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a b s t r a c t

In this note, colorings of the plane by finite sequential machines are compared to
previously introduced notions of ultimately periodic tilings of the plane. Finite automata
with no counter characterize exactly biperiodic tilings. Finite automata with one counter
characterize exactly particles — periodic colorings that are ultimately periodic in every
direction. Finite automata with two counters and aperiodic colorings characterize exactly
collisions — ultimately periodic tilings of the plane.

© 2009 Elsevier B.V. All rights reserved.

0. Introduction

In [1], motivated by the study of space-time diagrams of cellular automata, we introduced collisions as a practical
notion of ultimately periodic tiling of the plane: an extension of the notion of ultimately periodic bi-infinite words to
infinite bidimensional tilings. Intuitively, ultimately periodic words and collisions share the property to be locally almost
everywhere periodic in every direction. Imagine that you are walking on the plane, trying to color it according to a collision:
you only need to keep a finite information, your position inside the biperiodic pattern, plus away to store your distance to the
boundaries: places where one should switch from a biperiodic region to another. All you need to know about this distance
is when it becomes equal to zero. Therefore, counter machines coloring the plane can certainly encode every collision.
In this note, we explore the analogy between regular tilings and colorings by counter machines. A map automaton over

a free monoid is a deterministic counter machine that starts in a given initial state with empty counters on the unit element
of the monoid. The automaton walks on the monoid by firing transitions labelled by the generator associated to each of its
move. Such an automaton can certainly color each element of the monoid with a finite set of colors according to its state. To
color a group, like the euclidean plane Z2, with a map automaton, we simply choose a monoid presentation for the group
and require the automaton to be compatible with the group structure — that is, to have the same state and counter values
on two elements of the free monoid corresponding to a same element of the group.
As expected, in the case of bi-infinite words, map automaton with no counter capture periodic words; map automata

with one counter capture ultimately periodic words; and map automata with two counters can paint arbitrarily complex
recursive tilings. In the case of bidimensional tilings, map automata coloring the plane with a periodicity vector act like a
finite family of map automata on bi-infinite words. Thus, map automata with no counter capture biperiodic tilings; map
automata with one counter capture particles. In the case of two counter automata, if the coloring is periodic then it can
be arbitrarily recursively complex. However, aperiodic map automata with two counters capture collisions. In the case of
aperiodic colorings, the two counters of a map automata act like a compass pointing to the origin cell using finitely many
biperiodic quadrants: this is a collision.
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The note is organized as follows. In Section 1, we introduce map automata on monoid presentations and some of
their properties. Section 2 studying map automata on Z and Section 3 studying map automata on Z2 are constructed
symmetrically: notions of regular colorings are first defined before a sequential study of automata with zero, one and two
counters.

1. Definitions

In this paper, Zm denotes the cyclic group Z/mZ. Let Σ be a finite alphabet, Σ∗ is the free monoid generated by Σ , the
set of words onΣ , with empty word ε. The catenation of u ∈ Σ∗ and v ∈ Σ∗ is denoted as uv. A finite monoid presentation
is a pair (G, R) where G is a finite alphabet of generators and R ⊆ G∗ × G∗ is a finite set of relators. The monoid G = 〈G|R〉
associated to the presentation is the largest monoid satisfying the relators equations, i.e. such that for each (u, v) ∈ R, u = v
in this monoid.
A G-coloring is a mapping c : G→ Σ . It is periodic, with period z ∈ G \ {ε}, if for all z ′ ∈ G, c(zz ′) = c(z ′). It is aperiodic

if it is not periodic. It is biperiodic, with periods z, z ′ ∈ G \ {ε}, if z and z ′ are two non-collinear periods, i.e. there does not
exist k, k′ ∈ Z+ such that zk = z ′k

′

.
Let Υ = {0,+} andΦ = {−, 0,+} be respectively the set of test values and counter operations. Let 0 denote the constant

k-tuple (0, . . . , 0). For all φ ∈ Φk, testing τ andmodifying θ actions are defined for all i ∈ Zk, v ∈ Nk as:

τ(v)(i) =
{
0 if v(i) = 0
+ if v(i) > 0 θφ(v)(i) =

{max(0, v(i)− 1) if φi = −
v(i) if φi = 0
v(i)+ 1 if φi = +

A k-counter map automaton on the alphabet Σ is a tuple (Σ, k, S, s0, δ) where k ∈ N is the number of counters, S is a
finite set of stateswith initial state s0 ∈ S and δ : S × Υ k ×Σ → S × Φk is the transition rule of the automaton. Its transition
function f : S × Nk ×Σ∗ → S × Nk is recursively defined onΣ∗ by f (s, v, ε) = (s, v) and f (s, v, za) = (s′′, θφ(v′))where
f (s, v, z) = (s′, v′) and δ(s′, τ (v′), a) = (s′′, φ) for all s ∈ S, v ∈ Nk, z ∈ Σ∗ and a ∈ Σ .
A k-counter map automaton (k-CMA) A on the monoid presentation G = 〈G|R〉 is a tuple (G, k, S, s0, δ) where (G, R) is a

finite presentation of G and (G, k, S, s0, δ) is a k-counter map automaton on the alphabet G compatible with the monoid
structure, i.e. satisfying f (s0, 0, zz1) = f (s0, 0, zz2) for all z ∈ G∗ and (z1, z2) ∈ R. Its mapping function g : G → S × Nk is
defined, for all z ∈ G, as g(z) = f (s0, 0, z). Its minimum (resp. maximum) counter function minc : G → N (resp. maxc) is
defined for all z ∈ G as minc(z) = mini∈Zk vi (resp. maxc(z) = maxi∈Zk vi) where g(z) = (s, v). Two elements z, z

′
∈ G are

undistinguished by A if z 6= z ′ and g(z) = g(z ′). An element z ∈ G is discriminative under A if minc(z) = 0. A connected
subset Z of G is independent under A if {minc(z) | z ∈ Z} is an infinite subset of Z+. Notice that a subset of G independent
underA does not have any discriminative points underA. The automaton is periodic, with period z ∈ G\{ε}, if for all z ′ ∈ G,
g(z ′) = g(zz ′).
Lemma 1. A k-CMAA on a group G is periodic if and only if two elements of G are undistinguished byA.
Proof. Let A be a k-CMA on a group G. If it is periodic with period z ∈ G then ε and z are undistinguished. Conversely, if
z, z ′ ∈ G are undistinguished then for any path z0 ∈ G, g(zz0) = g(z ′z0) by the fact that transition does only depend on
state. In particular, for any z0 ∈ G, g(z0) = g(zz−1z0) = g(z ′z−1z0) and thus z ′z−1 is a valid period. �
The projector π1 : S × Nk → S is defined for all s ∈ S and v ∈ Nk by π1(s, v) = s. The coloring of A by ϕ : S → Σ

is the mapping c ∈ ΣG satisfying c(z) = ϕ(π1(g(z))) for all z ∈ G. The G-k-map set is the set of all colorings of G by all
k-counter map automata. The translated of a coloring c , by a vector z ∈ G, is the coloring cz ∈ ΣG defined for all z ′ ∈ G by
cz(z ′) = c(zz ′).
Lemma 2. Every G-k-map set is closed under translation.
Proof. Let c be a coloring of a k-CMA (G, k, S, s0, δ) by ϕ. Let z ∈ G be a vector andmz = maxc(z). Let us consider functions
b : N → [0, . . . ,mz] and t : N → N defined for all n ∈ N by b(n) = min(mz, n) and t(n) = max(0, n − mz). These
two functions can be naturally extended to Nk. Let S ′ = S × [0, . . . ,mz]k and e : S × Nk → S ′ × Nk be defined by
e(s, v) = ((s, b(v)), t(v)) for all (s, v) ∈ S × Nk. Let A′ be the k-CMA (G, k, S ′, s′, δ′) chosen such that, for all z ′ ∈ G, its
mapping function g ′ satisfies : g ′(z ′) = e(g(zz ′)) (in particular s′ is the first component of e(g(z))). Straightforwardly, the
translated cz of c by z is the coloring of A′ by ϕ′ : S × [0, . . . ,mz]k → Σ defined, for all s ∈ S and t ∈ [0, . . . ,mz]k, as
ϕ′((s, t)) = ϕ(s). �
Lemma 3. Let c be a coloring of a k-CMA A on a group G. Let Z ⊆ G be independent under A. There exists a G-0-map c ′ such
that c|Z = c ′|Z .
Proof. LetA be a k-CMA (G, k, S, s0, δ) and c a coloring ofA by ϕ. Let Z be a subset of G independent underA. For all s ∈ S,
let Zs = Z ∩ g−1

(
{s} × Nk

)
. S being finite, there exists s′0 ∈ S such that

{
minc(z) | z ∈ Zs′0

}
is infinite. LetA′ be the 0-CMA

(G, 0, S, s′0, δ
′)where δ′(s, a) = δ(s,+k, a) for all s ∈ S and a ∈ G. Let us first prove thatA′ is indeed a 0-CMA. Let z ∈ G∗ and

(z ′, z ′′) ∈ R. Let N = max(|zz ′|, |zz ′′|). By construction, there exists zN ∈ Zs′0 such that minc zN > N . Since no discriminative
point is encountered on the path from zN to zNzz ′, f ′(s′0, zz

′) = s where (s, n) = f (g(zN), zz ′). The same holds for zz ′′. Let
z0 be any element of Zs′0 , Z being independent we have that π1(g(z)) = π1(g

′(z0z)) for all z ∈ Z . If we consider c ′ to be the
coloring ofA′ by ϕ, it follows that c(z) = c ′(z0z). By Lemma 2, the translated c ′z0 of c

′ by z0 is a G-0-map equal to c on Z . �
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2. Map automata on Z

In the following, we denote by Z the one-dimensional grid
(Z,+) = 〈l, r|lr = ε, rl = ε〉 ,

the presentation is embed with the canonical morphism r = 1.

2.1. Regular colorings of Z

For i ∈ Z and p ∈ Z+, let us denote as i[p] the remainder of the division of i by p. On Z, a periodic coloring c can be
characterized by a finite pattern u ∈ Σp such that for all i ∈ Z, c(i) = ui[p]. A coloring is ultimately periodic with period
p ∈ Z+ and defect k ∈ N, if for all element i ∈ Z, |i| > k implies c(i + p) = c(i). Ultimately periodic colorings correspond
to colorings which are periodic out of a finite support. They can also be characterized by three finite words u, v ∈ Σp and
w ∈ Σ2k+1 such that for all element i ∈ Z, c(i) = ui[p] if i < −k, c(i) = vi[p] if i > k and c(i) = wi+k otherwise. Notice that
periodicity is a special case of ultimate periodicity.

2.2. Automata with no counter

Theorem 4. A Z-coloring is a Z-0-map if and only if it is periodic.
Proof. Let g : Z → S be the mapping function of a 0-CMA A. S being finite, there exist two elements undistinguished by
A. By Lemma 1, the automaton is periodic.
Conversely, let c be a periodic Z-coloring with period p ∈ Z+. LetA be the 0-CMA (Z, 0,Zp, 0, δ) where δ(i, l) = i − 1

and δ(i, r) = i+ 1. The coloring ofA by ϕ : i 7→ c(i) is c . �

2.3. Automata with one counter

Theorem 5. A Z-coloring is a Z-1-map if and only if it is ultimately periodic.
Proof. Let g : Z → S × N be the mapping function of a 1-CMA A. Z-0-maps being Z-1-maps, we can assume that g is
one-to-one (i.e., has no undistinguished elements). Thus, there exists k ∈ N such that g−1(S × {0}) ⊆ [−k, k]. By Lemma 3,
on both ]−∞,−k[ and ]k,+∞[, g is periodic and thus c is ultimately periodic.
Conversely, Let c be an ultimately periodic Z-coloring with period p ∈ Z+ and defect k ∈ N. LetA be the 1-CMA over set

of states [−k− p, k+ p] whose mapping function is defined for all elements i ∈ Z by:

g(i) =

{
(i, 0) if |i| ≤ k+ p
((i− k)[p] + k, b(i− k)/pc) if i > k+ p
((i+ k)[p] − k− p, b(−k− i)/pc) if i < −k− p

The coloring ofA by ϕ : i 7→ c(i) is c. �

2.4. Automata with two counters

It is well known that finite automata with two counters can simulate any Turing machine (see Minsky [2]). Morita [3]
improved the result by proving that the simulation can be done in a reversible way. It is therefore no surprise that these
machines can embed any computation of a Turing machine and encode any recursively enumerable language.
Theorem 6. There exists a ∅′-complete1 Z-2-map.
Sketch of the Proof. Let K be a ∅′-complete language containing 0 and (ni)i∈N be a computable enumeration without
repetition of K satisfying n0 = 0. There exists a one-to-one computable function that on input ni computes ni+1. Combining
Morita construction [3] with techniques of [4], one can construct a reversible two counter machine with set of states
SA∪{sα, sω} such that, for all i ∈ N, starting from (sα, (ni, 0)), themachine eventually halts in configuration (sw, (ni+1, 0)). It
is also possible to construct a reversible two counter machine with set of states SB ∪ {sα, sω} such that, for all i ∈ N, starting
from (sw, (ni, 0)), the machine halts in configuration (sα, (ni, 0)) after exactly 2ni steps of computations. By making disjoint
union of these two machines, one can construct 2-CMA A with set of states S = SA ∪ SB ∪ {sα, sω} sharing transitions of
both machines and with starting state sα . The transition function works by applying the two counter machine transition
on generator r and reverse transition on generator l. Let c be the coloring of A by ϕ : S → {0, 1} defined for all s ∈ S by
ϕ(s) = 1 if and only if s ∈ SB. The coloring c contains the factor 012n0 if and only if n ∈ K . �

3. Map automata on Z2

In the following, we denote by Z2 the two-dimensional grid
(Z2,+) = 〈n, s, e, w|ns = ε, sn = ε, ew = ε,we = ε, ne = en〉 ,

the presentation is embed with the canonical morphism e =
(1
0

)
and n =

(0
1

)
.

1 i.e., of maximal complexity (for many–one reductions) among recursively enumerable sets.
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(a) Background. (b) Particle. (c) Collision.

Fig. 1. Regular colorings of Z2 .

Fig. 2. Grouping by blocks (number indicates value of the counter and dotted portion the non-periodic place where counter is empty).

3.1. Regular colorings of Z2

The case of Z2 is strongly linked with the previous case as the following lemma suggests.

Lemma 7. Each line (resp. column) of a Z2-k-map is a Z-k-map.

Proof. Let c be a Z2-k-map. By definition, the restriction of c to {0}×Z (resp. Z×{0}) is a Z-k-map. By Lemma 2, this result
is valid for every line (resp. column). �

An easy corollary is that a periodic map automaton on Z2 acts as periodic copies of map automata on Z. To define regular
coloring ofZ2, we choose the approach presented in [1]. Simplest element is a biperiodic coloring called background (Fig. 1a).
A particle is a coloringwith one direction of periodicity andultimate periodicity in every other direction (Fig. 1b). Let^v(u, u′)
be the angular portion of the plane, on the right-hand side of u, starting in position v ∈ Z2 and delimited by the vectors
u, u′ ∈ Z2. A collision is a coloring c characterized by a sequence of m vectors (ui)i∈Zm such that for all i ∈ Zm, the coloring
is ui-periodic in the cone between ui−1 and ui+1 starting from ui, i.e., for all i ∈ Zm, and z ∈ ^ui(ui−1, ui+1), c(z + ui) = c(z)
(Fig. 1c). The ball of radius r and center (x, y) is the set [x− r, x+ r]× [y− r, y+ r]. When no center is specified, it implicitly
refers to center (0, 0).

3.2. Automata with no counter

Theorem 8. A Z2-coloring is a Z2-0-map if and only if it is biperiodic.

Proof. Let g : Z → S be the mapping function of a 0-CMA A. S being finite, there exist two elements undistinguished by
A. Thus, there is only a finite number of lines or columns. By Lemma 7 and Theorem 4, each of them is periodic.
Let c be a biperiodic Z2-coloring with periods (m, 0) and (0, n) (such canonical periods always exist). Let A be the 0-

CMA (Z2, 0,Zm × Zn, (0, 0), δ) where δ((x, y), e) = (x + 1, y) and δ((x, y), n) = (x, y + 1). c is the coloring of A by
ϕ : Zm × Zn → Σ defined, for all x ∈ Zm and y ∈ Zn, by ϕ(x, y) = c(x, y). �

3.3. Automata with one counter

Theorem 9. A Z2-coloring is a Z2-1-map if and only if it is a particle.

Proof. Let c be a Z2-1-map. Suppose that c is not periodic. By Lemma 7, all lines of c are non-periodic Z-1-map and by
Lemma 3 each of them contains at least one discriminative point. S × {0} being finite, we reach a contradiction. Thus, c is
made of a finite number of lines (or columns) which are Z-1-map. Since each of these maps is ultimately-periodic, c is a
particle.
Conversely, let c be a particlewith period u = (x, y)with y > 0 (this can always be achieved up to exchanging axes). Thus

c consists of periodic repetitions of y ultimately periodic lines.Without loss of generality, we can assume that all the lines are
p ∈ Z+ periodicwith defect p satisfying p > x. Thus, we can use the same construction as in proof of Theorem5 on thewhole
block of lines (see Fig. 2). At first, let us construct a 1-CMA automaton over the set of states [−2p, 2p] × [0, y − 1] whose
mapping function is defined for each element of one line of blocks (grayed in Fig. 2). This automaton can be constructed
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Fig. 3. Decomposition of collisions (for concision, l′ is omitted in the picture).

such that the mapping function satisfies, for all elements (i, j) ∈ Z× [0, y− 1]:

g(i, j) =

{
((i, j), 0) if |i| ≤ 2p
((i[p] + p, j), bi/pc − 1) if i > 2p
((i[p] − 2p, j), b−i/pc − 1) if i < −2p

Then we extend the construction in order to achieve a u periodic mapping function g̃ : Z2 → [−2p, 2p] × [0, y − 1]
by g̃(i, j) = g(i − x bj/yc , j[y]). As x < p this function is well defined since counters differ by at most one and periodicity
ensures correctness of definition (see Fig. 2).
The resulting coloring ofA by ϕ : (i, j) 7→ c(i, j) is c . �

3.4. Automata with two counters

Theorem 10. There exists a ∅′-complete Z2-2-map.
Proof. It is possible to extend anyZ-k-map to aZ2-k-mapby using identity function on e, w. Thus, existence of a∅′-complete
Z-2-map induces existence of a ∅′-complete Z2-2-map. �
Theorem 11. Every collision is a Z2-2-map.
Proof. Let c be a collision. Instead ofworking on thewhole plane,we cut it into four quarters and study at first independently
each quarter. Without loss of generality, we consider the northern quarter. Intuitively, each line on this quarter can be
seen as succession of particle patterns separated by repetitions of several background patterns (see Fig. 3). Moreover, since
the growth of background size between two consecutive particles is linear and that background patterns are periodic, it is
possible to ensure that the growth in the number of background patterns inside a line is the same for every background
(up to choosing some bigger background patterns). More formally, for all k ∈ N, let w(k) = c|[−k,k]×{k} be the kth northern
sphere word of c. There exists an integer K ∈ N such that for all k > K ,w(k) is only included in cones (i.e., avoid the central
perturbation). The number of cones being finite, let l ∈ N be a multiple of vertical components of all the vectors intersecting
with these spherewords. Formally, for all l′ ∈ [0, . . . , l−1], there existn ∈ N, a(l′, 0) . . . a(l′, n) ∈ Σ∗ and b(l′, 0) . . . b(l′, n−
1) ∈ Σ∗ such that for all k ∈ N, kl > K ,w(kl+l′) = a(l′, 0)b(l′, 0)ka(l′, 1)b(l′, 1)k . . . a(l′, n−1)b(l′, n−1)ka(l′, n). Notice that
the set of constructedwordsW = {a(i, j) | i ∈ [0, . . . , l′−1], j ∈ [0, . . . , n]}∪{b(i, j) | i ∈ [0, . . . , l′−1], j ∈ [0, . . . , n−1]}
is finite.
Using similar techniques as previously, let us consider the partial mapping function g which maps any element to the

corresponding letter inW . Moreover, local transition function is chosen such that, for any element inw(kl+ l′), the counter
is equal to (0, k) (resp. (k, 0)) if the corresponding letter is in a(l′, 2i) (resp. a(l′, 2i+ 1)) and (i, k− i) (resp. (k− i, i)) if the
letter is in the ith repetition of the word b(l′, 2i) (resp. b(l′, 2i+1)). One can note that g can be achieved by a local transition
function. The last remaining problem is that g is, for now, only defined on the northern quarter of the plane.
The previous construction can be also achieved on all other quarters of the plane. What is left is to prove that these four

constructions can be chosen so that they match on boundaries. To do this, one has just to look at the diagonals (it is the only
place where two or more constructions overlap). First, note that, up to taking common multiples, we can assume that all
four sphere words have the same l. Then, the empty counter depends on the parity of number of particles involved. Since
background can also be seen as particle, one can easily introduce ‘‘phantom’’ particles to get rid of this problem.
The last point is that themapping resulting of the union of the four constructions is defined everywhere but in the center

of the map which consists of a finite number of points. Up to introducing new states, one can extend this mapping function
to the one of a 2-CMA on Z2. �
Theorem 12. Every aperiodic Z2-2-map is a collision.
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Fig. 4. Finding a new discriminative point.

Fig. 5. Disposition of discriminative points.

Proof. LetA be a 2-CMA (Z2, 2, S, s0, δ).A being aperiodic, its mapping function g is one-to-one. In a first step, let us prove
that for all balls of radius r containing n discriminative points underA, there is n+ 1 discriminative points underA in the
ball of radius r + |S| + 1.
LetB be a ball of radius r containing n discriminative points. Assume thatB ′ the ball of radius r+|S|+1 does not contain

any other discriminative points. Let ul (resp. ur , ll) be one extremal upper-left (resp. upper-right, lower-left) discriminative
point (see Fig. 4). Note that these points do not need to be distinct. Without loss of generality, one can assume that ur and ll
have both the first counter empty. Let us consider the set {ll− (i, 0) | i ∈ N} of elements left of ll. S being finite, there exist
two elements z and z ′ inB ′\B such that g(z) = (s, (a0, a1)) and g(z ′) = (s, (b0, b1)) for some s ∈ S and a0, a1, b0, b1 ∈ Z+.
One can assume that z is the left one. There exists a path r i, i ∈ N+ from z ′ to ll. Since the same path starting from z ′ does
not encounter any discriminative point, a0 − (b0 − 0) > 0. By doing the same reasoning on the path from z ′ to ur in B ′

avoidingB, we can deduce that b0 − (a0 − 0) > 0 leading to a contradiction.
Let B be the ball containing all discriminative points whose counters are both less than (|S| + 1)3. We shall prove that

all discriminative points are located on a finite number of thick half-lines of width (S + 1)2 originated from B as depicted
on Fig. 5.
Formally, let us take a discriminative point z. By iterating previous result, there are at least |S| + 1 discriminative points

in the ball of radius (|S| + 1)2 centered around z. Among these points, either two have distinct empty counters which
implies that non-empty counter of z is less than (|S| + 1)3, and so z is in B, or there exist two points za and zb such that
g(za) = (s, (a, 0)) and g(zb) = (s, (b, 0)) for some s ∈ S and b > a ∈ N+. Let z ′ ∈ G∗ such that zaz ′ = zb. One can check
that g(zaz ′n) = (s, (a+ n(b− a), 0)) for all n such that a+ n(b− a) > (|S| + 1)3. It follows that za is on a half-line starting
from an element inB and thus z is at distance at most (|S| + 1)2 of such a half-line. Slope of this half-line depends only on
the elements inB and b− a < (|S| + 1)3 which only leave a finite number of possibilities.
The last intermediate result needed is that any point z ∈ Z2 such that minc z < N has one discriminative point underA

at distance at most 2N|S|. To prove this, let B be the ball of center z ∈ Z2 and of radius |S|. This ball contains two distinct
points za, zb ∈ Z2whosemapping has the same state. Following this vector in the direction of decreasing counter value leads
to encounter a discriminative point at distance at most 2N|S|. A useful corollary is that any connected component between
two consecutive (but not parallel) half-lines of discriminative points is independent since it contains balls of arbitrary size.
To conclude the proof, let us show that any map associated to A is a collision characterized by the sequence u ∈ Z2p

of half-lines ordered by slope. Since all half-lines start inside a finite ball, there exists an element k ∈ N such that all
discriminative points in the cone ^kui(kui−1, kui+1) are on a half-line of vector ui for all i ∈ Zp (see Fig. 5). In this cone,
we have elements of the half-line (which are by construction ui periodic) and elements of connected components between
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two consecutive half-lines. These connected components are independent by the previous corollary. By Lemma 3, they are
bi-periodic and thus also kui periodic for some k ∈ N+. �
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