13] χ(x, v) by

χ(x, v) = lim sup
n→∞

1

n
log||dfn(x)v||.

11



If f has uniformly bounded first derivatives, then χ is well defined for every x ∈ U

and every non-zero vector v.

The Lyapunov exponent measures the exponential growth rate of tangent vectors

along orbits.

Another formal definition of a chaotic attractor is given below.

Let Ft(v0) be a solution of v̇ = f(v), where v0 ∈ Rn. We say that the orbit Ft(v0) is

chaotic [7] if the following conditions hold:

1. Ft(v0), t ≥ 0, is bounded.

2. Ft(v0) has at least one positive Lyapunov exponent; and

3. The ω−limit set is not periodic and does not consist solely of equilibrium points,

or solely of equilibrium points and connecting arcs (as in the conclusion of the

Poincaré-Bendixson Theorem).

Check for bounded orbits: An orbit is bounded if the divergence at the

initial condition is negative.

In the book [7], the concept of Lyapunov exponents is explained as follows

“The local behavior of the dynamics varies among the many directions

in state space. Nearby initial conditions may be moving apart along one

axis, and moving together along another. For a given point, we imagine a

sphere of initial conditions of infinitesimal radius evolving into an ellipse

as the flow f is applied. The natural logarithm of the average growth rate

of the longest orthogonal axis of the ellipse was defined to be the first

12



Lyapunov exponent.

A positive Lyapunov exponent signifies growth along that direction, and

therefore exponential divergence of nearby trajectories. The existence of

a local expanding direction along an orbit is the hallmark of a chaotic

orbit.”

A chaotic attractor can be dissipative (volume-decreasing), locally unstable (orbits

do not settle down to stationary, periodic, or quasiperiodic motion) and stable at

large scale (i.e. they get trapped in a strange attractor) [7].

2.3 Examples of continuous systems that displays

chaos

A classic three-dimensional system which display stable fixed points and chaotic

behavior for different values of a parameter is the Lorenz model given below. Lorenz

was modeling atmospheric convection.

ẋ = σ(y − x)

ẏ = x(r − z)− y

ż = xy − βz.

Here x is proportional to convective intensity, y to the temperature difference between

descending and ascending currents, and z to the difference in vertical temperature

profile from linearity. The parameter σ is the Prandtl number, r is a ratio of Rayleigh

numbers and β is a geometric factor.

13



For σ = 10, β = 8/3, Lorenz found that the system behaved chaotically for r ≥ 24.74.

The chaotic attractor is shown in Fig 2.3.1.

Figure 2.3.1: Lorenz attractor. Red plot is x vs y. Blue is x vs z.

Figure 2.3.1 depicts the orbit of a single set of initial conditions. This is a

numerically observed attractor since the choice of any initial condition in a neigh-

borhood of the chosen set results in a similar figure [7]. This behavior has also been

called the butterfly effect after the theory that a butterfly flapping its wings can cause

significant changes in the weather because of the slight changes it makes in the at-

mosphere [59].

Another popular system which exhibits a chaotic attractor is by O. Rössler given

below.
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ẋ = −y − z

ẏ = x+ ay

ż = b+ (x− c)z.

This system has only one non-linear term, xz, as compared to the Lorenz system but

is harder to analyze [7].

For the choice of parameters a = 0.1, b = 0.1, c = 14 [7], there is a chaotic attractor

shown in Fig. 2.3.2.

Figure 2.3.2: Rössler attractor

The figures were generated in MATLAB using ode45.
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Another article which observed chaos for certain parameters in the biological

system is by Kot, Sayler and Schulz [60]. They explored a double-monod system with

a prey (protozoan) and a predator (bacteria) when the nutrient is being forced into

the system out of phase with internal substrate. The system is a non-autonomous

continuous dynamical system with ordinary differential equations. The equations

used to model that system are as follows [60]:

dS

dt
= D

[
Si

(
1 + ε sin

(
2π

T
t

))
− S

]
− µ1

Y1

SH

K1 + S

dH

dt
= µ1

SH

K1 + S
−DH − µ2

Y2

HP

K2 +H
dP

dt
= µ2

HP

K2 +H
−DP

where

1. S represents the concentration of limiting substrate;

2. H represent the concentration of the prey;

3. P represents the predator concentration;

4. D is the dilution rate;

5. µ1 and µ2 represent the maximum specific growth rate of the prey and predator

respectively;

6. Y1 is the yield of the prey per unit mass of substrate;

7. Y2 is the biomass yield of the predator per unit mass of prey.
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For ease of calculations, the authors re-scaled the concentrations by the in-flowing

substrate concentrations, the prey by its yield constant, predator by both yield con-

stants, i.e.

x =
S

Si
, y =

H

Y1Si
, z =

P

Y1Y2Si
, τ = Dt.

The resulting re-scaled equations are as follows:

dx

dτ
= 1 + ε sin (ωτ)− x− Axy

a+ x
(2.1)

dy

dτ
=

Axy

a+ x
− y − Byz

b+ y
(2.2)

dz

dτ
=

Byz

b+ y
− z (2.3)

where ω =
2π

DT
.

The parameter values are in Table. 2.3.1.

D = 0.1, Si = 115

Yi µi h−1 Ki mg/l
Prey 0.4 0.5 8

Predator 0.6 0.2 9

Table 2.3.1: Values of parameters for microbial model presented in Kot et al. [60].

In the paper, the authors vary the value of ω to observe the behavior of the

model. This parameter was chosen because it drives the periodic forcing of the in-

flowing substrate. For ω = 5π
6

and ε = 0.6 they observed a chaotic model whose

simulation is given in Fig. 2.3.3 (also seen in [14]).
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Figure 2.3.3: Manifold plot of the Kot system when ω = 5π
6

and ε = 0.6.
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2.4 Evaluation of Lyapunov spectrum

As mentioned in Section 2.2, a positive Lyapunov exponent is a measure of a

chaotic orbit. The procedure for determining a Lyapunov exponent has been obtained

from [6] so the definition from the same article is given below.

Consider a continuous dynamical system in an n-dimensional phase space. We are

observing the long term behavior of an infinitesimal n-sphere of initial conditions.

Due to the locally deforming nature of the flow, the sphere eventually becomes a n-

ellipsoid. The Lyapunov exponent is calculated for each dimension and it is dependent

on the length of the principal axis of the ellipsoid. It is given by

λi = lim
t→∞

1

t
log2

pi(t)

pi(0)
, (2.4)

where pi(t) denotes the length of the ellipsoidal principal axis at time t and

pi(0) denotes its length at time t = 0.

The exponents are generally given in decreasing order, i.e. λ1 > λ2 > · · · > λn [6].

2.4.1 Procedure for calculation of Lyapunov exponents

The meaning of principal axes with initial conditions is required to better

understand the definition of Lyapunov exponents provided in [6]. These axes need

to evolve with the equations of the system. The issue is we cannot guarantee the

condition of small separations for times needed for convergence in a chaotic system.

To tackle this issue, the authors use a phase space together with a tangent space

approach. A fiducial trajectory (center of the sphere) is obtained by the action of

the non-linear system on some initial condition. For the definition of trajectories on

the points of the sphere, the concept of linearized system or variational equations is
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required.

Consider the Rössler system given below

ẋ = −y − z

ẏ = x+ ay

ż = b+ (x− c)z.

The linearized equations of the above system are constructed using the Jacobian of

the right-hand side:

J =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z


where fi is the right-hand side of the ith differential equation. For a n-dimensional

system we would have an n× n matrix.

For the Rössler system the Jacobian is


0 −1 −1

1 a 0

z 0 x− c

 .
To set up the variational equations we would need another matrix given by:

[δ] =


δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3

 ,
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where δxi is the component of the x variation that came from the ith equation.

The column sums of this matrix are the lengths of the x, y, and z coordinates

of the evolved variation. The rows are the coordinates of the vectors into which the

original x ,y, and z components of the variation have evolved.

The linearized equations are:


δ̇x1 δ̇y1 δ̇z1

δ̇x2 δ̇y2 δ̇z2

δ̇x3 δ̇y3 δ̇z3

 =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z



δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3

 .

For the Rössler system, it would be:


δ̇x1 δ̇y1 δ̇z1

δ̇x2 δ̇y2 δ̇z2

δ̇x3 δ̇y3 δ̇z3

 =


0 −1 −1

1 a 0

z 0 x− c



δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3

 .
So now in addition to the original system of n non-linear equations we will

have n2 additional linearized equations. The system now becomes of length n+n2 =

n(n+ 1).

Now to obtain the trajectories of points on the surface of the sphere, we consider

the action of the linearized system on points very close to the fiducial trajectory. In

fact, the principal axes are defined by the evolution via the linearized equations of an

initially orthonormal vector frame anchored to the fiducial trajectory [6]. To imple-

ment the procedure we solve the new system of n(n + 1) differential equations with

an ode solver such as Runge-Kutta 45 for some initial condition and a time range

[tstart, tstart+ ts] where tstart denotes the initial time and ts denotes the time step
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[6].

Now each vector diverges in magnitude. In a chaotic system, each vector tends to

fall along the local direction of most rapid growth. In addition, the finite precision

arithmetic of computing the collapse towards a common direction causes the tangent

space orientation of all axis vectors to become indistinguishable. To overcome this,

repeated Gram-Schmidt reorthonormalization (GSR) procedure is used on the vector

frame.

Let the linearized equations act on the initial frame of orthonormal vectors to give

a set of vectors {v1, v2, . . . , vn}. In other words, after we solve the system of n(n+ 1)

equations, consider the components corresponding to the variational equations. Then

GSR provides the following orthonormal set {v′1, v′2, . . . , v′n}:

v′1 =
v1

‖v1‖
,

v′2 =
v2 − 〈v2, v

′
1〉v′1

‖v2 − 〈v2, v′1〉v′1‖
...

v′n =
vn − 〈vn, v′n−1〉v′n−1 − · · · − 〈vn, v′1〉v′1
‖vn − 〈vn, v′n−1〉v′n−1 − · · · − 〈vn, v′1〉v′1‖

where 〈·〉 denotes the Euclidean inner-product. The orthonormal set thus obtained

now serves as the new initial conditions for our linearized system. We then solve the

system again, now with these new initial conditions and a new time-range [tstart, tstart+

ts] where tstart has now been changed to tstart+ ts and ts denotes the time step.

This procedure is repeated n times.
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It is seen that GSR never affects the direction of the first vector in a system, so

this vector tends to seek out the most rapidly growing direction in the tangent space

[6]. The length of vector v1 is proportional to 2λ1t so in this way we can obtain the

first Lyapunov exponent λ1. According to the construction of v′2, we are changing

the direction of v2. So it is not free to chase after the most rapidly growing direction

nor the second most. Also note that the vectors v′1 and v′2 span the same subspace as

v1 and v2. The area defined by the vectors v1 and v2 is proportional to 2(λ1+λ2)t. As

v′1 and v′2 are orthogonal, we may determine λ2 directly from the mean rate of growth

of the projection of vector v′2 on vector v′2 [6].

Extending this line of thought to n-dimensions, we see that the subspace spanned

by the n vectors is not affected by the GSR process. The long-term evolution of

the n-volume defined by these vectors is proportional to 2
∑n

i=1 λit. Projection of the

evolved vectors onto the new orthonormal frame correctly updates the rates of growth

of each of the principal axes in turn, providing estimates of the Lyapunov exponents.

The MATLAB code corresponding to the FORTRAN code given in [6] is provided

in Appendix A.

The next chapter gives examples of biologically relevant systems which will be used

in the rest of the thesis.
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Chapter 3

Examples of biologically relevant

systems

In this chapter a brief overview of the different types of systems used through-

out this thesis is provided. The systems are the Lotka-Volterra model, ratio-dependent

models, predator-prey models that have the Leslie-Gower type functional response

and Crowley-Martin type functional response.

3.1 Lotka-Volterra systems

The Lotka-Volterra system was initially a pair of equations symbolizing one

prey-one predator dynamics. It was developed independently by Alfred Lotka and

Vito Volterra in the 1920’s. The system has been generalized to n species systems.

A general Lotka-Volterra system is given by:

ẋi = xi

(
ri +

n∑
j=1

aijxj

)
i = 1, 2, . . . , n (3.1)
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where ri, aij ∈ R. These equations are a biologically relevant model for n interacting

species. xi(t) denotes the density of species i at time t, ri is its intrinsic growth

rate and aij measures the action of species j upon the growth rate of species i (in

particular aii represents the intra-specific interaction) [39]. The matrix A = [aij] is

called the interaction matrix.

3.1.1 Two-dimensional Lotka-Volterra systems

The standard two-dimensional Lotka-Volterra systems considered here are

ẋ1 = x1 (r1 + a11x1 + a12x2)

ẋ2 = x2 (r2 + a21x1 + a22x2)

The rest points/equilibrium points of this system are obtained by solving:

x1 (r1 + a11x1 + a12x2) = 0

x2 (r2 + a21x1 + a22x2) = 0

An interior rest point is a rest point (x1, x2) in which x1 and x2 > 0.

Now we classify the systems according to the signs of ri, aij where i, j = 1, 2.

Case I a11, a22 < 0 and r1, r2 > 0.

Based on the signs of the coefficients aij the systems are classified as below:

1. Mutualistic system As defined in [9], in this system the two species benefit
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from the presence of each other. Thus a12 and a21 ≥ 0. The rest points of this

particular system either lie on the coordinate axes or there exists an interior

rest point. When there is an interior rest point, all the orbits converge to it and

also the determinant a11a22 − a12a21 > 0. Otherwise, if the rest points are on

the coordinate axes, the orbits diverge to infinity.

2. Competitive system As the name suggests, this system consists of compe-

tition between different species (i.e. interspecific competition) or within one

species itself (i.e intraspecific competition). Here a12 and a21 ≤ 0. As before,

we get either an interior rest point or ones on the coordinate axes. When there

is an interior rest point, say F , two cases arise.

(a) The rest point F is a sink which can be shown by the negative eigenvalues

of the Jacobian at F . This is the case of stable coexistence [35].

(b) The rest point F is a saddle, that is, the Jacobian at that point has a

positive and negative eigenvalue. In this case, the orbits converge to ei-

ther of the rest points on the coordinate axes excluding the origin. This

means that depending on the initial condition, one or the other species

gets eliminated. This is known as bistable case [35].

Case II: r1 > 0, r2 < 0, a11 < 0, a22 < 0, a12 < 0, a21 > 0.

If there exists an interior rest point, the orbits will converge to it. If no such point

exists, the orbits will converge to the biologically relevant rest point (i.e. a rest point

where all the coordinates are non-negative) on the coordinate axis (− r1
a11
, 0) (Recall
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r1 > 0, a11 < 0)(by pages 17-20 of [35]).

3.1.2 Three-dimensional Lotka-Volterra systems and

Heteroclinic cycles

3.1.2.1 Definitions

Let us recall the definitions of ω−limit set and α− limit set from Section 2.2.

• ω−limit: Let ẋ = f(x) be an autonomous ODE where x ∈ Rn and let x(t) be

a solution defined for all t ≥ 0 with initial condition x(0) = x. The ω−limit of

x is the set of all accumulation points of x(t), for t→ +∞:

ω(x) = {y ∈ Rn : x(tk)→ y for some sequence tk → +∞}

• α− limit: The definition is similar as above except tk → −∞ [35].

3.1.2.2 Heteroclinic cycles

When three or more species compete, a very interesting phenomenon may oc-

cur. The species take each other’s place as the dominant one in a cyclic fashion. The

observer may think one species will be the unique survivor and the others are fated

to extinction, until suddenly, a revolution occurs. This kind of behavior is due to the

presence of a heteroclinic cycle. The heteroclinic cycles are cyclic arrangements of

saddle rest points and orbits having one saddle point as α−limit and the next one as

ω−limit [35]. This means that the orbit will be backward asymptotic to one saddle

point and forward asymptotic to the other saddle point.
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An example using a Lotka-Volterra type system is shown below[35]:

ẋ1 = x1 (1− x1 − 2x2 − 0.5x3)

ẋ2 = x2 (1− 0.5x1 − x2 − 2x3)

ẋ3 = x3 (1− 2x1 − 0.5x2 − x3)

(3.2)

The authors chose such a model for the cyclic interaction between the species: if they

replace 1 by 2, 2 by 3 and 3 by 1, the equations remain unchanged. When the solution

for the system with initial condition (0.5, 1, 1.5) was plotted, Fig. 3.1.1 was observed.

Figure 3.1.1: Heteroclinic cycle.

The heteroclinic cycle is the set consisting of the three saddles e1, e2, e3 (the

standard unit vectors) and the three connecting orbits o1, o2, o3. The state remains

for a long time close to the rest point e1, travels along o2 to the vicinity of the rest

point e2, lingers, then jumps over to e3 and so on, in cyclic fits and starts [35].
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Let us consider some notations [35] concerning heteroclinic cycles occurring in the

three-dimensional Lotka-Volterra system:

ẋi = xi

(
ri +

3∑
j=1

aijxj

)
i = 1, 2, 3. (3.3)

The one-species rest points F i =
(

0, 0, . . . , ri
−aii , . . . , 0

)
are biologically relevant only

if ri > 0 and aii < 0. Also they are saddles, since the Jacobian at Fi will have the ith

entry as aiiri
−aii < 0 and the rest of the diagonal entries as positive. So we can rewrite

the equation in the form

ẋi = rixi

(
1−

3∑
j=1

cijxj

)
i = 1, 2, 3. (3.4)

Let

αi =
ci−1,i

cii
βi =

ci+1,i

cii
(3.5)

where the indices are calculated modulo 3. If there exists a heteroclinic cycle, then

αi > 1 > βi.

Here βi may be negative.
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3.2 Kolmogorov theorem

The Kolmogorov theorem [40, 56], is a very useful tool in determining system

parameters in ecological systems. It assures the existence of either a stable equilibrium

point or a stable limit cycle in 2D systems provided certain conditions are satisfied.

Consider the following prey-predator model described by the system of equations [33]

dH

dt
= HF (H,P )

dP

dt
= PG(H,P )

(3.6)

where H is the prey population at any instant of time and P is the predator popula-

tion at the same instant of time. F and G are continuous functions of H and P with

continuous first partial derivatives in the domain H ≥ 0, P ≥ 0.

Theorem 3.2.1. Kolmogorov Theorem: The 2D system (3.6) possesses a stable

equilibrium point or a stable limit cycle if the following five conditions and four re-

quirements are satisfied.

Conditions

1.
∂F

∂P
< 0 2. H

(
∂F

∂H

)
+ P

(
∂F

∂P

)
< 0 3.

∂G

∂P
< 0

4. H

(
∂G

∂H

)
+ P

(
∂G

∂P

)
> 0 5. F (0, 0) > 0

Requirements: There exist quantities A,B,C such that

6. F (0, A) = 0, A > 0 7. F (B, 0) = 0, B > 0

8. G(C, 0) = 0, C > 0 9. B > C
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The author R.M. May [56, 33] gives a biological interpretation of the conditions

and requirements as follows.

1. The per capita rate of change of the prey density is a decreasing function of the

number of predators.

2. The rate of change of prey density is a decreasing function of both densities.

3. The per capita rate of change of the predator density is a decreasing function

of the number of predators.

4. The rate of change of predator density is an increasing function of both densities.

5. When both the population densities are low, the prey has a positive rate of

increase.

6. There is a predator population density sufficiently large to stop further prey

growth, even when the prey is scarce.

7. There is a bound B on prey growth even when predators are not present.

8. A critical prey size C is required that stops further increase in predators, even

if they are rare.

9. The minimum prey level that will allow an extremely sparse predator population

to grow must be a level at which the prey can also grow, i.e. unless B > C, the

system will collapse.

May [56] also suggested the constraints can be relaxed to equality in certain

cases.
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The authors Upadhyay et al. in [34, 67] stated a conjecture which uses Kolmogorov

2D subsystems (2D subsystems that satisfy the Kolmogorov theorem) to determine

parameters for a 3D system. The conjecture is

Two coupled Kolmogorov-systems in the oscillatory mode would yield either cyclic

(stable limit cycles and quasi-periodicity) or chaotic solutions depending on the

strength of coupling between the two.

They divided their original 3D food chain model which consisted of a prey, intermedi-

ate predator (predator 1) and a specialist predator (predator 2) into two subsystems:

one consisted of the prey and predator 1 and the other of predators 1 and 2. In

the second subsystem predator 1 acts a prey for predator 2. The authors called this

method the Pseudo-Prey method. The diagram depicting the relationship from [67] is

Fig. 3.2.1. This shows an interesting way to choose parameters of a 3D system which

can be divided into two subsystems so as to obtain chaos.

 

Figure 3.2.1: Relationship between the food chain species and pseudoprey [67].
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3.3 Ratio-dependent systems using Michaelis-Menten-

Holling type interaction

A major concept in predator-prey models is the predator functional response

[2]. Different papers [46, 16, 17] argued that, because predators can only handle a

finite number of prey in one unit of time, the prey death rate should be a nonlinear

function of prey density

dN

dt
= aN

(
1− N

K

)
− b(N)P,

where N,P are the biomass densities of the prey and predator respectively, a is the

prey’s per-capita rate of change in absence of predation, K is the carrying capacity

and b(N) is the functional response of the predator to prey density.

Holling carried out some behavioral experiments, in which predators (sometimes

blind-folded students) searched for different densities of prey (sometimes sandpaper

disks). Using these experiments, Holling derived his famous “disk” equation which

was identical to the well-known Michaelis-Menten equation of enzyme kinetics [45],

b(N) =
mN

w +N
,

where m is the maximum predator attack rate and w is the prey density where

the attack rate is half-saturated. The Michaelis-Menten-Holling equation can

be extended to account for general predators that switch from one prey species to

another.

Another popular example of the Michaelis-Menten kinetics are found in chemostat

models [20]. A chemostat is a device for harvesting bacteria. Nutrients are replenished
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as they are being consumed to maintain a required level of bacteria concentration. A

two-dimensional model of one species of bacteria and the nutrient is given below:

dN

dt
=

(
KmaxC

Kn + C

)
N − FN

V

dC

dt
= −α

(
KmaxC

Kn + C

)
N − FC

V
+
FC0

V
.

N denotes the bacterial population density, C the nutrient concentration in the growth

chamber, C0 the nutrient concentration in the reservoir, Y the yield constant, V the

volume of the growth chamber and F the intake/output flow rate. The rate of growth

of the bacteria increases with nutrient availability only up to some limiting value.

The mechanism that incorporates this effect is Michaelis-Menten kinetics which is

shown by the term

K(C) =
KmaxC

Kn + C
, (3.7)

where Kmax denotes the upper bound for K(C) and for C = Kn, K(C) = 1
2
Kmax.

The figure depicting Michaelis-Menten kinetics [20] is Fig. 3.3.1.

K(C)

Figure 3.3.1: Michaelis-Menten kinetics [20].
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3.4 Predator-prey models with Leslie-Gower

functional response

The Leslie-Gower two dimensional model [52, 33] leads to asymptotic solutions

tending to a stable equilibrium, which is independent of the initial conditions and

depends on intrinsic factors governing the biology of the system. The equations of

the Leslie-Gower model are

dP

dt
= (a1 − c1Z)P

dZ

dt
=

(
a2 − c2

(
Z

P

))
Z

where P and Z denote the density of the prey and predator population respectively

at time t. The parameters are all positive and are given by:

a1 : intrinsic growth rate of prey;

c1 : effect of the density of the predator population on the population growth of

the prey;

a2 : intrinsic growth rate of the predator;

c2 : number of prey necessary to support each individual predator.

The factor −c2

(
Z

P

)
indicates the growth rate of the predator is limited. In

this model, the following assumptions are inherent:

1. The rate of increase of the predator population has an upper limit.

2. Intraspecific competition has negligible effect on prey’s population growth.

As mentioned before, the model depends only on the intrinsic attributes of the

interacting system, that is, the parameters a1, c1, and so on.
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3.5 Predator-prey models with the Crowley-Martin

functional response

The Crowley-Martin type of functional response [15] is a predator-dependent

functional response, i.e. the response is a function of both prey and predator abun-

dance because of predator interference. The response was observed in a laboratory

study of a species of dragonfly. The authors modeled the predation rate per predator

(prey per predator per time) F as proportional to the prey density (per area) H. The

predators are present at density P per area. Let P1 be the density of one less than the

total number of predators. Interference between predators is assumed and therefore

each predator experiences a density P1 of other predators due to interference.

The authors consider two possibilities:

• Possibility 1: that feeding and interference simply compete with each other to

distract the predator’s attention. In this case the predation rate F is given by

F =
aH

(1 + abH + cP1)
.

This is called the distraction model.

• Possibility 2: that interference takes precedence over feeding. Using that possi-

bility, the predation rate F is given by

F =
aH

(1 + abH)(1 + cP1)
.

This is called the pre-emption model.
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In both cases, a is the attack coefficient, b is the time spent by the predator to process

the prey and c is the interference coefficient.

For the distraction model, predation rates are most sensitive to predator density

at intermediate prey densities; at high prey densities, increasing predator density

has little inhibitory effect on predation rates. In the pre-emption model, predation

rates are most sensitive to predator density at high prey densities. Therefore the

effects of predator interference on feeding rate remain important all the time whether

an individual predator is processing or searching for a prey. The authors provide a

graphical comparison of the two models [15] which is shown in Fig. 3.5.1

 

Figure 3.5.1: The distraction and pre-emption model (dashed lines)[15].
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These are only a few types of biologically relevant models. Some other examples

involve the Holling types [29], Holling-Tanner ratio-dependent type [64], Beddington-

DeAngelis type [11, 24], Ivlev type [32], Rosenzweig-MacArthur model [53].

As mentioned in the introduction, we wish to use permanence/persistence to mea-

sure the thriving/survival of the species. The following chapter defines these concepts

and provides methods to prove the existence of permanence/persistence in dynamical

systems.
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Chapter 4

Permanence of dynamical systems

The most frequently used modeling framework in mathematical biology is the

autonomous ordinary differential equations of the form:

ẋi = xifi(x). (4.1)

Extinction or survival of the species are important points to consider for any eco-

logical system. Stability notions have been introduced and studied in different man-

ners:“cooperativity” by Schuster et al. [43], “permanent coexistence” by Hutson and

Vickers [69], “permanence and viability” by Aubin and Sigmund [5].

Certain terms which will be referred to are defined below:

• A set is invariant for (4.1) if a solution with initial values in that set remains

in the set for all time [31]. To be biologically relevant, (4.1) is only considered

in the positive cone Rn
+. A point to note is this set, its interior (intRn

+) and

its boundary (∂Rn
+) are all invariant. Clearly points in ∂Rn

+ denote situations

where at least one species is absent.
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• To recall, a fixed point/rest point/equilibrium point is a point where the

right-hand side of (4.1) is zero for each i.

• An interior rest point is a rest point in int Rn
+.

4.1 Background information

In the paper ‘Permanence and dynamics of biological systems’ [31], the au-

thors Hutson and Schmitt provide a historical background into the development of

permanence. Stability notions in biology is a subject of considerable interest. The

mathematical treatments of such notions which developed into a clear pattern is de-

scribed.

For the system (4.1) it was required that there should be a unique interior rest

point and it should be globally asymptotically stable (for initial values in intRn
+),

i.e. all perturbations would eventually be compensated for, and the system would

return to the rest point. Volterra invented a rather clever Lyapunov function which

proved the global asymptotic stability of the interior rest point. Unfortunately, the

function worked for Lotka-Volterra equations of two species but it wasn’t adequate

for dimension ≥ 3.

Another criterion along the same lines is that of local asymptotic stability where

it is only required that all orbits with initial values sufficiently close to the rest point

should return to it. This property was shown using eigenvalues of the Jacobian of the

right hand side of (4.1). If the eigenvalues had negative real parts, the rest point was

locally stable. The drawback of this property is that ‘sufficiently close’ is not specific

enough. Another question arose: why should there only be one interior rest point?
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Also, why should the system even go to rest? There are examples (e.g. the lynx-hare

cycle [56]) in which communities that oscillate violently could also survive perfectly

well.

By the sixties, there were some doubts among biologists that either local or global

asymptotic stability was not enough. Papers by R.C. Lewontin [55] and J. Maynard

Smith [36] give an intuitive approach to dynamic boundedness and permanence

which are predecessors of the formal concept of permanence. But there were no

mathematical ideas that seemed helpful in treating these concepts. To meet these

requirements, the idea of weak persistence, that is

lim sup
t→∞

xi(t) > 0 ∀i (4.2)

was introduced in [26]. A disadvantage of this concept is that orbits of a weakly

persistent system may approach ∂Rn
+.

The stronger condition of permanence that avoids this difficulty was introduced

in [43] and is based on ∂Rn
+ being repelling. The system (4.1) is said to be permanent

if there are numbers m,M with 0 < m ≤ M < ∞ such that given any x = x(0) ∈

intRn
+ there is a tu such that

m ≤ xi(t) ≤M(t > tu, i = 1, . . . , n). (4.3)

Some obvious advantages of this definition are noted. First, it is global, the quantities

m,M being independent of the initial values. Secondly, no solution can approach the

boundary. Thirdly, only the behavior near ∂Rn
+ is relevant. Lastly, any asymptotic

behavior consistent with (4.1) is allowed; even chaotic behavior. One clear disadvan-
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tage is the definition does not say how large m need be.

A second approach to permanence can be traced to a paper by Freedman and

Waltman [27] in 1984 where it is observed that a careful analysis of the flow in

the boundary led to convenient conditions for strong persistence (similar to weak

persistence except it is lim inf).

Another approach to permanence is present in [5] where the authors talk about

two concepts in non-equilibrium theory namely permanence and viability. They define

system to be permanent if the boundary (including infinity) is an unreachable repellor,

or equivalently if there exists a compact subset in the interior of the state space where

all orbits starting from the interior eventually end up. They are mostly concerned

with ecological equations of the type

ẋi = xifi(x) (4.4)

on Rn
+ or replicator equations

ẋi = xi(fi(x)−
∑

xifi) (4.5)

which have been widely investigated in population genetics, population ecology, the

theory of prebiotic evolution of self-replicating polymers and socio-biological studies

of evolution.

They go on to state a sufficient condition for permanence with the help of an ‘av-

erage Lyapunov function’ P . The function P is defined on the state space, vanishing

on the boundary and strictly positive in the interior, such that Ṗ = Pψ where ψ is a
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continuous function with the property that for some T > 0

1

T

∫ T

0

ψ(x(t))dt > 0 ∀x on the boundary .

Permanence can also be usefully applied to systems of difference equations, differential

equations with delays, functional differential equations.

They [5] then introduce the concept of viability for equations of the form

ẋ = f(x, u) (4.6)

where u is a control depending on the state x, i.e. u ∈ F (x). An additional constraint

on the system is that it remains in a certain viability domain K which is assumed to

be closed in Rn. A trajectory solving (4.6) is viable if

x(t) ∈ K for all t. (4.7)

The restrictions at the boundary of K were described using the contingent cone to

K at x defined by

Tk(x) =

{
v ∈ Rn : lim inf

h→0+

dk(x+ hv)

h
= 0

}

where dk(x+hv) is the distance from x+hv to K. They then introduce the feedback

regulation map R defined by

R(x) = {u ∈ F (x)|f(x, u) ∈ Tk(x)} . (4.8)
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They observed that any viable trajectory of the controlled system is a solution to the

‘feedback’ differential inclusion (the function f is a set rather than a single point)

ẋ = f(x, u) with u ∈ R(x). (4.9)

A necessary and sufficient condition is also provided for viability. Interpretations of

equation (4.6) and viable trajectories in biological evolution and economics is also

discussed.

In the paper [39], the author analyzes ecological systems of the Lotka-Volterra type

with one prey and several predators. The general form of the system considered by

her is as follows:

ẋi = xi

(
ri −

n∑
j=1

aijxj

)
i = 1, 2, . . . , n (4.10)

where xi(t) denotes the density of species i at time t, ri its intrinsic growth rate and

aij measures the action of species j upon the growth rate of species i (in particular

aii represents the crowding effect within one species) [39]. One of main results of this

paper is the following

Theorem 4.1.1. Whenever system (4.10) is permanent or robustly weakly persistent

the following three properties are valid:

i There exists an interior equilibrium.

ii The determinant of the interaction matrix A of the whole system is positive.
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iii The determinant of the interaction matrix of any n − 1 species subsystem is

positive whenever the corresponding n− 1 species fixed point exists.

The system (4.10) is robustly weakly persistent if it remains weakly persistent

under small perturbations of the parameters aij.

The author goes on to prove necessary and sufficient conditions for the per-

manence (or weak persistence) of three-species and four-species multiple predator

models. The conditions are combinations of the ones listed above in Theorem 4.1.1.

The author also derived conditions for permanence in higher dimensional prey-

predator systems linked by interspecific competition of prey in [38].

A paper which dealt with a non-traditional prey dependent model is ‘Persistence

and Extinction of One-Prey and Two-Predators System’ by Dubey and Upadhyay

[54]. They proposed and analyzed a mathematical model of one prey-two predators

system in which the predator interference is based on the ratio-dependent theory.

The two predators are in a state of competition for the single prey. Criteria for

local stability, instability and global stability of the non-negative equilibria are also

obtained. The paper then goes to obtain sufficient conditions for the permanent

co-existence of the species.

Permanence of a local dynamical system in a topographical setting has also been

addressed by the authors Fonda and Giodani [22]. They provide a necessary and

sufficient condition for permanence. An illustrative application to a two-dimensional

Lotka-Volterra model has also been provided.
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Even permanence of non-autonomous two-dimensional predator-prey models were

studied in [49]. These models were based on modified Leslie-Gower and Holling-Type

II schemes and also incorporated a time-delay factor. Using Lyapunov functionals,

sufficient conditions for the global stability of the solutions were also established.

Another paper that deals with non-autonomous systems is by Nie et al. [51]. They

consider a multi-species Lotka-Volterra type competitive system with delays and feed-

back controls. They use the following condition to prove permanence:

m ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤M (i = 1 . . . n)

for any positive solution (x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , un(t)). Here ui(t) are

control variables. This is established in integral form and is independent of feedback

controls.

In the paper ‘Dynamics of a non-autonomous ratio-dependent predator-prey sys-

tem’ [73], the authors investigate a non-autonomous ratio-dependent predator-prey

system. They use the same condition for permanence as in [51]. Their proof in-

volves obtaining bounds on the derivatives of the solutions. Conditions for existence,

uniqueness and stability of a positive periodic solution and a positive almost-periodic

solution are obtained for the periodic and almost-periodic cases respectively.

The authors of [32] investigate a predator-prey system with a special type of func-

tional response, namely the Ivlev-type. The Ivlev-type response which is both mono-
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tonically increasing and uniformly bounded is given by

p(x) = h(1− exp(−cx)) where c, h > 0

where p(x) is the predation rate, h the maximum rate of predation and c is a constant

representing the decrease in motivation to hunt.

Impulsive control strategies containing a biological control (periodic impulsive immi-

gration of the predator) and a chemical control (periodic pesticide spraying) have also

been applied to the model. They derive conditions for permanence using the result

m ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤M (i = 1 . . . n)

and by using the comparison results of impulsive differential inequalities. In addition

to this, they also add a forcing term to the prey population’s intrinsic growth rate

and then find the conditions for the stability and for the permanence of the system.

The papers [63, 71] deal with permanence of Kolmogorov type (Section 3.2) non-

autonomous systems. The authors of [71] deal with a system of partial differential

equations. They are concerned with obtaining a condition of permanence for two-

species Kolmogorov periodic predator-prey models with diffusion. They apply the

average Lyapunov function method.

In [63], the authors also use the method of Lyapunov-like functions. They deal

with the n-species Lotka-Volterra type systems with distributed delays (i.e. non-

autonomous Lotka-Volterra system). They construct n Lyapunov-like functions which

are regarded as boundary functions of some compact region inside the positive cone

in Rn.
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Most of the papers reviewed dealt with continuous systems. The authors of [70]

investigate the long term survival of species in models governed by Lotka-Volterra

difference equations which are discrete dynamical systems. The criterion used is the

definition of permanence, that is a system is permanent when the populations with

all positive initial values must eventually all become greater than some fixed positive

number. They derive applicable criteria for permanence in a wide range of cases.

The authors of [41] study Lotka-Volterra systems with N species and n resources

with n < N . With a change of variables, they reduce the initial system to a system of n

differential equations. They show the existence of chaotic behavior for such systems.

They show this by taking a finite family of hyperbolic dynamics and generate a

sufficiently large Lotka-Volterra model with an appropriate choice of parameters. The

paper then goes to investigate the plankton paradox problem: how many species can

share a bounded number of resources? To show this, they describe the construction

of strongly persistent Lotka-Volterra systems, which have chaotic behavior. This

indicates that the concepts of chaos and permanence are not mutually exclusive.

Some other papers which provide conditions for permanence/persistence and also

observe chaos in the numerical simulations are [10, 67, 68] to name a few. Each of

the papers investigates the two phenomena separately and does not mention a link

between them.

The next section provides some methods to prove permanence in different systems.
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4.2 Methods to prove permanence

From [35], a dynamical system is said to be permanent if there exists a δ > 0

such that xi(0) > 0 for i = 1 . . . n implies

lim inf
t→+∞

xi(t) > δ

for i = 1 . . . n.

Here δ does not depend on the initial values xi(0).

This section gives a summary of some methods to prove permanence since using

the general definition of permanence is hard. One subsection deals with permanence

in Lotka-Volterra systems. The next subsection deals with permanence in biologi-

cally relevant systems using boundary rest points and the last shows how to prove

permanence using a type of an average Lyapunov function.

4.2.1 Necessary and sufficient conditions for permanence of

Lotka-Volterra systems

This subsection gives a necessary and sufficient condition for permanence of

Lotka-Volterra system. An example of how to use the theorem is provided. Addition-

ally, the condition is also used to show how chaos could be related to permanence.

In pages 206-207 of [35] the necessary and sufficient conditions for permanence of

a Lotka-Volterra system ẋ = x(r + Ax), where x ∈ Rn, r is the vector growth (or

death) rates and A is the interaction matrix, are specified as follows.
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1. There exists an interior rest point x̂ = (x̂1, x̂2, x̂3) (i.e. x̂1 > 0, x̂2 > 0, x̂3 > 0)

2. det(−A) > 0

3. The two species subsystems are uniformly bounded and not bistable.

For example, if the two-species subsystem (say x3 = 0) is mutualistic and the

determinant a11a22 − a12a21 > 0, it was seen in Section 3.1.1 that the interior

rest point is stable.

Or if the system is competitive, it has a stable interior rest point or only one

stable rest point at the boundary.

Another point to note, this condition excludes the cases when the interior rest

point is a saddle (when the subsystem has two boundary rest points) or the

degenerate cases of a line of rest points or that the isoclines intersect on an

unstable rest point on a coordinate axis [35].

4. If the system admits a heteroclinic cycle, then the following equation holds:

3∏
i=1

(αi − 1) <
3∏
i=1

(1− βi) (4.11)

where αi, βi are as defined in Section 3.1.2.2.

If the system satisfies all 4 conditions, then it is robustly permanent. If it satisfies

just the first three, then it is permanent. An example of a permanent and chaotic

Lotka-Volterra system is shown in Section 4.2.1.1.

4.2.1.1 Example of a permanent and chaotic Lotka-Volterra system

Let us consider an example of a Lotka-Volterra system [35] that is both per-

manent and chaotic [23].
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The three-dimensional Lotka-Volterra system under consideration is as follows:

ẋi = xi

(
ri +

3∑
j=1

aijxj

)
i = 1, 2, 3 (4.12)

with

r1 = 1, r2 = 1, r3 = −1 and

A =


−1 −1 −10

−1.5 −1 −1

5 0.5 −0.01

.

The expanded version of the Lotka-Volterra equations is

ẋ1 = x1 (1− x1 − x2 − 10x3)

ẋ2 = x2 (1− 1.5x1 − x2 − x3)

ẋ3 = x3 (−1 + 5x1 + 0.5x2 − 0.01x3) .

(4.13)

4.2.1.2 Permanence criterion for the system

Lemma 4.2.1. The system (4.13) is permanent.

Proof. Let us consider each of the conditions for permanence for the system (4.13).

1. There exists an interior rest point

(.1184366364, .8157652323, 0.6579813133e − 2) given by solving the following

system:
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1− x1 − x2 − 10x3 = 0

1− 1.5x1 − x2 − x3 = 0

1 + 5x1 + 0.5x2 − 0.01x3 = 0

(4.14)

2. det(−A) = 37.995 > 0

3. Next we consider each two-species subsystem which are uniformly bounded:

Case 1: x3 = 0. The subsystem is as follows:

ẋ1 = x1 (1− x1 − x2)

ẋ2 = x2 (1− 1.5x1 − x2)

So this system is competitive and it has only one stable rest point (x1 =

1, x2 = 0) at the boundary and thus it is not bistable.

Case 2: x2 = 0. The subsystem is as follows:

ẋ1 = x1 (1− x1 − 10x3)

ẋ3 = x3 (−1 + 5x1 − 0.01x3)

This subsystem is neither mutualistic or competitive. It has an interior rest

point namely x1 = 0.2001599680, x3 = 0.07998400320. This rest point is

stable as the Jacobian at this point has eigenvalues with negative real parts

52



and as in Section 3.1.1. So this subsystem is also not bistable.

Case 3: x1 = 0. The subsystem is as follows:

ẋ2 = x2 (1− x2 − x3)

ẋ3 = x3 (−1 + 0.5x2 − 0.01x3)

This subsystem is neither mutualistic or competitive. It does not have an

interior rest point. As seen in Section 3.1.1, the orbits all converge to the

rest point on the coordinate axes, namely (x2 = 1, x3 = 0). So again the

system is not bistable.

4. A heteroclinic cycle exists if there are 3 one species rest points, namely F1, F2, F3

(from Section 3.1.2.2). The one species rest points Fi exist if ri > 0 and aii < 0

for i = 1, 2, 3. In our example,

r1 = 1 > 0 and a11 = −1 < 0

r2 = 1 > 0 and a22 = −1 < 0

r3 = −1 < 0 and a33 = −0.01 < 0.

So we can see that F3 does not exist and hence a heteroclinic cycle does not

exist.

Thus our system is permanent.
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4.2.1.3 Stability analysis

Table 4.2.1 provides the stability analysis for the Lotka-Volterra system (4.13).

The Lyapunov spectrum has been calculated only for points with negative divergence.

The negative divergence indicates the solutions are bounded.

Rest point ((x1, x2, x3)) Eigenvalues Stability Maximum
Lyapunov
exponent

Divergence

(0, 0, 0) 1
1
−1

Unstable N/A positive

(0, 1, 0) −1
0
−0.5

Unstable
0.0009

negative

(1, 0, 0) −1
−0.5
4

Unstable N/A positive

(.2001599680, 0., 0.079984) −.100479904032000 +
0.889125222282289I
−.100479904032000 −
0.889125222282289I
0.619776044800000

Unstable N/A positive

(.1184366364, .8157652323,
0.6579813133e− 2)

−.966926554652232
0.163294437447653e−
1 +
0.157205778092898I
0.163294437447653e−
1 −
0.157205778092898I

Unstable
0.0241

negative

Table 4.2.1: Maximum Lyapunov Exponent for rest points of (4.13).
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As is seen in Table 4.2.1, chaos is observed for the interior rest point

(.1184366364, .8157652323, 0.6579813133e− 2).

The chaotic manifold is shown in Fig. 4.2.1

Figure 4.2.1: Lotka-Volterra attractor for system (4.13).
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4.2.1.4 Does chaos imply permanence in three-dimensional Lotka-Volterra

systems?

We wish to use the necessary and sufficient conditions for permanence spec-

ified in Section 4.2.1 to find a connection between chaos and permanence of some

Lotka-Volterra systems.

Consider the following general three-dimensional two prey, one predator Lotka-Volterra

system with aii < 0 for i = 1, 2, 3:

ẋ1 = x1 (1 + a11x1 + a12x2 + a13x3)

ẋ2 = x2 (1 + a21x1 + a22x2 + a23x3)

ẋ3 = x3 (−1 + a31x1 + a32x2 + a33x3)

(4.15)

where r =


1

1

−1

 and A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


The interior rest point is obtained by solving

−r = Ax (4.16)

Recall the necessary and sufficient conditions for permanence

1. There exists an interior rest point x̂ = (x̂1, x̂2, x̂3) (i.e. x̂1 > 0, x̂2 > 0, x̂3 > 0)

2. det(−A) > 0

3. The two species subsystems are uniformly bounded and not bistable.
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4. If the system admits a heteroclinic cycle, then the following equation holds:

3∏
i=1

(αi − 1) <
3∏
i=1

(1− βi) (4.17)

where αi, βi are as defined in Section 3.1.2.2.

In our case, since r3 < 0 and a33 < 0, therefore F3 does not exist and hence a

heteroclinic cycle does not exist.

Theorem 4.2.2. Assume there exists a chaotic orbit near the interior rest point which

implies the interior rest point is unstable and the orbit is bounded and aperiodic. Then

the system (4.15) is permanent when b = x1x2M33 + x2x3M11 + x1x3M22 < 0, where

Mii is the minor of the Jacobian D at the unique rest point x̄. Also assuming the

eigenvalues of D are real.

Proof. D denotes the Jacobian of (4.15) at the unique interior rest point x̄. We have

the following results:

• From linear algebra, the determinant of a matrix is the product of the eigenval-

ues and the trace is the sum of the eigenvalues.

• Descartes’ Rule of sign states that if the terms of a single-variable polyno-

mial with real coefficients are ordered by descending variable exponent, then

the number of positive roots of the polynomial is equal to the number of sign

differences between consecutive nonzero coefficients.

• An orbit is bounded if the divergence at the initial condition is negative, i.e.

the trace of the Jacobian at the initial condition is negative.
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• We have a relationship between the Jacobian D and the matrix A:

D = [dij] = [x̄iaij] =⇒ det(D) = x̄1x̄2x̄3det(A) (4.18)

From (4.18), we have that det(D) and det(A) have the same sign.

• Also since the interior rest point is unique, A is non-singular, i.e., det(A) 6=

0 =⇒ det(D) 6= 0. This implies that the eigenvalues of D are non-zero.

Sign analysis

Since the rest point is unstable, at least one eigenvalue of the Jacobian D has

a positive real part. The possible sign combinations of the real eigenvalues are as

follows:

Case 1 + + +

Case 2 + + −

Case 3 + − −

Case 1 cannot occur as the orbit is bounded, therefore the trace is negative and at

least one eigenvalue is negative.

We are hoping that a chaotic orbit near the rest point can replace one or more

conditions for permanence of Lotka-Volterra systems. Considering the condition

det(−A) > 0 =⇒ det(A) < 0 and ∴ det(D) < 0, we can exclude Case 3 as

well.
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Consider the Case 2 + + − of the real eigenvalues. The characteristic equation of

D is

x3 − trace(D)x2 + bx− det(D) = 0 (4.19)

where b = x1x2M33 + x2x3M11 + x1x3M22, trace(D) < 0, det(D) < 0. Since we have

two positive eigenvalues, for two sign changes in the coefficients of the equation, we

should have b < 0 by Descartes’ Rule of sign.

Consider the two species subsystems:

Case: x3 = 0 1. Stable interior rest point which implies M33 > 0, a12 > a22 and a21 > a11

or

2. Only one stable rest point at the boundary a11 > a21 or a12 > 0.

Case: x2 = 0 1. Stable interior rest point which implies M22 > 0,−a13 > a33

and a31 + a11 > 0

2. Only one stable rest point at the boundary −a11 > a31.

Case: x1 = 0 1. Stable interior rest point which implies M11 > 0,−a33 − a23 > 0

and a32 + a22 > 0

2. Only one stable rest point at the boundary −a22 > a32.

Combinations of the above cases could give us b < 0 thus leading to two posi-

tive eigenvalues. This then leads to det(D) < 0 which leads to our second condition

for permanence by the relation (4.18). The previous analysis implies that chaos does

in fact give rise to permanence under certain parameter values.
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This analysis unfortunately only uses the unstable nature of the interior rest point

which can happen even in non-chaotic cases. Also this is specific to the three-

dimensional two prey, one predator Lotka-Volterra system with aii < 0 for i = 1, 2, 3.
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4.2.2 Condition for permanence using boundary rest points

As mentioned before, the general definition of permanence is hard to apply.

The following definitions will be needed for Theorem 4.2.3 to prove permanence of

systems using boundary rest points (i.e., boundary rest points are rest points with at

least one coordinate is zero).

• A rest point x̄ of (4.1) is saturated if fi(x̄) ≤ 0 for all i (the equality sign

must hold whenever x̄i > 0). A rest point in the interior is trivially saturated.

The quantities fi(x̄) are the eigenvalues of the Jacobian of (4.1) at x̄ whose

eigenvectors are transversal to the boundary face of x̄. Thus they are called

transversal eigenvalues.

• A degenerate saturated rest point is one which has a zero transversal eigen-

value.

• A regular rest point is one which has non-zero eigenvalues.

• If x̄ is a regular rest point of (4.1), then the index i(x̄) is the sign of the Jacobian

Dx̄f . Hence

i(x̄) = (−1)k

where k is the number of real negative eigenvalues of the Jacobian. For n = 2,

for example, the index of a center, a sink or a source is +1, while that of a

saddle is −1 [35].

Theorem 4.2.3. If the system ẋi = xifi(x1, x2, . . . , xn) i = 1, 2, . . . n, does not have

regular saturated boundary rest points, it is permanent [28].

Proof. Proof can be found in the paper [28].
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4.2.2.1 Permanence of Lotka-Volterra system (4.13) using boundary rest

points

Let us also consider the nature of the rest points of the Lotka-Volterra system

in Section 4.2.1.1 given by

ẋ1 = x1 (1− x1 − x2 − 10x3)

ẋ2 = x2 (1− 1.5x1 − x2 − x3)

ẋ3 = x3 (−1 + 5x1 + 0.5x2 − 0.01x3)

(4.20)

at the boundary:

Rest point Value of fi

(0, 0, 0) f1(0, 0, 0) = 1 > 0

f2(0, 0, 0) = 1 > 0

f3(0, 0, 0) = −1 < 0

(1, 0, 0) f2(1, 0, 0) = −0.5 < 0

f3(1, 0, 0) = 4 > 0

(0, 1, 0) f1(0, 1, 0) = 0

f3(0, 1, 0) = −0.5 < 0

(0.2001599680, 0, 0.07998400320) f2(0.2, 0, 0.08) = 0.62 > 0

Table 4.2.2: Check of permanence of Lotka-Volterra system (4.13) using boundary

rest points.

The rest point (0, 1, 0) is a degenerate saturated rest point (i.e. one transversal

eigenvalue is 0) which is allowed for permanence. We have also seen it is chaotic in

Section 4.2.1.1.
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4.2.3 Condition for permanence using average

Lyapunov functions

From [35] we have an additional method to prove permanence:

Theorem 4.2.4. Let us consider a dynamical system on Sn leaving the boundary

invariant. Let σ : Sn → R be a differentiable function vanishing on the boundary

of Sn (bdSn) and strictly positive in the interior of Sn (intSn). If there exists a

continuous function ψ on Sn such that the following two conditions hold

for x ∈ intSn,
σ̇(x)

σ(x)
= ψ(x) (4.21)

for x ∈ bdSn,
∫ T

0

ψ(x(t))dt > 0 for some T > 0, (4.22)

then the dynamical system is permanent.

The proof of the theorem is given in pages 147-148 of [35]. Here the function

σ(X) is said to be an average Lyapunov function since its time average acts like a

Lyapunov function.

4.2.3.1 Example of a permanent and chaotic food-chain model with Crowley-

Martin type functional response

In [68], a three-species food-chain model, consisting of a hybrid type of prey-

dependent and predator-dependent functional responses is investigated for persistence

and chaos. We shall also derive conditions for permanence using the theorem in

Section 4.2.3 for the parameter values given in [68] that give chaos.
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The model simulates a tritrophic level food chain (a food chain with three levels:

a prey, an intermediate predator and the top predator) and is given below

Ẋ = a1X(1− X

K
− wXY

X +D

Ẏ = −a2Y +
w1XY

X +D1

− w2Y Z

1 + dY + bZ + bdY Z

Ż = −cZ +
w3Y Z

1 + dY + bZ + bdY Z

Here X(T ) denotes the population density of the prey, Y (T ) denotes the population

density of the intermediate predator and Z(T ) denotes the population density of the

top predator. The intermediate predator Y feeds on the prey X according to the

Holling type-II (or Michaelis-Menten- Holling, Section 3.3) functional response and

the top predator Z preys upon Y according to the Crowley-Martin type functional

response (Section 3.5).

The parameters are defined as follows:

• a1: intrinsic growth rate of the prey;

• K: carrying capacity of the prey in absence of predation;

• w,w1: maximum value which per capita reduction rate of X can attain;

• D,D1: measure the extent to which the environment can provide protection to

prey X and Y respectively;

• w2, w3, b, d: saturating Crowley-Martin type functional response parameters in

which b measures the interference among the predators;

• a2, c: death rates of predators Y and Z respectively.
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The authors reduced the number of parameters by non-dimensionalizing the

model by using the following conversions:

t = a1T , x =
X

K
, y =

wY

a1K
, z =

ww2Z

a2
1dK

, w4 =
D

K
, w5 =

a2

a1

, w6 =
w1

a1

w7 =
D1

K
, w8 =

a1b

w2

, w9 =
a2

1bdK

ww2

, w10 =
w

a1dK
, w11 =

c

a1

, w12 =
w3

a1d
.

The dimensionless equations are:

ẋ = x

[
(1− x)− y

x+ w4

]
ẏ = y

[
−w5 +

w6x

x+ w7

− z

y + (w8 + w9y)z + w10

]
ż = z

[
−w11 +

w12y

y + (w8 + w9y)z + w10

]

The paper goes on to provide conditions for boundedness of the system and existence

of the rest points both boundary and interior. The boundary rest points are given by

E0 = (0, 0, 0), E1 = (1, 0, 0) and E2 = (x̃ =
w5w7

w6 − w5

, ỹ = (1− x̃)(x̃+ w4), 0).

E0, E1 always exist and E2 exists if

0 <
w5w7

w6 − w5

< 1 (4.23)

The parameter values given in [68] are as follows:

w4 = 0.25, w6 = 0.8, w7 = 0.25, w8 = 0.01, w9 = 0.1, w10 = 0.28, w12 = 0.25.
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The system is given by

ẋ = x

[
(1− x)− y

x+ 0.25

]
ẏ = y

[
−w5 +

0.8x

x+ 0.25
− z

y + (0.01 + 0.1y)z + 0.28

]
ż = z

[
−w11 +

0.25y

y + (0.01 + 0.1y)z + 0.28

]
.

(4.24)

The authors choose to vary the death rates of the predators, namely w5, w11 to

check for chaos. The conditions for permanence will be in terms of the very same

parameters.

Theorem 4.2.5. Assuming the rest points E0, E1, E2 exist and using Theorem 4.2.4

(Section 4.2.3), we need

−w11 +
0.25ỹ

ỹ + 0.28
> 0

for the system (4.24) to be permanent.

Proof. Let the Lyapunov function be

σ(X) = xp1yp2zp3

where p1, p2, p3 > 0 and are constants. Clearly σ(X) is a non-negative C1 function

defined in R3
+.
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Consider

ψ(X) =
σ̇(X)

σ(X)

= p1
ẋ

x
+ p2

ẏ

y
+ p3

ż

z

= p1

(
(1− x)− y

x+ 0.25

)
+ p2

(
−w5 +

0.8x

x+ 0.25
− z

y + (0.01 + 0.1y)z + 0.28

)
+ p3

(
−w11 +

0.25y

y + (0.01 + 0.1y)z + 0.28

)

The condition for the existence of E2 is given by 4.23 and there are no periodic orbits

in the boundary.

To obtain permanence, we need to show ψ(X) > 0 ∀ equilibria X ∈ bdR3
+, i.e. the

following conditions have to be satisfied:

ψ(E0) = p1 − p2w5 − p3w11 > 0 (4.25a)

ψ(E1) = p2(−w5 +
0.8

1.25
)− p3w11 > 0 (4.25b)

ψ(E2) = p3(−w11 +
0.25ỹ

ỹ + 0.28
) > 0 (4.25c)

We note that by increasing p to a sufficiently large value, ψ(E0) can be made positive.

From (4.23), and by making p2 sufficiently large, ψ(E1) > 0.

From (4.25c):

−w11 +
0.25ỹ

ỹ + 0.28
> 0 (4.26)
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and if (4.26) is satisfied, ψ(E2) > 0 and thus, we obtain permanence.

So to obtain permanence using an average Lyapunov function, we need condi-

tions (4.23) and (4.26).

4.2.3.2 Parameters for which chaos is obtained

In [68], chaos was obtained for w5 = 0.25 and w11 = 0.01, 0.035.

When w5 = 0.25, Condition (4.23), namely 0 <
w5w7

w6 − w5

< 1, is satisfied with

E2 = (x̃, ỹ, 0) = (0.1136, 0.3222, 0).

Condition (4.26) (i.e. −w11 +
0.25ỹ

ỹ + 0.28
> 0) from the proof becomes w11 < 0.1407

which is satisfied by both given values of w11. So the system is both chaotic and

permanent.

They also obtained chaos for w5 = 0.375 and w11 = 0.03.

When w5 = 0.375, Condition (4.23) is satisfied with E2 = (0.2206, 0.3668, 0) and

Condition (4.26) becomes w11 < 0.1118 which is again satisfied by the given value of

w11. So the system is both chaotic and permanent.

The chaotic manifold when w5 = 0.25 and w11 = 0.01 is recreated in Fig. 4.2.2.

Figure 4.2.2: Chaotic attractor when w5 = 0.25 and w11 = 0.01.
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4.3 Chaos implies persistence in three-dimensional

systems

As mentioned before, both chaos and persistence have been studied separately

for the same model ([10, 67, 68]). Previously, a connection between these two concepts

had not been established. We establish a link between chaos and persistence in three-

dimensional systems using the Poincaré–Bendixson Theorem.

Theorem 4.3.1. Assuming there are no crisis manifolds, three dimensional biolog-

ically relevant systems ẋ = xf(x) where x ∈ R3 which exhibit chaotic behavior (i.e.

they have a positive Lyapunov exponent) are also persistent (i.e. lim supt→+∞ xi(t) >

0 for i = 1, 2, 3).

Proof. If the trajectory of a chaotic orbit touches the boundary of R3 (i.e., one of

the species becomes extinct), the system would become two-dimensional. By the

Poincaré–Bendixson Theorem, two-dimensional systems cannot exhibit chaos. So the

orbit couldn’t revert to its chaotic state. Thus the system is persistent.

We will further investigate how chaotic orbits present in any continuous system can

be used to push the system into permanence. We shall use control theory which is

detailed in the chapters that follow.
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Chapter 5

Control using chaos

As we saw in the Section 4.3, chaos does imply persistence in three-dimensional

systems. However, it is hard to prove this result analytically for higher dimensional

systems. In this chapter, we consider systems which are chaotic and non-permanent.

To show how chaos can be beneficial to the system, i.e. how it can be used to obtain

permanence, we employ control theory on the chaotic orbits to push the system into

permanence.

Using controls on the chaotic nature of the system, we obtain a desired state with-

out changing the system completely. The first section gives a brief description of

different control methods which use chaos to control the system. The next section

gives a summary of the linear quadratic regulator (LQR) method [57]. The last sec-

tion describes the control algorithm from [66] which will be used in the next chapter

to push the system from non-permanence to permanence.
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5.1 Background information

This section provides a short review of some methods for using chaos for

control.

Among the first proponents of using a chaotic attractor to control a system were

E. Ott, C. Grebogi and J. A. Yorke in [25]. They observed that a chaotic attractor

has typically embedded within it an infinite number of unstable periodic orbits. They

wished to use these existing unstable orbits. Their approach was to first determine

some of the unstable low-period periodic orbits that are embedded in the chaotic

attractor. They then chose one which yields improved system performance. They

then tailored their small time-dependent parameter perturbations so as to stabilize

the existing orbit.

They note that if the attractor is not chaotic but periodic, then small param-

eter perturbations can only change the orbit slightly. This makes it hard to improve

the system without making large alterations to the existing system.

They then go on to describe the popular method which is now described as the OGY

method with a numerical example. The method utilizes delay coordinate embedding,

and so is applicable to experimental situations in which a priori analytical knowledge

of the system dynamics is not available.

In the ecological context, the method is applicable in the control of pests, insects and

other natural populations, offering a fast converging solution [61]. A simple numerical

example was also explored to support this claim.
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Two other popular control methods using chaos were suggested by K.Pyragas in

[42]. Both methods (known as Pyragas methods) were control in the form of

feedback. They were based on the construction of a special form of a time-continuous

perturbation, which does not change the form of the desired unstable periodic orbit,

but under certain conditions can stabilize it. The first method used a combined

feedback with a periodic external force of a special form. The second method did not

require any external force, but it was based on a self-controlling delayed feedback.

Both the methods are applicable to experimental situations. In particular, the second

method does not require any computer analysis of the system and can be thus more

convenient in an experimental setting. The methods were applied to the Lorenz and

Rössler systems.

Both the Pyragas and OGY methods are part of a general class of methods called

closed loop or feedback methods which can be applied based on knowledge of the

system obtained through solely observing the behavior of the system as a whole over

a suitable period of time.

The paper [50] provided a method that converted a chaotic attractor to a desired

attracting time periodic motion by controlling temporal perturbations through an

accessible system parameter. The time periodic motion is obtained by stabilizing one

of the infinite number of unstable periodic orbits embedded in the chaotic attractor.

They applied the method to two discrete systems, namely the Hénon map and to

a periodically forced mechanical system (a four-dimensional map). This method is

applicable to continuous systems as well by considering the discrete time system

obtained from the induced dynamics on a Poincaré section.

The paper did not discuss the effect of noise. Also the paper has only considered
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a case where there is only a single control parameter available for adjustment. An

advantage of the method is that it can be applied even without full knowledge of

the system dynamics. It only requires the location of the desired periodic orbit, the

linearized dynamics about the periodic orbit, and the dependence of the location of

the periodic orbit on small variation of the control parameter.

The author of [19] states that there is an evolutionary advantage of controlling

chaos. A chaotic system has many different patterns of motion. Very small changes

in the initial conditions can greatly alter the system’s trajectory. The author uses

the one-dimensional Ricker’s difference model to explain how these properties can

be exploited to control the chaotic dynamics of a population. In some cases, the

population can apply some small perturbations to itself and can drive the density of

the population to a stable state.

In [74], the authors present a method to demonstrate that species extinctions due

to transient chaos can be effectively prevented by applying small, ecologically feasible

perturbations to the populations at appropriate but rare times. Transient chaos

occurs when the tip of the chaotic attractor touches the basin boundary (i.e. a crisis).

The crisis creates ‘holes’ on the basin boundary from which trajectories can now leak

through the holes and enter a region where one species goes extinct. If it is determined

that the populations are close to a dangerous region, small but deliberately chosen

perturbations to the population can be applied to guarantee that no immediate exit

from the hole occurs.

The authors Sprott et al. [37] applied a periodic perturbation to an accessible

system parameter of several different chaotic systems of increasing dimension. This

kind of control is an example of an open-loop control scheme (i.e. the control is
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independent of the system’s state). The numerical systems that were examined in [37]

were the logistic equation (a one-dimensional quadratic map), the Lorenz equations (a

three-dimensional quadratic flow), the Rössler equations (another three-dimensional

quadratic flow), a coupled Lorenz cell model (a 96-dimensional polynomial flow), the

Yoshida equations, which model magnetic fluctuations in a plasma fusion device (a

nine-dimensional polynomial flow), and a neural net model for a fluctuating plasma

(a 64-dimensional nonlinear map). In every case, the optimum frequency to obtain

control was found to be the frequency of the unstable periodic orbit obtained from

the dynamical fluctuations of the system. Also the perturbation amplitude applied

was minimum. They also found that a given frequency could stabilize more than one

unstable orbit and that the best frequencies to perturb were not always the ones with

the most power.

The author of [66] first provides a motivation of why chaotic behavior in nonlinear

systems is useful to set up a control design. He mentions that chaotic behavior is

useful in moving a system to various points in the state space without changing the

system drastically. The reasoning is very similar to the one used by the creators of

the OGY method [25]. The paper then gives a chaotic control algorithm where two

ingredients are needed: a chaotic attractor and a controllable target. If chaos does

not exist, it can be created using open loop control (where the control function U

is a function of time). A controllable target is any subset of the domain of attraction

to an equilibrium point, under a corresponding feedback control law, that has a non-

empty intersection with the chaotic attractor [66]. The controllable target should be

large enough so that one does not have to wait too long for the system to reach it.

The method is as follows [66].

The system is first linearized about the desired fixed point solution. If necessary,
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a feedback controller is then designed so that this reference solution has suitable

stability properties.

Then, based on this stable linear system, a Lyapunov function is obtained. For this

function, a level curve is determined such that, whenever the state of the nonlinear

system is within this level curve, the feedback controller will drive the nonlinear

system to the desired equilibrium solution.

The Linear Quadratic Regulator (LQR) method is used to design the full state

variable feedback controller that will assure the asymptotic stability of the origin.

The chaotic control algorithm is then used with three different systems viz the Hénon

map, bouncing ball system, two-link pendulum system. The first two are discrete and

the third is a four-dimensional continuous system. Further detailed examples on how

to control an inverted pendulum and a bouncing ball were provided in [72].

The paper [47] studied the optimal stabilization of the steady state of a Lotka-

Volterra model. They did this by introducing control functions to the system. The

functions ensuring the required stabilization was obtained as a function of the state

variables. Two-dimensional models were presented as examples and numerical sim-

ulation was also presented. In addition, they also looked into the optimal control

ensuring the synchronization of these models which is not relevant to this thesis.

As a follow-up to [47], the optimal control of the Lorenz system with unknown

parameters was studied in [58]. Controls were introduced in each equation. Based

on the Lyapunov-Bellman method, an optimal control law was obtained such that

the trajectory of the Lorenz system is optimally stabilized to an equilibrium point

of the uncontrolled system. Further, another optimal control law is also applied to

achieve the state synchronization of two identical Lorenz systems. Numerical results

75



to demonstrate the effectiveness of the proposed control scheme were also provided.

In [48], an investigation on optimization of the feedback control of chaos is car-

ried out. The main objective is to show that evolutionary algorithms can be used

for this optimization. The stochastic optimization algorithm SOMA (self-organizing

migrating algorithm) was used in four versions. This algorithm is based on the social

behavior of competitive-cooperating individuals. The one-dimensional logistic equa-

tion and two-dimensional Henon map were used as examples of deterministic chaotic

systems. For each version of the algorithm, simulations were carried out to show and

check for robustness of applied method as compared to the OGY method.

The authors of [4] reviewed the problems and methods of control of chaos devel-

oped in the nineties. The open-loop control based on periodic system excitation,

the method of Poincaré map linearization (OGY method) and the method of time-

delayed feedback (Pyragas method) were discussed in detail. They also presented

results obtained within the framework of linear, nonlinear and adaptive control as

well as discrete systems, neural networks and fuzzy systems.

The next sections give a detailed description of the chaotic control algorithm [66]

and how it is used to obtain a desired permanent state for the biologically relevant

systems.

5.2 Linear Quadratic Regulator (LQR) method

This section provides a brief description of the linear quadratic regulator

(LQR) and describes how to design a control based on it. This method is used

in the algorithm specified in Section 5.3.
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The infinite horizon, linear quadratic regulator (LQR) is given by

ẋ = Ax+Bu x ∈ Rn, u ∈ Rn

J =

∫ ∞
0

(xtQx+ utRu)dt

where Q and R are symmetric positive definite matrices to be chosen as part of the

control design process. We maximize J and find that u(x) is given by

u(x) = −Kx, (5.1a)

K = R−1BTS, (5.1b)

SA+ ATS − SBR−1BTS +Q = 0 (5.1c)

The equation (5.1c) is called the algebraic Riccati equation.

The simplest choices of Q and R are I and ρI respectively where ρ can be varied

to maximize J .

Also K can be obtained in MATLAB via the following command:

K = lqr(A,B,Q,R).

5.3 Chaotic control algorithm [66]

The control algorithm specified in [66] and [72] consists of using open loop

control (i.e. a control function of time) to generate chaotic motion and then waiting

for the system to move into the controllable target. A controllable target is any subset

of the domain of attraction to an equilibrium point, under a corresponding feedback

control law, that has a non-empty intersection with the chaotic attractor [66]. The
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controllable target should be large enough so that one does not have to wait too long

for the system to reach it.

Consider the system of non-linear differential equations given by

Ẋ = F [X,U ] (5.2)

where F = [F1, . . . FNX
] is an NX dimensional vector function of the state vector

X = [X1, . . . XNX
], and control vector U = [U1, . . . UNU

]. The control will, in general,

be bounded, and it is assumed that at every time t, the control U must lie in a subset

of the control space U defined by the inequalities

Uimin
≤ Ui ≤ Uimax for i = 1, . . . NU .

The control can also be of two kinds

U =


U(t) open loop control

U(X) closed loop control

Assume that for all t there exists a control Û(t) such that the system (5.2) has a

chaotic attractor. Also assume that for a specified constant control, Ū , there is a cor-

responding rest point (or fixed point) of interest which is near the chaotic attractor.

The rest point X̄ is such that
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F (X̄, Ū) = 0. (5.3)

The method is used to design a full state variable feedback controller, i.e. a closed

loop control, such that the rest point will be asymptotically stable.

5.3.1 Steps of the algorithm

1. Linearizing Ẋ = F [X,U ] about the rest point X̄ we get

ẋ = Ax+Bu (5.4)

where

x = X − X̄

u = U − Ū

A =
∂F

∂X

∣∣∣
X̄,Ū

B =
∂F

∂U

∣∣∣
X̄,Ū

Now the origin is the rest point for (5.4) at control u(t) ≡ 0. We are going to

get a control such that the origin becomes stable.

2. LQR method: Apply the LQR method (Section 5.2) to determine gains K
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such that the required closed loop control is

u(x) = −Kx (5.5)

The gain matrix K is given by (5.1c) in Section 5.2.

3. Verification of optimal control: Under the closed loop control given by

(5.5), the linearized system is given by:

ẋ = Âx (5.6)

where

Â = A−BK

A Lyapunov function of the form

V (x) = xtPx (5.7)

may now be determined for the linear stable controlled system (5.6) using the

continuous Lyapunov equation

PÂ+ ÂTP = −Q̂

where Q̂ is a positive definite matrix.

For the stable linear system, starting from any point in state space, the solution

obtained for P will result in the property that V̇ < 0 for every point of the linear
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system (5.6) except at the origin where V = 0. This will prove that the origin

is asymptotically stable for (5.4). This, in turn, implies that for the nonlinear

system (5.2), the rest point will be asymptotically stable in some neighborhood

containing the rest point.

We shall use this algorithm and the chaotic nature of a model to go from non-

permanence to permanence. The algorithm originally was only used to move to a

stable fixed rest point. We take it a step further by making sure there is permanence

in the system.
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Chapter 6

Applications of the control

algorithm to predator-prey Models

In this chapter, we will investigate three different types of predator-prey mod-

els. The models are of Lotka-Volterra type, ratio-dependent and Leslie-Gower type.

In each case harvesting of one species is introduced and chaotic behavior is observed

for certain parameter values. For the same parameter values, non-permanence of

the species is also observed. Using the chaotic control algorithm in Section 5.3, we

construct a closed loop control (i.e. a control which is a function of the state of the

system) which steers the system towards permanence. The systems were chosen for

their different types of functional responses and the harvesting of one species was rel-

atively easy to introduce. The different models show the versatility of the algorithm.
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6.1 Control through harvesting in a predator-prey

model

First we shall apply the control algorithm to a Lotka-Volterra type (Section

3.1) two-prey, one-predator model from [30] where the predator is harvested at a con-

stant rate. Here the harvesting of the predator will act as a control.

The population dynamics model involves three interacting species, namely the prey

N1, N2 and the predator P . The harvesting is given by a harvesting function H(P ).

The dynamics is described by Lotka-Volterra type equations given by

Ṅ1 = N1(r1 − a11N1 − a12N2 − a13P )

Ṅ2 = N2(r2 − a21N1 − a22N2 − a23P )

Ṗ = P (−r3 + a31N1 + a32N2)−H(P )

(6.1)

We will consider the harvest function H(P ) = Hp where Hp is a constant and 0 <

Hp < 1. This is called constant harvest quota.

The parameters chosen are the same as in [30] and are as follows:

r1 = r2 = r3 = a11 = a12 = a22 = a23 = 1, a21 = 1.5, a32 = 0.5, a13 = 5, a31 = 2.5.

Since a12 < a21, the first prey has a competitive advantage, i.e. N1 is the dominant

and N2 the sub-dominant prey. Consider the two-dimensional subsystem of the preys

without predation:

Ṅ1 = N1(r1 − a11N1 − a12N2)

Ṅ2 = N2(r2 − a21N1 − a22N2)
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The relation

a11a22 − a12a21 < 0

implies that the system does not have an interior rest point, i.e. both the species

N1, N2 do not coexist. This shows the system is unstable without predation. [75]

6.1.1 Boundedness of the solutions

Following methods similar to those in [62, 21, 1], we can prove that the solu-

tions of (6.1) are bounded.

Theorem 6.1.1. All the solutions of the system (6.1) which initiate in R3
+ are uni-

formly bounded

Proof. Let W = N1 +N2 + 2P . Then

Ẇ = Ṅ1 + Ṅ2 + 2Ṗ

Along the solutions of 6.1, we have

Ẇ = N1(1−N1 −N2 − 5P )

+N2(1− 1.5N1 −N2 − P )

+ 2P (−1 + 2.5N1 + 0.5N2)− 2Hp

= N1(1−N1) +N2(1−N2)− 2.5N1N2 − 2P − 2Hp

≤ N1(1−N1) +N2(1−N2)− 2P

For each constant D > 0, the following inequality holds:
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Ẇ +DW ≤ N1(1−N1 +D) +N2(1−N2 +D) + 2P (D − 1)

Now if we take D such that 0 < D < 1 and the maximum value of both the expressions

N1(1−N1 +D), N2(1−N2 +D) w.r.t N1 and N2 respectively, is
1 +D

2
we get,

Ẇ +DW ≤ 1 +D = K

=⇒ 0 ≤ W (N1, N2, P ) ≤ K

D
+W (N1(0), N2(0), P (0))e−Dt

=⇒ 0 < W ≤ K

D
as t→∞

Hence all solutions of (6.1) that initiate in R3
+ are confined in the region.
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6.1.2 Chaos control algorithm to the harvesting model

The harvesting model is as follows:

Ṅ1 = N1(1−N1 −N2 − 5P )

Ṅ2 = N2(1− 1.5N1 −N2 − P )

Ṗ = P (−1 + 2.5N1 + 0.5N2)−Hp

(6.2)

Here we consider the control U = Hp. The control Û for which we get chaos is

Û = Hp = 0.02 (obtained from [30]). The chaos is indicated by a positive Lya-

punov exponent 0.0474 at the initial conditions (which is the interior rest point)

(0, 4899, 0.2040, 0.0612).

We also check to see if the system is non-permanent for these parameter values.

Check for Permanence. The system is of the form ẋi = xif(xi) where x1 =

N1, x2 = N2, x3 = P and

f1(N1, N2, P ) = 1−N1 −N2 − 5P

f2(N1, N2, P ) = 1− 1.5N1 −N2 − P

f3(N1, N2, P ) = −1 + 2.5N1 + 0.5N2 −
0.02

P

Now as mentioned before, the system is permanent if it does not have regular, sat-

urated boundary rest points, i.e for the rest point x̄, fi(x̄) > 0 for some i when x̄i = 0.

For this particular system, consider the biologically valid rest points x̄ = (N̄1, N̄2, P̄ )

and the values of fi(x̄) > 0 for some i when x̄i = 0. So we can see from Table 6.1.1, the
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Rest point Value of fi
A = (0.4763932022, 0, 0.1047213596) f2(A) = 0.18 > 0
B = (.9236067978, 0, 0.1527864045e− 1) f2(B) = −0.4013 < 0

Table 6.1.1: Check of permanence of (6.2) using boundary rest points.

system does indeed have a saturated rest point, namelyB = (.9236067978, 0, 0.1527864045e−

1), so it is not permanent.

The chaotic manifold can be seen in Fig. 6.1.1.

Figure 6.1.1: Chaotic manifold when h = 0.02.
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6.1.3 Application of the algorithm specified in Section 5.3

Our desired state is permanence. The specific control we wish to obtain is

Ū = Hp = 0.035 and the interior rest point to the system

Ṅ1 = N1(1−N1 −N2 − 5P )

Ṅ2 = N2(1− 1.5N1 −N2 − P )

Ṗ = P (−1 + 2.5N1 + 0.5N2)− 0.035

is X̄ = (N1 = 0.5816, N2 = 0.0549, P = 0.0727). The system is found to be permanent

by checking the boundary rest points using the MATLAB code given in Appendix B.

In the code, the boundary rest points were obtained and were checked to see if they

were regular saturated rest points. If the rest points were not saturated, the system

was permanent (Section 4.2.2).

So X̄ = (0.5816, 0.0549, 0.0727) and Ū = (0.035).

For the linearization step 1 we get the matrices A and B as follows:

A =
∂F

∂X

∣∣∣
X̄,Ū

=


−0.5816 −0.5816 −2.9080

−0.0824 −0.0549 −0.0549

0.1817 0.0363 0.4814



B =
∂F

∂U

∣∣∣
X̄,Ū

=


0

0

−1


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We choose the matrices Q = I3 and R=[1] which are positive definite.

Applying the lqr routine of MATLAB, the gains matrix K is obtained as

K =

[
0.2761 −0.2112 −2.1591

]
.

So our feedback control given by (5.5) is

u(x) = −Kx

= −0.2761N1 − 0.2112N2 − 2.1591P.

To confirm the origin is asymptotically stable, the Lyapunov function has also been

calculated.

From step 3 of the algorithm, we have

Â = A−BK

=


−0.5816 −0.5816 −2.9080

−0.0824 −0.0549 −0.0549

0.4579 −0.1749 −1.6777

 .

We choose Q̂ = Q = I3 and we obtain P using the lyap function in MATLAB.

P =


1.4209 −4.0725 0.7023

−4.0725 17.5405 −2.3263

0.7023 −2.3263 0.7322

 .
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For the above matrix V (x) = xtPx will satisfy V̇ < 0 according to the construction

of P .

The chaotic nature disappears when h = 0.035 as seen in Fig. 6.1.2.

Figure 6.1.2: Permanence when h = 0.035.

We have seen that for certain harvesting values, we get chaos. This is not necessarily

a bad thing. Using the chaotic control algorithm, we can apply the required control

to get permanence. In this manner, the species do not die out and the harvesting can

still be done.
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6.2 Example of a one-prey, two-predator system

[35]

Consider an ecosystem where we wish to model the interaction of two predators

competing for a single prey. It is assumed that prey species grow logistically and the

predator functional response is of ratio-dependent (Michaelis-Menten-Holling, Section

3.3) type. Then the dynamics of the system may be governed by the following system

of autonomous differential equations.

ẋ = rx

(
1− x− a1y1

1 + b1x
− a2y2

1 + b2x

)
ẏ1 = s1y1

(
−1 +

c1x

1 + b1x
− y1

)
ẏ2 = s2y2

(
−1 +

c2x

1 + b2x
− y2

) (6.3)

where x(t), y1(t), y2(t) represent the species concentration of the prey and the

two predators respectively.

We assume there are no periodic points on boundary planes.

Also assume that ai, bi, ci ≥ 0 for i = 1, 2 and r, s1, s2 > 0.

91



6.2.1 Boundedness of trajectories

Next we shall show the boundedness of solutions which initiate in R3
+. The

proof is similar to ones found in [44, 3].

Theorem 6.2.1. All solutions which initiate in R3
+ are bounded.

Proof. From our first equation,

ẋ = rx

(
1− x− a1y1

1 + b1x
− a2y2

1 + b2x

)

we have

ẋ ≤ rx(1− x)

Applying the theorem of differential inequality ([12]) we have,

x(t) ≤ 1

1 + be−rt
where b =

1

x(0)
− 1

which implies lim sup
t→∞

x(t) ≤ 1

∴ x(t) is bounded.

Thus y1(t) and y2(t) are bounded by the boundedness of x(t).
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6.2.2 Interior rest point

The interior rest point (i.e. all the coordinates are positive) is obtained by

solving the following set of equations.

1− x− a1y1

1 + b1x
− a2y2

1 + b2x
= 0 (6.4a)

−1 +
c1x

1 + b1x
− y1 = 0 (6.4b)

−1 +
c2x

1 + b2x
− y2 = 0. (6.4c)

From (6.4b) we get:

y1 = −1 +
c1x

1 + b1x

=
−1 + (c1 − b1)x

1 + b1x
.

For y1 > 0 we need

−1 + (c1 − b1)x > 0

=⇒ (c1 − b1)x > 1

since b1 ≥ 0 and assuming x > 0. Using x > 0 we get

c1 > b1. (6.5)
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Similarly, from equation (6.4c) we have

c2 > b2. (6.6)

The existence of the interior rest point was proven computationally (using MATLAB)

for the parameter values that satisfy conditions (6.5) and (6.6).

6.2.3 Equilibrium analysis

The possible biologically viable equilibria are E0 = (0, 0, 0), E1 = (1, 0, 0),

E2 = (x̄, ȳ1, 0), E3 = (x̃, 0, ỹ2) and the interior rest point E4 = (x∗, y∗1, y
∗
2).

E4 is obtained by solving (6.26).

6.2.4 Existence of E2 and E3

E2 = (x̄, ȳ1, 0) is the solution of

1− x− a1y1

1 + b1x
= 0 (6.7a)

−1 +
c1x

1 + b1x
− y1 = 0. (6.7b)
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Solving we get

1− x− a1

1 + b1x

(
−1 + (c1 − b1)x

1 + b1x

)
= 0

x+
a1(−1 + (c1 − b1)x)

(1 + b1x)2
= 1

(1 + b1x)2x− a1 + a1(c1 − b1)x = (1 + b1x)2

b2
1x

3 + b1(2− b1)x2 + (a1c1 − a1b1 + 1− 2b1)x− a1 − 1 = 0.

So we need x̄ to be the positive real root of

x3 +
(2− b1)

b1

x2 +
(a1c1 − a1b1 + 1− 2b1)

b2
1

x− (a1 + 1)

b2
1

= 0. (6.8)

Using Maple, we get that two solutions to (6.8) are complex.

Using Descartes’ Rule of Signs, we have n − (p + q) = 2 =⇒ p + q = 1 where n is

the degree of the equation, p is the number of positive real roots, q is the number of

negative real roots, provided we do not have a root at zero, i.e. a1 6= −1.

We want a positive real root so we should have no negative roots. That implies

when we plug in −x in (6.8) we should have no sign changes between the coefficients.

Plugging in −x in (6.8) we get

−x3 +
(2− b1)

b1

x2 − (a1c1 − a1b1 + 1− 2b1)

b2
1

x− (a1 + 1)

b2
1

.
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So for no sign changes, we need

2− b1 ≤ 0 and

a1c1 − a1b1 + 1− 2b1 > 0.

(6.9)

To get one positive real root, we need one sign change in (6.8). The possibilities

are

2− b1 ≥ 0 and

a1c1 − a1b1 + 1− 2b1 > 0

(6.10)

or

2− b1 ≤ 0 and

a1c1 − a1b1 + 1− 2b1 < 0.

(6.11)

Looking at conditions (6.9), (6.10), (6.11) we get that

2− b1 = 0 =⇒ b1 = 2 and

a1c1 − 2a1 + 1− 2(2) > 0 =⇒ a1(c1 − 2) > 3

(6.12)

for E2 to exist.

Proceeding in exactly the same manner for E3 we obtain the following conditions

for existence

b2 = 2 and

a2(c2 − 2) > 3.

(6.13)
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6.2.5 Conditions for permanence

We shall use the method of Lyapunov functions [54, 35] (Section 4.2.3) to de-

rive conditions for permanence.

Theorem 6.2.2. Assume the boundary rest points E0 = (0, 0, 0), E1 = (1, 0, 0),

E2 = (x̄, ȳ1, 0), E3 = (x̃, 0, ỹ2) of the system 6.3 exists and we have no periodic orbits

in the boundary. Then we need the inequalities (6.15a), (6.15b), (6.15c) and (6.15d)

to hold for the system to be permanent.

Proof. Let the Lyapunov function be

σ(X) = xpyp11 y
p2
2

where p, p1, p2 > 0 and are constants. Clearly σ(X) is a non-negative C1 function

defined in R3
+.

Consider

ψ(X) =
σ̇(X)

σ(X)

= p
ẋ

x
+ p1

ẏ1

y1

+ p2
ẏ2

y2

= pr

(
1− x− a1y1

1 + b1x
− a2y2

1 + b2x

)
+ p1s1

(
−1 +

c1x

1 + b1x
− y1

)
+ p2s2

(
−1 +

c2x

1 + b2x
− y2

)

To obtain permanence, we need to show ψ(X) > 0 ∀ equilibria X ∈ bdR3
+, i.e. the
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following conditions have to be satisfied:

ψ(E0) = pr − p1s1 − p2s2 > 0 (6.14a)

ψ(E1) = p1s1

(
−1 +

c1

1 + b1

)
+ p2s2

(
−1 +

c2

1 + b2

)
> 0 (6.14b)

ψ(E2) = p2s2

(
−1 +

c2x̄

1 + b2x̄

)
> 0 (6.14c)

ψ(E3) = p1s1

(
−1 +

c1x̃

1 + b1x̃

)
> 0 (6.14d)

We note that by increasing p to a sufficiently large value, ψ(E0) can be made positive.

From (6.14b), (6.14c), (6.14d) we get the following requirements for permanence:

−1 +
c1

1 + b1

> 0 (6.15a)

−1 +
c2

1 + b2

> 0 (6.15b)

−1 +
c2x̄

1 + b2x̄
> 0 (6.15c)

−1 +
c1x̃

1 + b1x̃
> 0. (6.15d)
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6.2.6 Introducing harvesting of first predator

Suppose there is harvesting done of predator 1 in the following way:

ẋ = rx

(
1− x− a1y1

1 + b1x
− a2y2

1 + b2x

)
ẏ1 = s1y1

(
−1 +

c1x

1 + b1x
− y1

)
− hy1

ẏ2 = s2y2

(
−1 +

c2x

1 + b2x
− y2

) (6.16)

Here h > 0 is the harvesting coefficient. The harvesting is a function of the predator

(i.e. constant harvesting effort). Using the analysis done for permanence in Sections

6.2.5 and 6.2.3, we fix the parameters as r = s1 = s2 = 1, a1 = a2 = 5, b1 = b2 =

2, c1 = c2 = 4. So we get the following system

ẋ = x

(
1− x− 5y1

1 + 2x
− 5y2

1 + 2x

)
ẏ1 = y1

(
−1 +

4x

1 + 2x
− y1

)
− hy1

ẏ2 = y2

(
−1 +

4x

1 + 2x
− y2

)
.

(6.17)

Boundedness of the trajectories does not change as y1(t) is still bounded by x(t)

(Refer to Section 6.2.1).

We now wish to investigate conditions on h for which permanence is obtained.

The only boundary rest point that changes from our original system is E2. Let it be

denoted by E∗2 = (x̄∗, ȳ1
∗, 0). It is obtained by solving

1− x− 5y1

1 + 2x
= 0

−1 +
4x

1 + 2x
− y1 − h = 0.

(6.18)
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Solving we get,

x3 +
7− 10h

4
x− 6 + 5h

4
= 0.

Using Descartes’ rule of signs, as in Section 6.2.3, to get x̄∗ > 0 we need

7− 10h > 0 =⇒ h < 0.7 (6.19)

To have ȳ1
∗ > 0, we need 1 + x̄∗ − 2(x̄∗)2 > 0.

For permanence, we follow the proof of Theorem 6.2.2 (Section 6.2.5),

Theorem 6.2.3. Assume the boundary rest points E0 = (0, 0, 0), E1 = (1, 0, 0),

E∗2 = (x̄∗, ȳ1
∗, 0), E3 = (x̃, 0, ỹ2) of the system (6.17) exists and we have no periodic

orbits in the boundary. Then we need the inequalities (6.21a), (6.21b) and (6.21c) to

hold for the system to be permanent.

Proof. Let the Lyapunov function be

σ(X) = xpyp11 y
p2
2

where p, p1, p2 > 0 and are constants. Clearly σ(X) is a non-negative C1 function

defined in R3
+.
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Consider

ψ(X) =
σ̇(X)

σ(X)

= p
ẋ

x
+ p1

ẏ1

y1

+ p2
ẏ2

y2

= p

(
1− x− 5y1

1 + 2x
− 5y2

1 + 2x

)
+ p1

(
−1 +

4x

1 + 2x
− y1 − h

)
+ p2

(
−1 +

4x

1 + 2x
− y2

)
.

To obtain permanence, we need to show ψ(X) > 0 ∀ equilibria X ∈ bdR3
+, i.e. the

following conditions have to be satisfied:

ψ(E0) = p− p1(1 + h)− p2 > 0 (6.20a)

ψ(E1) = p1

(
1

3
− h
)

+ p2

(
1

3

)
> 0 (6.20b)

ψ(E2) = p2

(
−1 +

4x̄∗

1 + 2x̄

∗)
> 0 (6.20c)

ψ(E3) = p1

(
−1 +

4x̃

1 + 2x̃
− h
)
> 0. (6.20d)

We note that by increasing p to a sufficiently large value, ψ(E0) can be made positive.

From (6.20b), (6.20c), (6.20d) we get the following requirements for permanence:
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1

3
− h > 0 (6.21a)

−1 +
4x̄∗

1 + b2x̄∗
> 0 (6.21b)

−1 +
4x̃

1 + 2x̃
− h > 0. (6.21c)

6.2.7 Control algorithm with harvesting as control

Now suppose the harvesting coefficient h = 0.9. This violates the condition

for permanence and we also notice that the system is chaotic. We can use the chaos

to bring it back to permanence with final control U(t) = h = 0.15 and the interior

rest point for the system

ẋ = x

(
1− x− 5y1

1 + 2x
− 5y2

1 + 2x

)
ẏ1 = y1

(
−1 +

4x

1 + 2x
− y1

)
− 0.15y1

ẏ2 = y2

(
−1 +

4x

1 + 2x
− y2

) (6.22)

is X̄ = (x = 0.6777, y1 = 0.0009, y2 = 0.151). The system is in fact permanent using

the boundary rest points which was shown computationally using the MATLAB code

in Appendix B.
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Applying the algorithm, we get the matrices A and B

A =
∂F

∂X

∣∣∣
X̄,Ū

=


−0.4923 −1.4386 −1.4386

0.0007 −0.0009 0

0.1088 0 −0.1509



B =
∂F

∂U

∣∣∣
X̄,Ū

=


0

−0.000903

0

 .

We again choose the matrices Q = I3 and R=[1] which are positive definite.

Applying the lqr routine of MATLAB, the gains matrix K is obtained as

K =

[
−0.0002 −0.1135 −0.0041

]
.

So our feedback control given by (5.5) is u(x) = −Kx = −0.0002x−0.1135y1−

0.0041y2. To confirm we get the origin as asymptotically stable, the Lyapunov func-

tion has also been calculated.

From step 3 of the algorithm, we have

Â = A−BK

=


−0.4923 −1.4386 −1.4386

0.0007 −0.0010 −0.0000

0.1088 0 −0.1509


We choose Q̂ = Q = I3 and we obtain P using the lyap function in MATLAB.
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P =


301.1684 −293.7054 190.9978

−293.7054 304.4743 −202.9344

190.9978 −202.9344 141.0141

 .

For the above matrix V (x) = xtPx will satisfy V̇ < 0 according to the construction

of P .

When harvesting of the first predator is introduced, chaotic orbits are observed

as well as the system becomes non-permanent. The control algorithm provides a

viable harvesting function that pushes the system into permanence.
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6.3 Harvesting used as control in a food-chain sys-

tem

The next system considered is of a simple prey-specialist predator-generalist

predator (for ex: plant-insect pest-spider) interaction based on the model found in

[34, 8, 67]. In this system, harvesting of the prey is considered as a control. The

equations are as follows

ẋ = a1x− b1x
2 − wxy

x+D
− hx

ẏ = −a2y +
w1xy

x+D1

− w2yz

y +D2

ż = cz2 − w3z
2

y +D3

.

(6.23)

In this model, a prey population of size x serves as the only food for the spe-

cialist predator population of size y. This population, in turn, serves as favorite food

for the generalist predator population of size z. The equations for rate of change of

population size for prey and specialist predator are according to the Volterra scheme

(predator population dies out exponentially in absence of its prey). The interaction

between this predator y and the generalist predator z is modeled by the Leslie-Gower

scheme (Section 3.4) where the loss in a predator population is proportional to the

reciprocal of per capita availability of its most favorite food. The basic characteristic

of the Leslie-Gower model is that it leads to a solution which is asymptotically inde-

pendent of the initial conditions and depends only on the intrinsic attributes of the

interacting system, that is, the parameters w, w1, and so on [33].

The paper did not have harvesting of the prey. When we introduced it to the existing

model, we noticed chaos and non-permanence. The hx term models the harvesting
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function being proportional to the population of the prey (constant harvest effort).

The constants are all positive and are described as follows:

a1: intrinsic growth rate of the prey population x;

b1: strength of intra-specific competition among the prey species;

w,w1, w2, w3: the maximum values which per capita growth can attain;

D,D1: the extent to which the environment provides protection to the prey x;

a2: intrinsic death rate of the predator y in the absence of the only food x;

D2: the value of y at which the per capita removal rate of y becomes w2/2;

D3: the residual loss in z population due to severe scarcity of its favorite food y;

c: the rate of self-reproduction of the generalist predator z. The square term signifies

the mating frequency is directly proportional to the number of males and females;

h: harvesting rate of the prey x.

The parameter values (except for h) are taken as in [67] and are given below

a1 = 1.93, b1 = 0.06, w = 1, D = 10, a2 = 1, w1 = 2

D1 = 10, w2 = 0.405, D2 = 10, c = 0.03, w3 = 1, D3 = 20.

The above parameter choices are so that the system is bounded and there is possibility

of chaotic behavior for different values of h (shown in the Methodology section of [67]).

6.3.1 Equilibrium analysis

The possible biologically viable equilibria are E0 = (0, 0, 0), E1 = (
a1 − h
b1

, 0, 0),

E2 = (x̄, ȳ, 0) and the interior rest point E3 = (x∗, y∗, z∗).
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6.3.1.1 Conditions for existence of E1.

For E1 to be biologically relevant, we need

a1 − h > 0 =⇒ h < a1 = 1.93. (6.24)

6.3.1.2 Existence of E2.

E2 is obtained by solving the subsystem:

a1 − b1x−
wy

x+D
− h = 0

−a2 +
w1x

x+D1

= 0.

We get E2 = (x̄, ȳ, 0) = (10, 20(1.33 − h), 0). Again for E2 to be biologically

viable we need

1.33− h > 0 =⇒ h < 1.33. (6.25)

6.3.1.3 Existence of the interior rest point E3.

E3 = (x∗, y∗, z∗) is the solution of the following system:

a1 − b1x−
wy

x+D
− h = 0 (6.26a)

−a2 +
w1x

x+D1

− w2z

y +D2

= 0 (6.26b)

cz − w3z

y +D3

= 0. (6.26c)
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From (6.26c), we get

cz − w3z

y +D3

= 0

c− w3

y +D3

= 0

=⇒ y∗ =
w3

c
−D3 = 13.33 > 0.

From (6.26a),

(a1 − h− b1x)(x+D) = wy∗

0.06x2 − (1.33− h)x+ (−5.97 + 10h) = 0.

For real roots, we need

(1.33− h)2 − 4(0.06)(−5.97 + 10h) ≥ 0.

Solving for h using Maple’s solve command (up to 4 significant figures), we get

h ≤ 0.7411 or h ≥ 4.3189.

For the rest point to be biologically valid, we need at least one positive root to the

equation 0.06x2 − (1.33− h)x+ (−5.97 + 10h).

According to Descartes’ Rule of Signs, if h ≤ 0.7411, then we get one sign change of

the coefficients. So there is at least one positive root.
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Therefore, x∗ exists if

h ≤ 0.7411. (6.27)

From (6.26b),

w2z
∗

y∗ +D2

= −a2 +
w1x

∗

x∗ +D1

z∗ =
y∗ +D2

w2

(−a2 +
w1x

∗

x∗ +D1

)

z∗ = 57.605(
x∗ − 10

x∗ + 10
)

z∗ exists if x∗ > 10.

6.3.2 Conditions for permanence

We shall use the method of Lyapunov functions (Theorem 4.2.4 in Section

4.2.3) to derive conditions for permanence.

Theorem 6.3.1. Assume the boundary rest points E0 = (0, 0, 0), E1 = (
a1 − h
b1

, 0, 0), E2 =

(10, 20(1.33− h), 0) exist and we have no periodic orbits on the boundary. We need

h < 1.33

for the system (6.23) to be permanent.

Proof. Let the Lyapunov function be

σ(X) = xp1yp2zp3
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where p1, p2, p3 > 0 and are constants. Clearly σ(X) is a non-negative C1 function

defined in R3
+.

Consider

ψ(X) =
σ̇(X)

σ(X)

= p1
ẋ

x
+ p2

ẏ

y
+ p3

ż

z

= p1

(
a1 − b1x−

wy

x+D
− h
)

+ p2

(
−a2 +

w1x

x+D1

− w2z

y +D2

)
+ p3

(
cz − w3z

y +D3

)
.

To show permanence, we need ψ(X) > 0∀ equilibria X ∈ bdR3
+, i.e. the following

conditions have to be satisfied

ψ(E0) = p1(a1 − h)− p2a2 > 0 (6.28a)

ψ(E1) = p2(−a2 +
w1(a1 − h)/b1

(a1 − h)/b1 +D1

) > 0 (6.28b)

ψ(E2) = 0. (6.28c)

We note that by (6.24) (i.e. a1 − h > 0) and by increasing p to a sufficiently large

value, ψ(E0) can be made positive.

From (6.28b) we get the following requirement:
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−a2 +
w1(a1 − h)/b1

(a1 − h)/b1 +D1

> 0

−a2 +
w1(a1 − h)

(a1 − h) + b1D1

> 0

2(1.93− h)

(1.93− h) + 0.06 ∗ 10
> 1.

Solving we get

h < 1.33. (6.29)

So from the inequalities (6.24), (6.25), (6.27) and (6.29) we get h ≤ 0.7411 for the

existence of an interior rest point and permanence.

6.3.3 Control algorithm using harvesting

Now suppose the harvesting coefficient h = 0.93. This violates the condition

for permanence and we also notice that the system is chaotic by the presence of posi-

tive Lyapunov exponent 1.4427. We can use the chaos to bring it back to permanence

with final control U(t) = h = 0.1 and the interior rest point for the system:

ẋ = 1.93x− 0.06x2 − xy

x+ 10
− 0.1x

ẏ = −y +
2xy

x+ 10
− 0.405yz

y + 10

ż = 0.03z2 − z2

y + 20

(6.30)
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is X̄ = (x = 23.955, y = 13.333, z = 23.679). The system is in fact permanent using

the boundary rest points and the analysis in Section 6.3.2.

Applying the algorithm (Section 5.3), we get the matrices A and B:

A =
∂F

∂X

∣∣∣
X̄,Ū

=


−1.1603 −0.7055 0

0.2313 0.2349 −0.2314

0 0.5046 0



B =
∂F

∂U

∣∣∣
X̄,Ū

=


−23.9555

0

0

 .

We again choose the matrices Q = I3 and R = [1] which are positive definite.

Applying the lqr routine of MATLAB, the gains matrix K is obtained as

K =

[
−0.9630 −1.0716 −0.9891

]
.

So our feedback control given by (5.5) is

u(x) = −Kx = −0.9630x− 1.0716y − 0.9891z.

To confirm we get the origin as asymptotically stable, the Lyapunov function has also

been calculated.

From step 3 of the algorithm, we have
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Â = A−BK

=


−24.2299 −26.3759 −23.6950

0.2313 0.2349 −0.2314

0 0.5046 0

 .

We choose Q̂ = Q = I3 and we obtain P using the lyap function in MATLAB.

P =


179.7359 −85.1218 −89.0194

−85.1218 80.7233 −0.9909

−89.0194 −0.9909 90.3612

 .

For the above matrix V (x) = xtPx will satisfy V̇ < 0 according to the construction

of P .

The paper [67] demonstrated chaotic orbits for certain parameter values. Harvest-

ing was introduced and chaos was also observed. Unfortunately, non-permanence

was also observed. With the help of the control algorithm, optimal harvesting was

calculated.

In all the three models, instances of chaos and non-permanence were observed for

different values of the harvesting coefficient. The control algorithm in Section 5.3

uses the chaotic orbits in the system to obtain a closed loop control (i.e. function of

the state of the system) which pushes the system into a permanent state.
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Chapter 7

Conclusions and discussion

Chaos does occur in many biologically relevant systems ([60, 30, 67] to name a

few). The objective of this thesis was to show that chaos can be useful to the species

in the long run and be utilized for control. We used permanence to measure whether

the species are thriving.

7.1 Connections and conclusions

We considered the three-dimensional two prey, one predator Lotka-Volterra

system with aii < 0 for i = 1, 2, 3. We assumed chaos occurred with the interior

rest point as the initial condition. We used the instability of the rest point to derive

conditions for permanence. This method, unfortunately, was specific to the Lotka-

Volterra case and only used the instability of the rest point which may occur even in

non-chaotic orbits. We then showed a connection between chaos and persistence in

three-dimensional systems using the Poincaré–Bendixson Theorem.
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To better use the chaotic orbits present in the system, we used control theory

methods. Based on the control algorithm in [66], we formulated a closed loop control

(control which is a function of the state of the system) which uses the chaotic orbits

and pushes the system from non-permanence to permanence. The algorithm was used

on three types of models, namely, a Lotka-Volterra type two-prey, one-predator model

from [30], a ratio-dependent one-prey, two-predator model from [35] and a tritrophic

interaction model (a model with three levels: a prey, an intermediate predator and the

top predator) [67]. In each model, for certain values of a harvesting parameter, chaos

and non-permanence were found. The control algorithm provided the harvesting

control required to push the system into permanence and a desired harvesting rate

to maintain permanence. So chaos enabled the species to remain at a safe threshold

value from extinction with the help of control theory.

7.2 Further research

We have used only one algorithm for our control of chaotic orbits. There

are other algorithms which use control theory on the chaos present in the system

[25, 42, 74, 37]. A comparison of the effectiveness of these algorithms can be done as

well.

In this thesis, we investigated autonomous continuous dynamical systems with or-

dinary differential equations. Permanence of non-autonomous systems [63, 71, 73, 51]

and of discrete systems [70] has not been considered. We can measure chaos in such

systems and maybe find a suitable control algorithm to obtain similar results as the

ones obtained in this thesis.
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Appendix A MATLAB code for determining

Lyapunov Spectrum

This appendix includes the MATLAB code for determining the Lyapunov

Spectrum. It is based on the paper by Wolf et al [6].

%Code from Wolf paper

%Before passing f make sure f=@system where system is function

%corresponding to your system

function lyapOut = myLyap(f,p,Initial,t,ts)%f is the ode system,

%p is the parameter set, init is the initial conditions,

%t is the time interval for the ode solver, ts is the timestep

%N = number of nonlinear equations,

%NN = Total number of equations

N=length(Initial); %length(Initial) gives us

%the size of original system

NN=N*(N+1);

% initialize arrays

Y=zeros(NN,1);

CUM=zeros(N,1);
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GSC= zeros(N,1);

znorm=zeros(N,1);

y0 = Y;

lyap = zeros(N,1);

S=zeros(N,1);

len = round((t(2)-t(1))/ts);

for i = 1:N

Y(i,1) = Initial(i);

end

%Initial Conditions for linear system(Orthonormal frame)

for i =1:N

Y((N+1)*i,1) = 1.0;

end;

tstart = t(1);

for iterLyap=1:len

[tvals,y] = ode45(@(t,y)(f(t,y,p)), [tstart,tstart+ts], Y);

Y = y(size(y,1),:)’;
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for i = 1:N

for j = 1:N

y0(N*i+j,1) = Y(N*i+j,1);

end

end

tstart=tstart+ts;

%Construct a new orthonormal basis by Gram-Schmidt Method

%Normalize first vector

znorm(1,1)=0.0;

for j=1:N

znorm(1,1)=znorm(1,1) + y0(N*j+1,1)^2;

end;

znorm(1,1)=sqrt(znorm(1,1));

for j=1:N

y0(N*j+1,1) = y0(N*j+1,1)/znorm(1,1);

end;

%Generate the new orthnormal set of vectors

for j=2:N

%Generate j-1 GSR coefficients

for k= 1:j-1

GSC(k,1) =0.0;

for l=1:N
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GSC(k,1) = GSC(k,1) + y0(N*l+j,1)*y0(N*l+k,1);

end;

end;

%Construct a new vector

for k=1:N

for l=1:j-1

y0(N*k+j,1) = y0(N*k+j,1) - GSC(l,1)*y0(N*k+l,1);

end;

end

%calculate the vector’s norm

znorm(j,1) =0.0;

for k=1:N

znorm(j,1)= znorm(j,1) + y0(N*k+j,1)^2;

end;

znorm(j,1) =sqrt(znorm(j,1));

%normalize the new vector

for k=1:N

y0(N*k+j,1) = y0(N*k+j,1)/znorm(j,1);

end;

end;

%update running vector magnitudes

for k=1:N
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CUM(k,1) = CUM(k,1) + log(znorm(k,1))/log(2.0);

end;

%normalize exponent and print every 10 iterations

%if (rem(i,10)== 0)

for k=1:N

lyap(1,k) = CUM(k,1)/(tstart-t(1));

end;

if iterLyap == 1

lyapExp = lyap;

else

lyapExp = [lyapExp; lyap];

end

for i = 1:N

for j = 1:N

Y(N*j+i,1) = y0(N*j+i,1);

end

end

lyapOut = lyap(1,1:N);

end
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Appendix B MATLAB code to determine perma-

nence using boundary rest points

This code determines the permanence of the systems considered in Chapter

6 using boundary rest points. The system is said to be permanent if it does not

have regular, saturated rest points (Refer to Section 4.2.2). The code first finds the

boundary rest points and then checks to see if they are saturated.

%Check for permanence

function [r,check] = Perm_Check2(system, p)

sys_harvest=1;%From the harvesting paper by Azar et.al

sys_Eg213=2;%Eg pg 213 of Evolutionary text

sys_Upad=3;%Multiple attractors and crisis route -Upadhyay

if system == sys_harvest

syms x1 x2 x3;

%parameters

r1 = p(1);

r2 = p(2);

r3 = p(3);

a_11=p(4);

a_12=p(5);

a_13=p(6);

a_21 = p(7);
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a_22=p(8);

a_23=p(9);

a_31=p(10);

a_32=p(11);

H = p(12); %Harvesting function

f1=(r1-a_11*x1-a_12*x2-a_13*x3);

f2=(r2-a_21*x1-a_22*x2-a_23*x3);

f3=(-r3+a_31*x1+a_32*x2 - H/x3);

xp1 = x1*f1== 0;

xp2 = x2*f2== 0;

xp3 = x3*f3== 0;

S = solve([xp1,xp2,xp3]);

V=double([S.x1 S.x2 S.x3]);%gives us the rest points

F= double([subs(f1,S) subs(f2,S) subs(f3,S) ]);

%F gives f_i values at the rest points

end

%Eg Page 213 of Evolutionary Games text book

if system==sys_Eg213

syms x1 x2 x3;

%parameters

a1=p(1);

a2=p(2);

b1=p(3);

b2=p(4);
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c1=p(5);

c2=p(6);

r1=p(7);

s1=p(8);

s2=p(9);

h=p(10); %harvesting coefficient

f1= r1*(1-x1-a1*x2/(1+b1*x1)-a2*x3/(1+b2*x1));

f2= s1*(-1+c1*x1/(1+b1*x1)-x2)-h;

f3= s2*(-1+c2*x1/(1+b2*x1)-x3);

xp1 = x1*f1== 0;

xp2 = x2*f2== 0;

xp3 = x3*f3== 0;

S = solve([xp1,xp2,xp3]);

V=double([S.x1 S.x2 S.x3]);%gives us the rest points

F= double([subs(f1,S) subs(f2,S) subs(f3,S) ]);

%F gives f_i values at the rest points

end

%Multiple attractors and crisis route -Upadhyay

if system ==sys_Upad

syms x1 x2 x3 real;

%parameters

a1=p(1);

b1=p(2);

w=p(3);

124



D=p(4);

a2=p(5);

w1=p(6);

D1=p(7);

w2=p(8);

D2=p(9);

c=p(10);

w3=p(11);

D3=p(12);

h=p(13); %harvesting coefficient

f1= a1-b1*x1-(w*x2/(x1+D))-h;

f2= -a2+w1*x1/(x1+D1)-w2*x3/(x2+D2);

f3= c*x3-w3*x3/(x2+D3);

xp1 = x1*f1== 0;

xp2 = x2*f2== 0;

xp3 = x3*f3== 0;

S = solve([xp1,xp2,xp3]);

V=double([S.x1 S.x2 S.x3]);%gives us the rest points

F= double([subs(f1,S) subs(f2,S) subs(f3,S) ]);

%F gives f_i values at the rest points

end

[m,n]=size(V);

for i = 1:m %To get the interior rest point

if all(V(i,:)>0)

r=V(i,:);
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break;

else

r=[0 0 0];

end

if any(V(i,:)<0)

V1=V([1:i-1,i+1:end],:); %To make sure rest pts are valid biologically

F1=F([1:i-1,i+1:end],:);

else

V1=V;

end

end

flag=0;

[m1,n1]=size(V1);

if all(r>0) %doing the check for permanence if there is an interior rest point

for i=1:m1

for j=1:n1

if V1(i,j)==0

if F1(i,j) >=0

check = 1;

flag=1;

break;

else

check =0;

end

end

if (flag==1)
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break;

end

end

if (flag==1)

break;

end

end

else

check=0;

end
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Appendix C MATLAB code for the linearized ver-

sion of the systems in Chapter 6

This appendix contains the linearized systems of the systems in Chapter 6.

This is important to determine Lyapunov exponents via the code in Appendix A.

%Lotka volterra system with harvesting by Azar et.al

function xp = Harvest(t,x,p)

xp = zeros(12,1);

%parameters

r1 = p(1);

r2 = p(2);

r3 = p(3);

a_11=p(4);

a_12=p(5);

a_13=p(6);

a_21 = p(7);

a_22=p(8);

a_23=p(9);

a_31=p(10);

a_32=p(11);

H=p(12);

%original system

xp(1,1) = x(1,1)*(r1-a_11*x(1,1)-a_12*x(2,1)-a_13*x(3,1));

xp(2,1) = x(2,1)*(r2-a_21*x(1,1)-a_22*x(2,1)-a_23*x(3,1));
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xp(3,1) = x(3,1)*(-r3+a_31*x(1,1)+a_32*x(2,1))-H;

%linearized copies

for j = 0:2

xp(4+j,1) = (r1-2*a_11*x(1,1)-a_12*x(2,1)-a_13*x(3,1))*x(4+j,1)-...

a_12*x(1,1)*x(7+j,1)-a_13*x(1,1)*x(10+j,1);

xp(7+j,1) = -a_21*x(2,1)*x(4+j,1)+...

(r2-2*a_22*x(2,1)-a_21*x(1,1)-a_23*x(3,1))*x(7+j,1)-...

a_23*x(2,1)*x(10+j,1);

xp(10+j,1) = a_31*x(3,1)*x(4+j,1)+a_32*x(3,1)*x(7+j,1)+...

(-r3+a_31*x(1,1)+a_32*x(2,1))*x(10+j,1);

end

end

%Eg in page 213 of Evolutionary Games text book

function xp = Eg213(t,x,p)

xp = zeros(12,1);

%parameters

a1=p(1);

a2=p(2);

b1=p(3);

b2=p(4);

c1=p(5);

c2=p(6);

r1=p(7);

s1=p(8);
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s2=p(9);

h=p(10);

%original system

xp(1,1) = r1*x(1,1)*(1-x(1,1)-a1*x(2,1)/(1+b1*x(1,1))-a2*x(3,1)/(1+b2*x(1,1)));

xp(2,1) = s1*x(2,1)*(-1+c1*x(1,1)/(1+b1*x(1,1))-x(2,1))-h*x(2,1);

%With harvesting h

xp(3,1) = s2*x(3,1)*(-1+c2*x(1,1)/(1+b2*x(1,1))-x(3,1));

%linearized copies

for j = 0:2

xp(4+j,1) = r1*(1-2*x(1,1)-((a1*x(2,1))/((1+b1*x(1,1))^2))-...

((a2*x(3,1))/((1+b2*x(1,1))^2)))*x(4+j,1)-...

(r1*a1*x(1,1)/(1+b1*x(1,1)))*x(7+j,1)-...

(r1*a2*x(1,1)/(1+b2*x(1,1)))*x(10+j,1);

xp(7+j,1) = (s1*c1*x(2,1)/(1+b1*x(1,1))^2)*x(4+j,1)+...

(s1*(-1-2*x(2,1)+c1*x(1,1)/(1+b1*x(1,1)))-h)*x(7+j,1);

xp(10+j,1) = (s2*c2*x(3,1)/(1+b2*x(1,1))^2)*x(4+j,1)+...

s2*(-1-2*x(3,1)+c2*x(1,1)/(1+b2*x(1,1)))*x(10+j,1);

end

end

%Multiple attractors and crisis route -Upadhyay

function xp = Upad(t,x,p)

xp = zeros(12,1);

%parameters
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a1=p(1);

b1=p(2);

w=p(3);

D=p(4);

a2=p(5);

w1=p(6);

D1=p(7);

w2=p(8);

D2=p(9);

c=p(10);

w3=p(11);

D3=p(12);

h=p(13); %harvesting coefficient

%original system

xp(1,1) = x(1,1)*(a1-b1*x(1,1)-w*x(2,1)/(x(1,1)+D)-h);

%With harvesting h

xp(2,1) = x(2,1)*(-a2+w1*x(1,1)/(x(1,1)+D1)-w2*x(3,1)/(x(2,1)+D2));

xp(3,1) = x(3,1)*(c*x(3,1)-w3*x(3,1)/(x(2,1)+D3));

%linearized copies

for j = 0:2

xp(4+j,1) = (a1-h-2*b1*x(1,1)-w*D*x(2,1)/(x(1,1)+D)^2)*x(4+j,1)-...

(w*x(1,1)/(x(1,1)+D))*x(7+j,1); %With harvesting

xp(7+j,1) = (w1*D1*x(2,1)/(x(1,1)+D1)^2)*x(4+j,1)+...

(-a2+w1*x(1,1)/(x(1,1)+D1)-w2*D2*x(3,1)/((x(2,1)+D2)^2))*x(7+j,1)-...
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(w2*x(2,1)/(x(2,1)+D2))*x(10+j,1);

xp(10+j,1) = (w3*x(3,1)^2/(x(2,1)+D3)^2)*x(7+j,1)+...

(2*c*x(3,1)-2*w3*x(3,1)/(x(2,1)+D3))*x(10+j,1);

end

end
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Appendix D MATLAB code for the control algo-

rithm

This appendix gives the MATLAB code for the application of the control

algorithm in Section 5.3 to the systems in Chapter 6.

%Lotka volterra system with harvesting by Azar et.al

%parameters

r1 = 1;

r2 = 1;

r3 = 1;

a_11=1;

a_12=1;

a_13=5;

a_21 = 1.5;

a_22=1;

a_23=1;

a_31=2.5;

a_32=0.5;

H=0.035;

params = [r1,r2,r3,a_11,a_12,a_13,a_21,a_22,a_23,a_31,a_32,H];

r = Perm_Check2(1, params);

syms x1 x2 x3 H

f1=x1*(r1-a_11*x1-a_12*x2-a_13*x3);
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f2=x2*(r2-a_21*x1-a_22*x2-a_23*x3);

f3=x3*(-r3+a_31*x1+a_32*x2) - H;

J=jacobian([f1; f2; f3], [x1 x2 x3 H]);

J1=double(subs(J,[x1,x2,x3,H],[r,0.35]));%Finding the Jacobian at the rest

%point and required control

[m,n]=size(r);

A=J1(:,1:n)

B=J1(:,n+1:end)

Q=ones(3);

R=[1];

K=lqr(A,B,Q,R)

Ahat=A-B*K

P=lyap(Ahat,Q) %For the Lyapunov function V=transpose(x)Px

l=eig(P) %To check if P is positive definite.

%Eg in page 213 of Evolutionary Games text book

%parameters

a1=5;

a2=5;

b1=2;

b2=2;

c1=4;

c2=4;

r1=1;
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s1=1;

s2=1;

h=0.15; %harvesting coefficient

params = [a1,a2,b1,b2,c1,c2,r1,s1,s2,h]’;

r = Perm_Check2(4, params);

syms x1 x2 x3 h

f1=x1*r1*(1-x1-a1*x2/(1+b1*x1)-a2*x3/(1+b2*x1));

f2= x2*s1*(-1+c1*x1/(1+b1*x1)-x2)-h*x2;

f3= x3*s2*(-1+c2*x1/(1+b2*x1)-x3);

J=jacobian([f1; f2; f3], [x1 x2 x3 h]);

J1=double(subs(J,[x1,x2,x3,h],[r,0.15]));%Finding the Jacobian at the rest

%point and required control

[m,n]=size(r);

A=J1(:,1:n)

B=J1(:,n+1:end)

Q=ones(3);

R=[1];

K=lqr(A,B,Q,R)

Ahat=A-B*K

P=lyap(Ahat,Q) %For the Lyapunov function V=transpose(x)Px

l=eig(P) %To check if P is positive definite.

%%Multiple attractors and crisis route -Upadhyay

%parameters
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a1=1.93;

b1=0.06;

w=1;

D=10;

a2=1;

w1=2;

D1=10;

w2=0.405;

D2=10;

c=0.03;

w3=1;

D3=20;

h=0.1;

params=[a1,b1,w,D,a2,w1,D1,w2,D2,c,w3,D3,h]’;

r = Perm_Check2(7, params);

syms x1 x2 x3 h

f1=x1*( a1-b1*x1-(w*x2/(x1+D))-h);

f2= x2*(-a2+w1*x1/(x1+D1)-(w2*x3/(x2+D2)));

f3= x3*(c*x3-(w3*x3/(x2+D3)));

J=jacobian([f1; f2; f3], [x1 x2 x3 h]);

J1=double(subs(J,[x1,x2,x3,h],[r,0.1]));%Finding the Jacobian at the rest

%point and required control

[m,n]=size(r);
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A=J1(:,1:n)

B=J1(:,n+1:end)

Q=ones(3);

R=[1];

K=lqr(A,B,Q,R)

Ahat=A-B*K

P=lyap(Ahat,Q) %For the Lyapunov function V=transpose(x)Px

l=eig(P) %To check if P is positive definite.

137



Bibliography

[1] O. Arino , A. El abdllaoui , J. Mikram , J. Chattopadhyay. Infection in prey pop-
ulaiton may act as a biological control in ratio-dependent predator-prey models.
Nonlinearity, 2004.

[2] Alan A.Berryman. The origins and evolution of predator-prey theory. Ecology,
1992.

[3] Jawdat Alebraheem , Yahya Abu-Hasan. Persistence of predators in a two
predators- one prey model with non-periodic solution. Applied Mathematical
Sciences, 2012.

[4] B. R. Andrievskii and A. L. Fradkov. Control of chaos: Methods and applications.
Automation and Remote Control, 2003.

[5] Jean-Pierre Aubin and Karl Sigmund. Permanence and viability. Journal of
Computational and Applied Mathematics, 1988.

[6] Alan Wolf, Jack B.Swift, Harry L.Swinney, John A.Vastano. Determining lya-
punov exponents from a time series. Physica, Volume 16D:Pg.285–317, 1985.

[7] Kathleen T.Alligood, Tim D.Sauer, James A.Yorke. Chaos: An Introduction to
Dynamical Systems. Springer-Verlag New York Inc, 1997.

[8] C.Letellier , M.A. Aziz-Alaoui. Analysis of the dynamics of a realistic ecological
model. Chaos , Solitons and Fractals, 2000.

[9] Steve Baigent. Lotka-volterra dynamics - an introduction. Lecture notes UCL,
2010.

[10] Raid Kamel Naji , Alla Tariq Balasim. Dynamical behavior of a three species
food chain model with beddingtondeangelis functional response. Chaos, Solitons
and Fractals, 2007.

[11] J. Beddington. Mutual interference between parasites or predators and its effect
on searching efficiency. The Journal of Animal Ecology, 1975.

138



[12] G. Birkhoff and G. C. Rota. Ordinary Differential Equations. John Wiley and
Sons, 1982.

[13] Michael Brin and Garrett Stuck. Introduction to Dynamical Systems, chapter 1,
pages 23–28. Cambridge University Press, 2002.

[14] Sherli Koshy Chenthittayil. Determination of chaos in different dynamical sys-
tems. Master’s thesis, Clemson University, 2015.

[15] P.H. Crowley and E.K.Martin. Functional responses and interference within and
between year classes of a dragonfly population. Journal of the North American
Benthological Society, 1989.

[16] C.S.Holling. The components of predation as revealed by a study of small mam-
mal predation of the european pine sawfly. Canadian Entomologist, 1959.

[17] C.S.Holling. The functional response of invertebrate predators to prey density.
Memoirs of Entomological Society of Canada, 1966.

[18] R. F. Costantino, R. A. Desharnais, J. M. Cushing and Brian Dennis. Chaotic
dynamics in an insect population. American Association for the Advancement
of Science, 1997.

[19] Michael Doebeli. The evolutionary advantage of controlled chaos. The Royal
Society, 1993.

[20] Leah Edelstein-Keshet. Mathematical Models in Biology, chapter 4, pages 121–
126. Random House, NY, 1988.

[21] J. Chattopadhyay , R.R. Sarkar , G. Ghosal. Removal of infected prey pre-
vent limit cycle oscillations in an infected prey-predator system: a mathematical
study. Ecological Modelling, 2002.

[22] Alessandro Fonda, Paolo Gidoni. A permanence theorem for local dynamical
systems. Nonlinear Analysis: Theory, Methods and Applications, 2013.

[23] Michael E. Gilpin. Spiral chaos in a predator-prey model. The American Natu-
ralist, 1979.

[24] D. DeAngelis, R. Goldstein and R. O’Neill. A model for tropic interaction.
Ecology, 1975.

[25] Edward Ott, Cleso Grebogi and James A. Yorke. Controlling chaos. Phys. Rev.
Lett., 1990.

[26] H.I.Freedman and P.Waltman. Mathematical analysis of some three species food-
chain models. Mathematical Biosciences, 1977.

139



[27] H.I.Freedman and P.Waltman. Persistence in three interacting predator-prey
populations. Mathematical Biosciences, 1984.

[28] Josef Hofbauer. Saturated equilibria, permanence and stability for ecological
systems. Mathematical Ecology, 1988.

[29] C.S. Holling. The functional response of predator to prey density and its role
in mimicry and population regulations. Memoirs of Entomological Society of
Canada, 1965.

[30] Christian Azar , John Holmberg and Kristian Lindgreen. Stability analysis of
harvesting in a predator-prey model. Journal of Theoretical Biology, 1995.

[31] Vivian Hutson and Klaus Schmitt. Permanence and the dynamics of biological
systems. Mathematical Biosciences, 1992.

[32] V.S. Ivlev. Experimental ecology of the feeding of fishes. Copeia, 1962.

[33] R.K. Upadhyay , S.R.K. Iyengar. Introduction to Mathematical Modeling and
Chaotic Dynamics. CRC Press, 2014.

[34] R.K. Upadhyay , S.R.K. Iyengar and Vikas Rai. Chaos: An ecological reality.
International Journal of Bifurcation and Chaos, 1998.

[35] J.Hofbauer and K.Sigmund. Evolutionary Games and Population Dynamics.
Cambridge University Press, 1998.

[36] J.Maynard-Smith. The status of Neo-Darwinism, Towards a Theoretical Ecology.
Edinburgh University Press, 1969.

[37] K.A.Mirus and J.C.Sprott. Controlling chaos in low and high dimensional sys-
tems with periodic parametric perturbations. Physical Review E, 1999.

[38] Gabriela Kirlinger. Permanence in lotka-volterra equations: linked prey-predator
systems. Mathematical Biosciences, 1986.

[39] Gabriela Kirlinger. Permanence of some ecological systems with several predator
and one prey species. Journal of Mathematical Biology, 1988.

[40] A.N. Kolmogorov. Sulla teoria di voltera della lotta per iesisttenza. Giorn.
Instituto Ital. Attuari, 1936.

[41] Vladimir Kozlov and Sergey Vakulenko. On chaos in lotka-volterra systems: an
analytical approach. Nonlinearity, 2013.

[42] K.Pyragas. Continuous control of chaos by self-controlling feedback. Physics
Letters A, 1992.

140



[43] P.Schuster , K.Sigmund and R.Wolff. Dynamical systems under constant orga-
nization 3:cooperative and competitive behavior of hypercycles. 1979.

[44] Sze-Bi Hsu, Tzy-Wei Hwang,Yang Kuang. Rich dynamics of a ratio-dependent
one-prey two-predators model. Journal of Mathematical Biology, 2001.

[45] L.Real. The kinetics of functional response. American Naturalist, 1977.

[46] M.E.Solomon. The natural control of animal population. Journal of Animal
Ecology, 1949.

[47] Awad El-Gohary, M.T.Yassen. Optimal control and synchronization of lotka-
volterra model. Chaos , Solitons and Fractals, 2001.

[48] Ivan Zelinka, Roman Senkerik, Eduard Navratil. Investigation on evolutionary
optimization of chaos control. Chaos , Solitons and Fractals, 2009.

[49] Lin Hu, Linfei Nie. Permanence and global stability for a non-autonomous
predator-prey model with modified leslie-gower and holling-type ii schemes with
delays. Applied Mathematics,, 2011.

[50] Filipe J.Romeiras , Celso Grebogi , Edward Ott and W.P.Dayawansa. Controlling
chaotic dynamical systems. Physica D, 1992.

[51] Linefei Nie , Jigen Peng and Zhidong Teng. Permanence and stability in multi-
species non-autonomous lotka-volterra competitive systems with delays and feed-
back controls. Mathematical and Computer Modelling, 2008.

[52] P.H.Leslie. A stochastic model for studying the properties of certain biological
systems by numerical methods. Biometrika, 1958.

[53] M.L. Rosenzweig , R.H.MacArthur. Graphical representation and stability con-
ditions of predatorprey interactions. American Naturalist, 1963.

[54] B.Dubey , R.K.Upadhyay. Persistence and extinction of one-prey and two-
predators system. Nonlinear Analysis: Modelling and Control, 2004.

[55] R.Lewontin. The meaning of stability. In Brookhaven Symposium Biology.

[56] R.M.May. Stability and Complexity in Model Ecosystems. Princeton University
Press, 1973.

[57] R.M.Murray. Lqr conrol. Lecture notes , California Institute of Technology,
2006.

[58] Awad El-Gohary, Ammar Sarhan. Optimal control and synchronization of lorenz
system with complete unknown parameters. Chaos , Solitons and Fractals, 2006.

141



[59] Edward R. Scheinerman. Invitation to Dynamical Systems, chapter 4. Prentice
Hall College Div, 1995.

[60] Mark Kot, Gary S.Sayler and Terry W.Schultz. Complex dynamics in a model
microbial system. Bulletin of Mathematical Biology, Vol No.54(No.4):Pg.619–
648, 1992.
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