1,870 research outputs found

    Design of delay insensitive circuits using multi-ring structures

    Get PDF

    Practical advances in asynchronous design and in asynchronous/synchronous interfaces

    Get PDF
    Journal ArticleAsynchronous systems are being viewed as an increasingly viable alternative to purely synchronous systems. This paper gives an overview of the current state of the art in practical asynchronous circuit and system design in four areas: controllers, datapaths, processors, and the design of asynchronous/synchronous interfaces

    On digit-recurrence division algorithms for self-timed circuits

    Get PDF
    The optimization of algorithms for self-timed or asynchronous circuits requires specific solutions. Due to the variable-time capabilities of asynchronous circuits, the average computation time should be optimized and not only the worst case of the signal propagation. If efficient algorithms and implementations are known for asynchronous addition and multiplication, only straightforward algorithms have been studied for division. This paper compares several digit-recurrence division algorithms (speed, area and circuit activity for estimating the power consumption). The comparison is based on simulations of the different operators described at the gate level. This work shows that the best solutions for asynchronous circuits are quite different from those used in synchronous circuits

    Practical advances in asynchronous design

    Get PDF
    Journal ArticleRecent practical advances in asynchronous circuit and system design have resulted in renewed interest by circuit designers. Asynchronous systems are being viewed as in increasingly viable alternative to globally synchronous system organization. This tutorial will present the current state of the art in asynchronous circuit and system design in three different areas. The first section details asynchronous control systems. The second describes a variety of approaches to asynchronous datapaths. The third section is on asynchronous and self-timed circuits applied to the design of general purpose processors

    An Abstraction-Refinement Theory for the Analysis and Design of Concurrent Real-Time Systems

    Get PDF
    Concurrent real-time systems with shared resources belong to the class of safety-critical systems for which it is required to determine both temporally and functionally conservative guarantees. However, the growing complexity of real-time systems makes it more and more challenging to apply standard techniques for their analysis. Especially the presence of both cyclic data dependencies and cyclic resource dependencies makes many related analysis approaches inapplicable. The usage of Static Priority Preemptive (SPP) scheduling further impedes the employment of many "classical" analysis techniques. To address this growing complexity and to be able to give guarantees nevertheless we present an abstraction-refinement theory for real-time systems. We introduce a timed component model that is defined in such a generic way that both real-time system implementations and any kinds of analysis models for such applications can be expressed therein. Thereafter, we devise three different abstraction-refinement theories for the timed component model, exclusion, inclusion and bounding. Exclusion can be used to remove unconsidered corner cases, inclusion allows for the substitution of uncertainty with non-determinism, while bounding permits to replace non-determinism with determinism. The latter enables the creation of efficiently analyzable models that can be used to give temporal or functional guarantees on non-deterministic and non-monotone implementations. We use such abstractions to construct analysis models from concurrent real-time systems with shared resources and SPP scheduling. On these models we apply various analysis techniques, with the goal to increase analysis accuracy. Our first accuracy improvement is achieved by combining the rather coarse state-of-the-art period-and-jitter interference characterization with an explicit consideration of cyclic data dependencies. The interference-limiting effect of such cycles can be exploited even more with an "iterative buffer sizing". Next we replace period-and-jitter with execution intervals, resulting in an even higher accuracy. In our last approach we increase both accuracy and applicability by enabling the support of real-time systems with tasks consisting of multiple phases and operating at different rates. With a modification of this approach we further enable the analysis of applications with multiple shared resources. Finally, we also present the so-called HAPI simulator that is capable of simulating any kinds of concurrent real-time systems with shared resources

    Performance optimization of elastic systems using buffer resizing and buffer insertion

    Get PDF
    Buffer resizing and buffer insertion are two transformation techniques for the performance optimization of elastic systems. Different approaches for each technique have already been proposed in the literature. Both techniques increase the storage capacity and can potentially contribute to improve the throughput of the system. Each technique offers a different trade-off between area cost and latency. This paper presents a method that combines both techniques to achieve the maximum possible throughput while minimizing the cost of the implementation. The provided method is based on mixed integer linear programming. A set of experiments is designed to show the feasibility of the approach.Peer ReviewedPostprint (published version

    Combining computer game-based behavioural experiments with high-density EEG and infrared gaze tracking

    Get PDF
    Rigorous, quantitative examination of therapeutic techniques anecdotally reported to have been successful in people with autism who lack communicative speech will help guide basic science toward a more complete characterisation of the cognitive profile in this underserved subpopulation, and show the extent to which theories and results developed with the high-functioning subpopulation may apply. This study examines a novel therapy, the "Rapid Prompting Method" (RPM). RPM is a parent-developed communicative and educational therapy for persons with autism who do not speak or who have difficulty using speech communicatively.The technique aims to develop a means of interactive learning by pointing amongst multiple-choice options presented at different locations in space, with the aid of sensory "prompts" which evoke a response without cueing any specific response option. The prompts are meant to draw and to maintain attention to the communicative task–making the communicative and educational content coincident with the most physically salient, attention-capturing stimulus – and to extinguish the sensory–motor preoccupations with which the prompts compete.ideo-recorded RPM sessions with nine autistic children ages 8–14years who lacked functional communicative speech were coded for behaviours of interest

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version
    • …
    corecore