688 research outputs found

    Performance study of voice over frame relay : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Information Engineering, Massey University, Albany, New Zealand

    Get PDF
    Frame Relay (FR) represents an important paradigm shift in modern telecommunication. This technology is beginning to evolve from data only application to broad spectrum of multimedia users and potential to provide end users with cost effective transport of voice traffic for intra office communication. In this project the recent development in voice communication over Frame relay is investigated. Simulations were carried out using OPNET, a powerful simulation software. Following the simulation model, a practical design of the LAN-to-LAN connectivity experiment was also done in the Net Lab. From the results of the simulation, Performance measures such as delay, jitter, and throughput are reported. It is evident from the results that real-time voice or video across a frame relay network can provide acceptable performance

    Scaling PULSE Data Center Network Architecture and Scheduling Optical Circuits in Sub-Microseconds

    Get PDF
    PULSE, an optical circuit switched data center network, employs custom ASIC schedulers to reconfigure circuits in 240 ns. The revised PULSE architecture scales to 10,000s blades, achieves >95% sustained throughput, with low median (1.23 µs) and tail (145 µs) latencies, while consuming 115 pJ/bit and costing $9.04/Gbps

    Management, Optimization and Evolution of the LHCb Online Network

    Get PDF
    The LHCb experiment is one of the four large particle detectors running at the Large Hadron Collider (LHC) at CERN. It is a forward single-arm spectrometer dedicated to test the Standard Model through precision measurements of Charge-Parity (CP) violation and rare decays in the b quark sector. The LHCb experiment will operate at a luminosity of 2x10^32cm-2s-1, the proton-proton bunch crossings rate will be approximately 10 MHz. To select the interesting events, a two-level trigger scheme is applied: the rst level trigger (L0) and the high level trigger (HLT). The L0 trigger is implemented in custom hardware, while HLT is implemented in software runs on the CPUs of the Event Filter Farm (EFF). The L0 trigger rate is dened at about 1 MHz, and the event size for each event is about 35 kByte. It is a serious challenge to handle the resulting data rate (35 GByte/s). The Online system is a key part of the LHCb experiment, providing all the IT services. It consists of three major components: the Data Acquisition (DAQ) system, the Timing and Fast Control (TFC) system and the Experiment Control System (ECS). To provide the services, two large dedicated networks based on Gigabit Ethernet are deployed: one for DAQ and another one for ECS, which are referred to Online network in general. A large network needs sophisticated monitoring for its successful operation. Commercial network management systems are quite expensive and dicult to integrate into the LHCb ECS. A custom network monitoring system has been implemented based on a Supervisory Control And Data Acquisition (SCADA) system called PVSS which is used by LHCb ECS. It is a homogeneous part of the LHCb ECS. In this thesis, it is demonstrated how a large scale network can be monitored and managed using tools originally made for industrial supervisory control. The thesis is organized as the follows: Chapter 1 gives a brief introduction to LHC and the B physics on LHC, then describes all sub-detectors and the trigger and DAQ system of LHCb from structure to performance. Chapter 2 first introduces the LHCb Online system and the dataflow, then focuses on the Online network design and its optimization. In Chapter 3, the SCADA system PVSS is introduced briefly, then the architecture and implementation of the network monitoring system are described in detail, including the front-end processes, the data communication and the supervisory layer. Chapter 4 first discusses the packet sampling theory and one of the packet sampling mechanisms: sFlow, then demonstrates the applications of sFlow for the network trouble-shooting, the traffic monitoring and the anomaly detection. In Chapter 5, the upgrade of LHC and LHCb is introduced, the possible architecture of DAQ is discussed, and two candidate internetworking technologies (high speed Ethernet and InfniBand) are compared in different aspects for DAQ. Three schemes based on 10 Gigabit Ethernet are presented and studied. Chapter 6 is a general summary of the thesis

    Impact of N-Policy on Quality of Service for Energy Efficient Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted attention from both academia and industry since the late 90\u27s. Recent advancements in the technology of microelectromechanical systems (MEMS), the fields of digital electronics, and in wireless communication have resulted in the reductions of both the size and cost of sensor nodes. Even so, there are still some constraints on the performance of WSNs. The two most important constraints are the limited power supply in the sensor nodes and the difficulty in recharging or replacing their batteries. Therefore, reducing the energy consumption of Pensor nodes and optimizing the lifetime of WSNs are crucial. Wireless sensor networks have explored many new protocols, various approaches have been taken to design energy-efficient wireless sensor networks (EEWSNs). In this work, we conducted research on a packet queueing management model that offers different quality of services for packets coming from different sources. This model also incorporate N-policy to minimize excessive switching of transmission radio to conserve battery energy. In our daily life, we often experience waiting in a queue to receive some kind of service. Some customers do not join the queue at the end like other normal customers, and try to cut in the queue hoping to have a shorter waiting time and a higher level of satisfaction. This behavior is called customer interjection. First-come- first-served (FCFS) service discipline is usually assumed in public places like restaurants, banks, airports, and supermarkets. However, customer interjections can still be seen in these places. These interjections can affect the waiting time of other customers in queue. Such interjections may reduce the waiting time of interjecting customers, but increase the waiting time and of others. To control a queueing system, implementing a priority mechanism is a sensible approach. For example, at the airport, customers are categorized in to VIP and general customers. VIP customer has shorter lines and tailored services where as general customer usually stand in line longer and process takes longer to finish too. Priority queue management becomes more important in telecommunication systems also in computer systems (e.g. operating systems) they have been exploited for a long time. Priority queueing control is also used in other production practices. In this research we proposed a queue management model that has a priority queue and a normal queue at the same time. Our proposed model will service priority packets first then turn around to process normal packet until both queues are empty then turn off the radio. This seemingly simple design yields a complex set of balance equations. After solving all the equations with the help of probability generating functions we got the expected queue length for two queues

    Ultra-reliable Low-latency, Energy-efficient and Computing-centric Software Data Plane for Network Softwarization

    Get PDF
    Network softwarization plays a significantly important role in the development and deployment of the latest communication system for 5G and beyond. A more flexible and intelligent network architecture can be enabled to provide support for agile network management, rapid launch of innovative network services with much reduction in Capital Expense (CAPEX) and Operating Expense (OPEX). Despite these benefits, 5G system also raises unprecedented challenges as emerging machine-to-machine and human-to-machine communication use cases require Ultra-Reliable Low Latency Communication (URLLC). According to empirical measurements performed by the author of this dissertation on a practical testbed, State of the Art (STOA) technologies and systems are not able to achieve the one millisecond end-to-end latency requirement of the 5G standard on Commercial Off-The-Shelf (COTS) servers. This dissertation performs a comprehensive introduction to three innovative approaches that can be used to improve different aspects of the current software-driven network data plane. All three approaches are carefully designed, professionally implemented and rigorously evaluated. According to the measurement results, these novel approaches put forward the research in the design and implementation of ultra-reliable low-latency, energy-efficient and computing-first software data plane for 5G communication system and beyond

    In Vitro Techniques to Accelerate Flavonoid Synthesis in some Euphorbiaceae Members

    Get PDF
    Intrusion detection is the process of monitoring the events occurring in a computer system or network and analyzing them for signs of possible incidents, which are violations or imminent threats of violation of computer security policies, acceptable use policies, or standard security practices. An intrusion detection system (IDS) monitors network traffic and monitors for suspicious activity and alerts the system or network administrator. It identifies unauthorized use, misuse, and abuse of computer systems by both system insiders and external penetrators. Intrusion detection systems (IDS) are essential components in a secure network environment, allowing for early detection of malicious activities and attacks. By employing information provided by IDS, it is possible to apply appropriate countermeasures and mitigate attacks that would otherwise seriously undermine network security. However, current high volumes of network traffic overwhelm most IDS techniques requiring new approaches that are able to handle huge volume of log and packet analysis while still maintaining high throughput. Hadoop, an open-source computing platform of MapReduce and a distributed file system, has become a popular infrastructure for massive data analytics because it facilitates scalable data processing and storage services on a distributed computing system consisting of commodity hardware. The proposed architecture is able to efficiently handle large volumes of collected data and consequent high processing loads using Hadoop, MapReduce and cloud computing infrastructure. The main focus of the paper is to enhance the throughput and scalability of the IDS Log analysi

    Hospital Network Infrastructure: a Modern Look Into the Network Backbone with Real Time Visibility

    Get PDF
    For the purposes of this research, the design science discipline of Information Systems will structure the overall methodology and framework for results. By leveraging the design science framework, this study will dissect and analyze various parts of a hospital\u27s network, to uncover substandard practices and problematic weaknesses that commonly result in an overall decrease in the quality of healthcare provided to patients, and negatively affect business operations of hospitals and healthcare facilities. For the purposes of this research the chosen hospital will be categorized as Mid-Western Hospital. This thesis will investigate, in a real world healthcare organization, fault management technologies in the network design using Dual-MAN architecture. By analyzing current network bandwidth performance and financial data of a health care organization, as it relates to network connection cost, organizations can improve network performance and save money in the process. Additionally, this thesis will propose possible solutions to help manage large health care organizations\u27 network

    Journal of Telecommunications in Higher Education

    Get PDF
    This Issue: Integrating Networks ATM: It\u27s All That Matters ATM Delivers Voice, Data, Video Cabling the Integrated Network Interview: Robert Collet, Data Services & Network Systems BYU: Striving for Excellence in Telecom Service
    corecore