426 research outputs found

    Performances of Weighted Cyclic Prefix OFDM with Low-Complexity Equalization

    No full text
    International audience—In this paper, we justify low-complexity equalization techniques for weighted cyclic prefix (WCP)-OFDM. This modulation technique refers to filter bank based multicarrier (FBMC) transmission system provided with short filters. It allows the use of non-rectangular waveforms in order to mitigate interference caused by time-frequency selective channels while preserving an efficient implementation. Index Terms—Time-varying multipath channels, filter bank based multicarrier modulations, equalization, efficient realization

    Non-rectangular perfect reconstruction pulse shaping based ICI reduction in CO-OFDM

    Get PDF
    In this paper, we propose to increase residual carrier frequency offset tolerance based on short perfect reconstruction pulse shaping for coherent optical-orthogonal frequency division multiplexing. The proposed method suppresses the residual carrier frequency offset induced penalty at the receiver, without requiring any additional overhead and exhaustive signal processing. The Q-factor improvement contributed by the proposed method is 1.6 dB and 1.8 dB for time-frequency localization maximization and out-of-band energy minimization pulse shapes, respectively. Finally, the transmission span gain under the influence of residual carrier frequency offset is ̃62% with out-of-band energy minimization pulse shape

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Low-Complexity Detection/Equalization in Large-Dimension MIMO-ISI Channels Using Graphical Models

    Full text link
    In this paper, we deal with low-complexity near-optimal detection/equalization in large-dimension multiple-input multiple-output inter-symbol interference (MIMO-ISI) channels using message passing on graphical models. A key contribution in the paper is the demonstration that near-optimal performance in MIMO-ISI channels with large dimensions can be achieved at low complexities through simple yet effective simplifications/approximations, although the graphical models that represent MIMO-ISI channels are fully/densely connected (loopy graphs). These include 1) use of Markov Random Field (MRF) based graphical model with pairwise interaction, in conjunction with {\em message/belief damping}, and 2) use of Factor Graph (FG) based graphical model with {\em Gaussian approximation of interference} (GAI). The per-symbol complexities are O(K2nt2)O(K^2n_t^2) and O(Knt)O(Kn_t) for the MRF and the FG with GAI approaches, respectively, where KK and ntn_t denote the number of channel uses per frame, and number of transmit antennas, respectively. These low-complexities are quite attractive for large dimensions, i.e., for large KntKn_t. From a performance perspective, these algorithms are even more interesting in large-dimensions since they achieve increasingly closer to optimum detection performance for increasing KntKn_t. Also, we show that these message passing algorithms can be used in an iterative manner with local neighborhood search algorithms to improve the reliability/performance of MM-QAM symbol detection

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Efficient implementation of filter bank multicarrier systems using circular fast convolution

    Get PDF
    In this paper, filter bank-based multicarrier systems using a fast convolution approach are investigated. We show that exploiting offset quadrature amplitude modulation enables us to perform FFT/IFFT-based convolution without overlapped processing, and the circular distortion can be discarded as a part of orthogonal interference terms. This property has two advantages. First, it leads to spectral efficiency enhancement in the system by removing the prototype filter transients. Second, the complexity of the system is significantly reduced as the result of using efficient FFT algorithms for convolution. The new scheme is compared with the conventional waveforms in terms of out-of-band radiation, orthogonality, spectral efficiency, and complexity. The performance of the receiver and the equalization methods are investigated and compared with other waveforms through simulations. Moreover, based on the time variant nature of the filter response of the proposed scheme, a pilot-based channel estimation technique with controlled transmit power is developed and analyzed through lower-bound derivations. The proposed transceiver is shown to be a competitive solution for future wireless networks

    Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has attracted a lot of interest in optical fiber communications due to its simplified digital signal processing (DSP) units, high spectral-efficiency, flexibility, and tolerance to linear impairments. However, CO-OFDM’s high peak-to-average power ratio imposes high vulnerability to fiber-induced non-linearities. DSP-based machine learning has been considered as a promising approach for fiber non-linearity compensation without sacrificing computational complexity. In this paper, we review the existing machine learning approaches for CO-OFDM in a common framework and review the progress in this area with a focus on practical aspects and comparison with benchmark DSP solutions.Peer reviewe

    “Multicarrier Modulation for Wireless Communication using Wavelet Packets

    Get PDF
    Success of OFDM has proved that Multi carrier modulation is an efficient solution for wireless communications. Wavelet Packet Modulation (WPM) is a new type of modulation for transmission of multicarrier signal on wireless channel that uses orthogonal wavelet bases other than sine functions. Though this modulation is over all similar to that of OFDM, it provides interesting additional features. In this thesis, a detailed study is given on Wavelets and WPM and the BER performance comparison between the OFDM systems and WPM systems and equalization techniques are analysed. The analysis is done for different types of wavelet generating families, various number of modulations QAM constellation points (16 to 64), and simulated over AWGN channel, and other Multipath fading channels

    Turbo equalization with cancellation of nonlinear distortion effects for CP-Assisted and Zero-Padded MC-CDMA signals

    Get PDF
    We consider MC-CDMA schemes, with reduced envelope fluctuations. Both CP-assisted (cyclic prefix) and ZP (zero-padded) MC-CDMA schemes are addressed. We develop turbo FDE (frequency-domain equalization) schemes, combined with cancelation of nonlinear distortion effects. The proposed turbo receivers allow significant performance improvements at low and moderate SNR, even when the transmitted signals have reduced envelope fluctuations

    Design and performance evaluation of turbo FDE receivers

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresIn recent years, block transmission techniques were proposed and developed for broadband wireless communication systems, which have to deal with strongly frequency-selective fading channels. Techniques like Orthogonal Frequency-Division Multiplexing (OFDM)and Single Carrier with Frequency Domain Equalization (SC-FDE) are able to provide high bit rates despite the channel adversities. In this thesis we concentrate on the study of single carrier block transmission techniques considering receiver structures suitable to scenarios with strongly time-dispersive channels. CP-assisted (Cycle Pre x) block transmission techniques are employed to cope with frequency selective channels, allowing cost-e ective implementations through FFT-based (Fast Fourier Transform) signal processing. It is investigated the impact of the number of multipath components as well as the diversity order on the asymptotic performance of SC-FDE schemes. We also propose a receiver structure able to perform a joint detection and channel estimation method, in which it is possible to combine the channel estimates, based on training sequences, with decision-directed channel estimates. A study about the impact of the correlation factor estimation in the performance of Iterative Block-Decision Feedback Equalizer (IB-DFE) receivers is also presented
    corecore