122 research outputs found

    Conjugacy of one-dimensional one-sided cellular automata is undecidable

    Full text link
    Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F,G)(F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where FF has strictly larger topological entropy than GG, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata FF and GG over a full shift: Are FF and GG conjugate? Is FF a factor of GG? Is FF a subsystem of GG? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.Comment: 12 pages, 2 figures, accepted for SOFSEM 201

    Some undecidability results for asynchronous transducers and the Brin-Thompson group 2V

    Full text link
    Using a result of Kari and Ollinger, we prove that the torsion problem for elements of the Brin-Thompson group 2V is undecidable. As a result, we show that there does not exist an algorithm to determine whether an element of the rational group R of Grigorchuk, Nekrashevich, and Sushchanskii has finite order. A modification of the construction gives other undecidability results about the dynamics of the action of elements of 2V on Cantor Space. Arzhantseva, Lafont, and Minasyanin prove in 2012 that there exists a finitely presented group with solvable word problem and unsolvable torsion problem. To our knowledge, 2V furnishes the first concrete example of such a group, and gives an example of a direct undecidability result in the extended family of R. Thompson type groups.Comment: 16 pages, 3 figure

    Turing degrees of limit sets of cellular automata

    Full text link
    Cellular automata are discrete dynamical systems and a model of computation. The limit set of a cellular automaton consists of the configurations having an infinite sequence of preimages. It is well known that these always contain a computable point and that any non-trivial property on them is undecidable. We go one step further in this article by giving a full characterization of the sets of Turing degrees of cellular automata: they are the same as the sets of Turing degrees of effectively closed sets containing a computable point

    Programmation et indécidabilités dans les systèmes complexes

    No full text
    N/AUn système complexe est un système constitué d'un ensemble d'entités quiinteragissent localement, engendrant des comportements globaux, émergeant dusystème, qu'on ne sait pas expliquer à partir du comportement local, connu, desentités qui le constituent. Nos travaux ont pour objet de mieux cerner lesliens entre certaines propriétés des systèmes complexes et le calcul. Parcalcul, il faut entendre l'objet d'étude de l'informatique, c'est-à-dire ledéplacement et la combinaison d'informations. À l'aide d'outils issus del'informatique, l'algorithmique et la programmation dans les systèmes complexessont abordées selon trois points de vue. Une première forme de programmation,dite externe, consiste à développer l'algorithmique qui permet de simuler lessystèmes étudiés. Une seconde forme de programmation, dite interne, consiste àdévelopper l'algorithmique propre à ces systèmes, qui permet de construire desreprésentants de ces systèmes qui exhibent des comportements programmés. Enfin,une troisième forme de programmation, de réduction, consiste à plonger despropriétés calculatoires complexes dans les représentants de ces systèmes pourétablir des résultats d'indécidabilité -- indice d'une grande complexitécalculatoire qui participe à l'explication de la complexité émergente. Afin demener à bien cette étude, les systèmes complexes sont modélisés par desautomates cellulaires. Le modèle des automates cellulaires offre une dualitépertinente pour établir des liens entre complexité des propriétés globales etcalcul. En effet, un automate cellulaire peut être décrit à la fois comme unréseau d'automates, offrant un point de vue familier de l'informatique, etcomme un système dynamique discret, une fonction définie sur un espacetopologique, offrant un point de vue familier de l'étude des systèmesdynamiques discrets.Une première partie de nos travaux concerne l'étude de l'objet automatecellulaire proprement dit. L'observation expérimentale des automatescellulaires distingue, dans la littérature, deux formes de dynamiques complexesdominantes. Certains automates cellulaires présentent une dynamique danslaquelle émergent des structures simples, sortes de particules qui évoluentdans un domaine régulier, se rencontrent lors de brèves collisions, avant degénérer d'autres particules. Cette forme de complexité, dans laquelletransparaît une notion de quanta d'information localisée en interaction, estl'objet de nos études. Un premier champ de nos investigations est d'établir uneclassification algébrique, le groupage, qui tend à rendre compte de ce type decomportement. Cette classification met à jour un type d'automate cellulaireparticulier : les automates cellulaires intrinsèquement universels. Un automatecellulaire intrinsèquement universel est capable de simuler le comportement detout automate cellulaire. C'est l'objet de notre second champ d'investigation.Nous caractérisons cette propriété et démontrons son indécidabilité. Enfin, untroisième champ d'investigation concerne l'algorithmique des automatescellulaires à particules et collisions. Étant donné un ensemble de particuleset de collisions d'un tel automate cellulaire, nous étudions l'ensemble desinteractions possibles et proposons des outils pour une meilleure programmationinterne à l'aide de ces collisions.Une seconde partie de nos travaux concerne la programmation par réduction. Afinde démontrer l'indécidabilité de propriétés dynamiques des automatescellulaires, nous étudions d'une part les problèmes de pavage du plan par desjeux de tuiles finis et d'autre part les problèmes de mortalité et depériodicité dans les systèmes dynamiques discrets à fonction partielle. Cetteétude nous amène à considérer des objets qui possèdent la même dualité entredescription combinatoire et topologique que les automates cellulaires. Unenotion d'apériodicité joue un rôle central dans l'indécidabilité des propriétésde ces objets

    Automata on the plane vs particles and collisions

    Get PDF
    AbstractIn this note, colorings of the plane by finite sequential machines are compared to previously introduced notions of ultimately periodic tilings of the plane. Finite automata with no counter characterize exactly biperiodic tilings. Finite automata with one counter characterize exactly particles — periodic colorings that are ultimately periodic in every direction. Finite automata with two counters and aperiodic colorings characterize exactly collisions — ultimately periodic tilings of the plane

    Decidability in Group Shifts and Group Cellular Automata

    Get PDF
    Many undecidable questions concerning cellular automata are known to be decidable when the cellular automaton has a suitable algebraic structure. Typical situations include linear cellular automata where the states come from a finite field or a finite commutative ring, and so-called additive cellular automata in the case the states come from a finite commutative group and the cellular automaton is a group homomorphism. In this paper we generalize the setup and consider so-called group cellular automata whose state set is any (possibly non-commutative) finite group and the cellular automaton is a group homomorphism. The configuration space may be any subshift that is a subgroup of the full shift and still many properties are decidable in any dimension of the cellular space. Decidable properties include injectivity, surjectivity, equicontinuity, sensitivity and nilpotency. Non-transitivity is semi-decidable. It also turns out that the the trace shift and the limit set can be effectively constructed, that injectivity always implies surjectivity, and that jointly periodic points are dense in the limit set. Our decidability proofs are based on developing algorithms to manipulate arbitrary group shifts, and viewing the set of space-time diagrams of group cellular automata as multidimensional group shifts

    Cellular automata with complicated dynamics

    Get PDF
    A subshift is a collection of bi-infinite sequences (configurations) of symbols where some finite patterns of symbols are forbidden to occur. A cellular automaton is a transformation that changes each configuration of a subshift into another one by using a finite look-up table that tells how any symbol occurring at any possible context is to be changed. A cellular automaton can be applied repeatedly on the configurations of the subshift, thus making it a dynamical system. This thesis focuses on cellular automata with complex dynamical behavior, with some different definitions of the word “complex”. First we consider a naturally occurring class of cellular automata that we call multiplication automata and we present a case study with the point of view of symbolic, topological and measurable dynamics. We also present an application of these automata to a generalized version of Mahler’s problem. For different notions of complex behavior one may also ask whether a given subshift or class of subshifts has a cellular automaton that presents this behavior. We show that in the class of full shifts the Lyapunov exponents of a given reversible cellular automaton are uncomputable. This means that in the dynamics of reversible cellular automata the long term maximal propagation speed of a perturbation made in an initial configuration cannot be determined in general from short term observations. In the last part we construct, on all mixing sofic shifts, diffusive glider cellular automata that can decompose any finite configuration into two distinct components that shift into opposing direction under repeated action of the automaton. This implies that every mixing sofic shift has a reversible cellular automaton all of whose directions are sensitive in the sense of the definition of Sablik. We contrast this by presenting a family of synchronizing subshifts on which all reversible cellular automata always have a nonsensitive direction
    corecore