49 research outputs found

    Single-Board-Computer Clusters for Cloudlet Computing in Internet of Things

    Get PDF
    The number of connected sensors and devices is expected to increase to billions in the near future. However, centralised cloud-computing data centres present various challenges to meet the requirements inherent to Internet of Things (IoT) workloads, such as low latency, high throughput and bandwidth constraints. Edge computing is becoming the standard computing paradigm for latency-sensitive real-time IoT workloads, since it addresses the aforementioned limitations related to centralised cloud-computing models. Such a paradigm relies on bringing computation close to the source of data, which presents serious operational challenges for large-scale cloud-computing providers. In this work, we present an architecture composed of low-cost Single-Board-Computer clusters near to data sources, and centralised cloud-computing data centres. The proposed cost-efficient model may be employed as an alternative to fog computing to meet real-time IoT workload requirements while keeping scalability. We include an extensive empirical analysis to assess the suitability of single-board-computer clusters as cost-effective edge-computing micro data centres. Additionally, we compare the proposed architecture with traditional cloudlet and cloud architectures, and evaluate them through extensive simulation. We finally show that acquisition costs can be drastically reduced while keeping performance levels in data-intensive IoT use cases.Ministerio de Economía y Competitividad TIN2017-82113-C2-1-RMinisterio de Economía y Competitividad RTI2018-098062-A-I00European Union’s Horizon 2020 No. 754489Science Foundation Ireland grant 13/RC/209

    Infrastructure sharing of 5G mobile core networks on an SDN/NFV platform

    Get PDF
    When looking towards the deployment of 5G network architectures, mobile network operators will continue to face many challenges. The number of customers is approaching maximum market penetration, the number of devices per customer is increasing, and the number of non-human operated devices estimated to approach towards the tens of billions, network operators have a formidable task ahead of them. The proliferation of cloud computing techniques has created a multitude of applications for network services deployments, and at the forefront is the adoption of Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV). Mobile network operators (MNO) have the opportunity to leverage these technologies so that they can enable the delivery of traditional networking functionality in cloud environments. The benefit of this is reductions seen in the capital and operational expenditures of network infrastructure. When going for NFV, how a Virtualised Network Function (VNF) is designed, implemented, and placed over physical infrastructure can play a vital role on the performance metrics achieved by the network function. Not paying careful attention to this aspect could lead to the drastically reduced performance of network functions thus defeating the purpose of going for virtualisation solutions. The success of mobile network operators in the 5G arena will depend heavily on their ability to shift from their old operational models and embrace new technologies, design principles and innovation in both the business and technical aspects of the environment. The primary goal of this thesis is to design, implement and evaluate the viability of data centre and cloud network infrastructure sharing use case. More specifically, the core question addressed by this thesis is how virtualisation of network functions in a shared infrastructure environment can be achieved without adverse performance degradation. 5G should be operational with high penetration beyond the year 2020 with data traffic rates increasing exponentially and the number of connected devices expected to surpass tens of billions. Requirements for 5G mobile networks include higher flexibility, scalability, cost effectiveness and energy efficiency. Towards these goals, Software Defined Networking (SDN) and Network Functions Virtualisation have been adopted in recent proposals for future mobile networks architectures because they are considered critical technologies for 5G. A Shared Infrastructure Management Framework was designed and implemented for this purpose. This framework was further enhanced for performance optimisation of network functions and underlying physical infrastructure. The objective achieved was the identification of requirements for the design and development of an experimental testbed for future 5G mobile networks. This testbed deploys high performance virtualised network functions (VNFs) while catering for the infrastructure sharing use case of multiple network operators. The management and orchestration of the VNFs allow for automation, scalability, fault recovery, and security to be evaluated. The testbed developed is readily re-creatable and based on open-source software

    Best Environmental Management Practice in the Telecommunications and ICT Services sector: Learning from front runners

    Get PDF
    The steady growth over the past decades of the Telecommunications and ICT Services sector, and its uninterrupted progress with the constant provision of renewed and ever-faster services as well as new applications, has transformed many aspects of our society and lives but has also spurred the development of ever more power- and resource-hungry systems, contributing to the sector’s ever-growing environmental footprint. On the basis of an in-depth analysis of the actions implemented by environmental front runners and of existing EU and industry initiatives addressing the environmental performance of the sector, this report describes a set of best practices with high potential for larger uptake. These are called Best Environmental Management Practices (BEMPs). The BEMPs, identified in close cooperation with a technical working group comprising experts from the sector, cover improvement of environmental performance across all significant environmental aspects (energy consumption, resource consumption, etc.) at the different life cycle stages (planning and design, installation, operation, end-of-life management, etc.) and for different ICT assets (software, data centres, etc.). Besides actions aimed at reducing the environmental impact of Telecommunications and ICT Services operations (with a special focus on data centres and telecommunications networks), the report also identifies best practices in the ICT sector that contribute towards reducing the environmental impact of other sectors of the economy ("greening by ICT" measures). The report gives a wide range of information (environmental benefits, economics, indicators, benchmarks, references, etc.) for each of the proposed best practices in order to be a source of inspiration and guidance for any company in the sector wishing to improve its environmental performance. In addition, it will be the technical basis for a Sectoral Reference Document on Best Environmental Management Practice for the Telecommunications and ICT Services sector, to be produced by the European Commission according to Article 46 of Regulation (EC) No 1221/2009 (EMAS Regulation).JRC.B.5-Circular Economy and Industrial Leadershi

    NFV Platforms: Taxonomy, Design Choices and Future Challenges

    Get PDF
    Due to the intrinsically inefficient service provisioning in traditional networks, Network Function Virtualization (NFV) keeps gaining attention from both industry and academia. By replacing the purpose-built, expensive, proprietary network equipment with software network functions consolidated on commodity hardware, NFV envisions a shift towards a more agile and open service provisioning paradigm. During the last few years, a large number of NFV platforms have been implemented in production environments that typically face critical challenges, including the development, deployment, and management of Virtual Network Functions (VNFs). Nonetheless, just like any complex system, such platforms commonly consist of abounding software and hardware components and usually incorporate disparate design choices based on distinct motivations or use cases. This broad collection of convoluted alternatives makes it extremely arduous for network operators to make proper choices. Although numerous efforts have been devoted to investigating different aspects of NFV, none of them specifically focused on NFV platforms or attempted to explore their design space. In this paper, we present a comprehensive survey on the NFV platform design. Our study solely targets existing NFV platform implementations. We begin with a top-down architectural view of the standard reference NFV platform and present our taxonomy of existing NFV platforms based on what features they provide in terms of a typical network function life cycle. Then we thoroughly explore the design space and elaborate on the implementation choices each platform opts for. We also envision future challenges for NFV platform design in the incoming 5G era. We believe that our study gives a detailed guideline for network operators or service providers to choose the most appropriate NFV platform based on their respective requirements. Our work also provides guidelines for implementing new NFV platforms

    Mobiilse värkvõrgu protsessihaldus

    Get PDF
    Värkvõrk, ehk Asjade Internet (Internet of Things, lüh IoT) edendab lahendusi nagu nn tark linn, kus meid igapäevaselt ümbritsevad objektid on ühendatud infosüsteemidega ja ka üksteisega. Selliseks näiteks võib olla teekatete seisukorra monitoorimissüsteem. Võrku ühendatud sõidukitelt (nt bussidelt) kogutakse videomaterjali, mida seejärel töödeldakse, et tuvastada löökauke või lume kogunemist. Tavaliselt hõlmab selline lahendus keeruka tsentraalse süsteemi ehitamist. Otsuste langetamiseks (nt milliseid sõidukeid parasjagu protsessi kaasata) vajab keskne süsteem pidevat ühendust kõigi IoT seadmetega. Seadmete hulga kasvades võib keskne lahendus aga muutuda pudelikaelaks. Selliste protsesside disaini, haldust, automatiseerimist ja seiret hõlbustavad märkimisväärselt äriprotsesside halduse (Business Process Management, lüh BPM) valdkonna standardid ja tööriistad. Paraku ei ole BPM tehnoloogiad koheselt kasutatavad uute paradigmadega nagu Udu- ja Servaarvutus, mis tuleviku värkvõrgu jaoks vajalikud on. Nende puhul liigub suur osa otsustustest ja arvutustest üksikutest andmekeskustest servavõrgu seadmetele, mis asuvad lõppkasutajatele ja IoT seadmetele lähemal. Videotöötlust võiks teostada mini-andmekeskustes, mis on paigaldatud üle linna, näiteks bussipeatustesse. Arvestades IoT seadmete üha suurenevat hulka, vähendab selline koormuse jaotamine vähendab riski, et tsentraalne andmekeskust ülekoormamist. Doktoritöö uurib, kuidas mobiilsusega seonduvaid IoT protsesse taoliselt ümber korraldada, kohanedes pidevalt muutlikule, liikuvate seadmetega täidetud servavõrgule. Nimelt on ühendused katkendlikud, mistõttu otsuste langetus ja planeerimine peavad arvestama muuhulgas mobiilseadmete liikumistrajektoore. Töö raames valminud prototüüpe testiti Android seadmetel ja simulatsioonides. Lisaks valmis tööriistakomplekt STEP-ONE, mis võimaldab teadlastel hõlpsalt simuleerida ja analüüsida taolisi probleeme erinevais realistlikes stsenaariumites nagu seda on tark linn.The Internet of Things (IoT) promotes solutions such as a smart city, where everyday objects connect with info systems and each other. One example is a road condition monitoring system, where connected vehicles, such as buses, capture video, which is then processed to detect potholes and snow build-up. Building such a solution typically involves establishing a complex centralised system. The centralised approach may become a bottleneck as the number of IoT devices keeps growing. It relies on constant connectivity to all involved devices to make decisions, such as which vehicles to involve in the process. Designing, automating, managing, and monitoring such processes can greatly be supported using the standards and software systems provided by the field of Business Process Management (BPM). However, BPM techniques are not directly applicable to new computing paradigms, such as Fog Computing and Edge Computing, on which the future of IoT relies. Here, a lot of decision-making and processing is moved from central data-centers to devices in the network edge, near the end-users and IoT sensors. For example, video could be processed in mini-datacenters deployed throughout the city, e.g., at bus stops. This load distribution reduces the risk of the ever-growing number of IoT devices overloading the data center. This thesis studies how to reorganise the process execution in this decentralised fashion, where processes must dynamically adapt to the volatile edge environment filled with moving devices. Namely, connectivity is intermittent, so decision-making and planning need to involve factors such as the movement trajectories of mobile devices. We examined this issue in simulations and with a prototype for Android smartphones. We also showcase the STEP-ONE toolset, allowing researchers to conveniently simulate and analyse these issues in different realistic scenarios, such as those in a smart city.  https://www.ester.ee/record=b552551

    Operating policies for energy efficient large scale computing

    Get PDF
    PhD ThesisEnergy costs now dominate IT infrastructure total cost of ownership, with datacentre operators predicted to spend more on energy than hardware infrastructure in the next five years. With Western European datacentre power consumption estimated at 56 TWh/year in 2007 and projected to double by 2020, improvements in energy efficiency of IT operations is imperative. The issue is further compounded by social and political factors and strict environmental legislation governing organisations. One such example of large IT systems includes high-throughput cycle stealing distributed systems such as HTCondor and BOINC, which allow organisations to leverage spare capacity on existing infrastructure to undertake valuable computation. As a consequence of increased scrutiny of the energy impact of these systems, aggressive power management policies are often employed to reduce the energy impact of institutional clusters, but in doing so these policies severely restrict the computational resources available for high-throughput systems. These policies are often configured to quickly transition servers and end-user cluster machines into low power states after only short idle periods, further compounding the issue of reliability. In this thesis, we evaluate operating policies for energy efficiency in large-scale computing environments by means of trace-driven discrete event simulation, leveraging real-world workload traces collected within Newcastle University. The major contributions of this thesis are as follows: i) Evaluation of novel energy efficient management policies for a decentralised peer-to-peer (P2P) BitTorrent environment. ii) Introduce a novel simulation environment for the evaluation of energy efficiency of large scale high-throughput computing systems, and propose a generalisable model of energy consumption in high-throughput computing systems. iii iii) Proposal and evaluation of resource allocation strategies for energy consumption in high-throughput computing systems for a real workload. iv) Proposal and evaluation for a realworkload ofmechanisms to reduce wasted task execution within high-throughput computing systems to reduce energy consumption. v) Evaluation of the impact of fault tolerance mechanisms on energy consumption

    Performance Evaluation of Parallel Haemodynamic Computations on Heterogeneous Clouds

    Get PDF
    The article presents performance evaluation of parallel haemodynamic flow computations on heterogeneous resources of the OpenStack cloud infrastructure. The main focus is on the parallel performance analysis, energy consumption and virtualization overhead of the developed software service based on ANSYS Fluent platform which runs on Docker containers of the private university cloud. The haemodynamic aortic valve flow described by incompressible Navier-Stokes equations is considered as a target application of the hosted cloud infrastructure. The parallel performance of the developed software service is assessed measuring the parallel speedup of computations carried out on virtualized heterogeneous resources. The performance measured on Docker containers is compared with that obtained by using the native hardware. The alternative solution algorithms are explored in terms of the parallel performance and power consumption. The investigation of a trade-off between the computing speed and the consumed energy is performed by using Pareto front analysis and a linear scalarization method

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Modelling and characterisation of distributed hardware acceleration

    Get PDF
    Hardware acceleration has become more commonly utilised in networked computing systems. The growing complexity of applications mean that traditional CPU architectures can no longer meet stringent latency constraints. Alternative computing architectures such as GPUs and FPGAs are increasingly available, along with simpler, more software-like development flows. The work presented in this thesis characterises the overheads associated with these accelerator architectures. A holistic view encompassing both computation and communication latency must be considered. Experimental results obtained through this work show that networkattached accelerators scale better than server-hosted deployments, and that host ingestion overheads are comparable to network traversal times in some cases. Along with the choice of processing platforms, it is becoming more important to consider how workloads are partitioned and where in the network tasks are being performed. Manual allocation and evaluation of tasks to network nodes does not scale with network and workload complexity. A mathematical formulation of this problem is presented within this thesis that takes into account all relevant performance metrics. Unlike other works, this model takes into account growing hardware heterogeneity and workload complexity, and is generalisable to a range of scenarios. This model can be used in an optimisation that generates lower cost results with latency performance close to theoretical maximums compared to naive placement approaches. With the mathematical formulation and experimental results that characterise hardware accelerator overheads, the work presented in this thesis can be used to make informed design decisions about both where to allocate tasks and deploy accelerators in the network, and the associated costs
    corecore