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Abstract—Buffer resizing and buffer insertion are two trans-
formation techniques for the performance optimization of elastic
systems. Different approaches for each technique have already
been proposed in the literature. Both techniques increase the
storage capacity and can potentially contribute to improve the
throughput of the system. Each technique offers a different trade-
off between area cost and latency. This paper presents a method
that combines both techniques to achieve the maximum possible
throughput while minimizing the cost of the implementation. The
provided method is based on mixed integer linear programming.
A set of experiments is designed to show the feasibility of the
approach.

I. INTRODUCTION

A. Elastic systems

Elastic systems (ES) offer a simple and elegant approach
to variability tolerance in computation and communication
delays. Thus, ESs may help to cope with the problem of
long global interconnection delays that arises in contemporary
nanotechnology [1].

Elasticity opens the door to a new set of circuit trans-
formations that provide new opportunities for architectural
exploration, trading-off area, delay and power. A key aspect
of elastic systems is that they accept a set of valid transforma-
tions that preserve the circuit behavior regardless the timing
characteristics of its components.

Traditionally, two main categories of circuits have been
defined regarding the synchronization scheme of their com-
ponents: asynchronous and synchronous systems. Elasticity is
a general term that refers to both categories. In both cases,
the components interact with pairs of handshake signals that
exchange bidirectional information related to the validity of
the data or the back-pressure of the pipelines.

In asynchronous circuits, the handshake signals are usually
called request and acknowledge. In synchronous circuits these
signals are usually called valid and stop1. A specific theory for
synchronous elastic circuits was initially presented in [2], coin-
ing the term latency-insensitive systems. The theory presented
in this paper covers both, synchronous and asynchronous ESs,
without making an explicit distinction between them.

An ES is guaranteed to work correctly regardless of the
computation and communication delays of their components.
A computational node produces new valid output data only

1To be more precise, the stop and acknowledge signals have inverse
semantics.
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Figure 1. A simple elastic system.

when every input is valid and every output is ready to accept
them.

Figure 1 shows an example of a simple ES with three
computational nodes N1, N2 and N3, connected via elastic
buffers. The value of the request signal is represented by the
rhombus attached to each buffer. When the request signal is
asserted, we say that the buffer stores tokens (valid data),
otherwise it stores bubbles (non-valid data). If some of the
inputs of a node are valid while others are not, the node
must inform its inputs to keep the same valid data until all
inputs become valid. For instance, node N3 in Fig. 1 must
inform its input buffer R2 to maintain the data until it has
been consumed. In this case, R2 is said to be stopped because
of the back-pressure [3], [4]. The backward communication
between nodes is implemented by the acknowledge signal. In
Fig. 1, the value of the acknowledge signal is represented in
the circle attached to each buffer.

This paper will not discuss the different handshake protocols
for ESs, either asynchronous or synchronous. For specific
implementations of these protocols, the reader can look at the
specialized literature, e.g., [2], [5], [6].

B. Back-pressure and buffers
Back-pressure may be produced by several reasons:
• The environment is not ready to accept more tokens, thus

stopping the ones coming from the system.
• The environment is not producing tokens and, thus, the

nodes waiting for the tokens must stop the inputs already
available in other channels.
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Figure 2. Buffer resizing: The capacity of the buffer is resized from 2 to 4.
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Figure 3. Buffer insertion: A new buffer with capacity 2 is inserted.

• Mismatches in the arrival time of tokens produced by the
internal nodes to the inputs of join nodes.

Given that the behavior of the environment cannot be
changed when designing a system, we focus our attention to
reducing the performance losses coming from the third cause,
i.e. mismatches in arrival times to join nodes.

This problem arises when the system has unbalanced fork-
join paths. This is known as the slack matching problem [7],
[8]. Buffer resizing (Fig 2) and insertion (Fig 3) are tech-
niques aiming at balancing fork-join paths to improve system
performance.

There are differences between both techniques that make
necessary to explore different trade-offs to solve the slack
matching problem. In a first simplistic view, buffer resizing
increases the capacity of the buffer but not its latency. Buffer
insertion increases the capacity and the latency.

However, there are subtle aspects that must be taken into
account. The latency of a buffer is not independent of its size.
Even if in the discrete world of synchronous systems it is often
possible to make the simplistic assumption that all buffers have
a 1-cycle delay, it is more realistic to assume that the latency
of a buffer may slightly increase with its capacity. This aspect
will be taken into account in our models.

On the other hand, buffer insertion implies an explicit
increase of latency without modifying the cycle period. Buffer
insertion is also more modular since it does not require to
modify existing buffers in the system and requires a simpler
control logic.

For the previous reasons, buffer insertion is usually pre-
ferred to mitigate the slack matching problem. However, buffer
resizing will be chosen when necessary.

C. Modeling elastic systems

Several performance analysis of ESs can be carried out
using marked graph [9] models which are a subclass of Petri
Nets [10]. In this paper ESs are modeled as a particular class
of marked graphs called back-pressure graph (BPG) [11].

Figure 4(a) shows the BPG of a simple ES. Each com-
putational block is represented as a pair of forward and
backward edges, e.g., (a, b) and (b, a). Forward edges are
depicted as solid lines, backward edges are depicted as dashed
lines. The forward edge delay represents the computational
delay of the block. The backward edge delay represents the
acknowledgement delay of the block. Each edge has associated

a nonnegative delay. Assume that all delays are equal to one,
i.e., it is a synchronous elastic system.

The vertices of the BPG represent fork and join controls.
We assume that their delays are included in the forward and
the backward delays of computational blocks.

Each forward edge has a token (marked with a solid point) if
its corresponding block has a valid data. The number of tokens
in backward edges represents the number of free registers in
the corresponding buffer. Thus, block (d, a) is initialized with
one valid data and has one free register. The block (a, b) has
no valid data. The total number of tokens in the forward and
backward edges of two adjacent nodes is the capacity of the
buffer represented by such edges. The capacity of all buffers
in Fig. 4(a) is 2.

D. Performance of elastic systems

An interesting performance measure of an ESs is its
throughput. The throughput of a ES is the average number
of tokens produced per time unit. The throughput of an ES
is bounded by two quantities: the minimum cycle ratio [12],
[13] and the maximum delay of the edges.

The minimum cycle ratio (mcr) of a BPG is defined as:

mcr = min
a∈A

P
e∈a

T (e)P
e∈a

δ(e) where A is the set of directed cycles of

the BPG, T (e) and δ(e) are the number of tokens and delay
of edge e respectively.

Since a given edge e can produce valid data at most every
δ(e) time units, the throughput of the ES is upper bounded
by 1/δmax where δmax = max

e∈E
δ(e) where E is the set of

edges of the BPG. Thus, the throughput of an ES is equal to

min
{

mcr,
1

δmax

}
[14], [15]. For example, the throughput of

the BPG in Fig. 4(a) if all delays are 1 is equal to 2
3 , and the

cycle giving the mcr is (a, b, c) (it has 2 tokens and the sum
of delays is 3).

E. Buffer resizing

A usual technique to enhance the throughput of an ES is to
increase the buffer capacities (see Fig. 2). Let us, for instance,
resize the buffer of the input (a, c) in Fig. 4(a) from 2 to 3.
This leads to the BPG depicted in Fig. 4(b) whose throughput
is 3

4 with (a, b, c, d) providing the mcr.

F. Buffer insertion

Another technique to enhance the throughput is to insert
empty buffers, which are usually called bubbles, between
computational nodes (see Fig. 3). The BPG in Fig. 4(c) is the
result of inserting one buffer (a, r) in the BPG in Fig. 4(a).
The throughput of the BPG in Figure 4(c) is equal to 3

4 (the
cycles giving the mcr are (a, b, c, d) and (a, r, c, d)) which is
greater than the throughput of the original BPG ( 2

3 ).

G. Related work

Buffer resizing is a well known technique in synchronous
latency insensitive design [4], while it has not been applied
yet in asynchronous design. In [4] a mixed integer linear
programming (MILP) based approach is proposed to maximize
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Figure 4. (a) A back-pressure graph; (b) The capacity of (a, c) is resized to 3; (c) One buffer is inserted in (a, c).

the throughput of latency insensitive systems by using buffer
resizing.

Buffer insertion has a long history in the area of asyn-
chronous design, where it is often called slack matching.
In [16], it is shown that the performance of a self-timed
ring is maximized when it is balanced with respect to the
tokens to bubbles ratio, and a quantitative approach to calculate
such an optimal balance is presented. In [15], a precise
linear approximation for the performance analysis of iterative
computations in self-timed rings is presented. The model is
based on event-rule systems and it is closely related to previous
models based on Petri nets [14], [17]. In [18], an iterative
algorithm for buffer insertion in asynchronous systems is
presented. In [7], [8], algorithms for buffer insertion in choice-
free asynchronous systems are proposed, the algorithms are
based on MILP models.

In [19], a polynomial time heuristics for buffer resizing
was proposed. Moreover, it was observed that the throughput
achievable with the simultaneous use of buffer resizing and
buffer insertion may be greater than the throughput achievable
only with buffer insertion.

H. Motivation and Contribution

Buffer insertion only requires the insertion of empty buffers.
Such buffers can be efficiently implemented using latches [6].
The main drawback of buffer insertion is that it does not
always achieve the same throughput as buffer resizing [19].
A simple BPG that demonstrates this limitation is shown in
Fig. 5: If one token is added to the edge (d, a), i.e., the capacity
of edge (a, d) is increased to 3, the system throughput becomes
4
5 what cannot be achieved by any possible buffer insertion.
The model presented in this paper automatically detects when
buffer resizing is necessary to achieve the maximum through-
put.

Unfortunately, the usage of buffers with non-minimal sizes
(which are required after buffer resizing) increases the com-
plexity of the control logic and consequently its computational
delay.

The main contribution of this paper is a method that com-
bines buffer insertion and buffer resizing for the performance
optimization of ESs. In order to model more realistically ESs,
the proposed method takes into account that the resizing of

b c

e

a d

Figure 5. A BPG for which buffer resizing achieves a better throughput
than buffer insertion.

buffers may entail an increase of the system delays. The solu-
tion of the method achieves the maximum possible throughput
and minimizes the overall cost (area, complexity, etc) of the
implementation.

II. BACKGROUND

This section formalizes the notion of BPG and reviews a
linear programming (LP) formulation to compute the through-
put of a given BPG.

A. Back-pressure graph

Definition 2.1 (BPG): A back-pressure graph
(BPG) is a directed connected bi-weighted graph
B = (V,E, E′, T, δ, C0), where:

• V is the set of vertices.
• E is the set of forward edges.
• E′ is the set of backward edges.
• T : E → N is the initial number of tokens in each forward

edge.
• δ : E ∪ E′ → R+ is the delay of each edge.
• C0 : E → N is the buffer capacity of e, where C0(e) ≥ 2

for every e ∈ E.

A bijection, G : E → E′, exists such that for each
forward edge e = (u, v) its corresponding backward edge
e′ = G(e) verifies e′ = (v, u). The number of tokens in e′ is
C0(e) − T (e) and represents the number of free registers in
the corresponding buffer.
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B. Throughput and minimum cycle ratio
The throughput, Θ, of a BPG is the number of tokens

produced per time unit. The throughput of a given BPG can
be computed using the minimum cycle ratio (tokens to delays)
of the BPG [14], [17]:

Proposition 2.1: Let B = (V,E, E′, T, δ, C0) be a BPG.
The throughput, Θ, of B is:

Θ = min

{
min
a∈A

∑
e∈a

T (e)∑
e∈a

δ(e)
,

1
δmax

}
(1)

where A is the set of directed cycles of B and
δmax = max

e∈E∪E′
δ(e).

A cycle a is called critical if it satisfies Θ =

∑
e∈a

T (e)∑
e∈a

δ(e)
. A

critical cycle can contain both forward and backward edges.
If a critical cycle contains backward edges the throughput of
the system is being constrained by the buffer capacities of the
system, and therefore, it can be improved with buffer resizing
and buffer insertion.

The maximal throughput, Θ∗, that can be achieved by
buffer resizing and buffer insertion for a given BPG is
bounded by the throughput, ΘF , of the corresponding ”for-
ward” graph [11]:

Proposition 2.2: Let B = (V,E, E′, T, δ, C0) be a BPG.
The maximal throughput, Θ∗, that can be achieved by buffer
resizing and buffer insertion satisfies:

Θ∗ ≤ ΘF = min

{
min

a∈AF

∑
e∈a

T (e)∑
e∈a

δ(e)
,

1
δmax

}
(2)

where AF is the set of directed cycles containing only forward
edges of B and δmax = max

e∈E∪E′
δ(e).

Let us now review an LP formulation for the throughput
which is the base of the proposed performance models.

Theorem 2.1: Let B = (V,E, E′, T, δ, C0) be a BPG. The

throughput of B is at least Θg iff Θg ≤
1

δmax
and a function

r : V → R exists such that:
T (e)−Θg · δ(e) ≥ r(v)− r(u),
C0(e)− T (e)−Θg · δ(e′) ≥ r(u)− r(v) ∀ e = (u, v) ∈ E

(3)
where the first constraint applies to each forward edge
(T (e), δ(e)), and the second constraint applies to the corre-
sponding backward edge e′ (C0(e)− T (e), δ(e′)).
Proof: The proof is very similar to the proof of Theorem 1
in [4]. Let T0(e) be the number of tokens in edge e ∈ E ∪E′

of B.
(⇒) Assume that for given constant Θg ≤

1
δmax

there is a

function r s.t. (3) holds. Then for each cycle c:

Σe∈c(T0(e)−Θg · δ(e)) ≥ Σe∈c(r(v)− r(u)) = 0,

Thus,
P

e∈c T0(e)P
e∈c δ(e) ≥ Θg, and, by Proposition (2.1), the through-

put of B is at least Θg .

(⇐) Let us assume that Θ ≥ Θg , and let us construct a
function r such that (3) holds.

By Proposition 2.1, it holds that Θg ≤ mcr(B) where
mcr(B) is the minimal tokens to delay ratio of B.

Let G = (V0, E0,W ) be a weighted directed graph, where
V0 = {s} ∪ V,E0 = E ∪ E′ ∪ {(s, v)|v ∈ V },

W (e) =
{

0, e = (s, v),
T0(e)−Θg · δ(e), otherwise.

The graph G has the same set of directed cycles as B.
The weight of each directed cycle c of G is equal to
Σe∈c(T0(e)−Θg · δ(e)) ≥ 0. Therefore, the shortest path
problem is well defined for G.

Let p(s, v) be a weight of the shortest path in G from s to
v, then set r(v) = p(s, v). There is a path from s to v which
consist from shortest path from s to u and edge e. Thus, for
each edge e = (u, v) the following chain of inequalities holds:
p(s, u) + W (e) = r(u) + T0(e)−Θg · δ(e) ≥ p(s, v) = r(v)
or equivalently T0(e)−Θg · δ(e) ≥ r(v)− r(u). �

By Theorem 2.1, the throughput of a BPG is given by the
solution of the following LP:

maximize : Θ,
subject to:
T (e)−Θ · δ(e) ≥ r(v)− r(u),
C0(e)− T (e)−Θ · δ(e′) ≥ r(u)− r(v)

Θ ≤ 1
δ(e)

, Θ ≤ 1
δ(e′)

∀ e = (u, v) ∈ E

(4)

Efficient solutions exist for LP (4) [20], [21], as well
as other efficient algorithms for the minimum cycle ratio
problem [13]. A remarkable feature of the constraints used
in LP (4) is that they allow us to combine buffer insertion and
buffer resizing in a single MILP.

III. MILP FORMULATIONS

Firstly this section reviews MILP formulations for buffer
resizing and buffer insertion. Then, a single MILP formulation
is proposed to combine both techniques. Finally, a method
based on a binary search is described to search for the
maximum achievable throughput.

A. MILP: Buffer resizing
The capacity of a buffer e in a BPG is determined by C0(e)

which is equal to the sum of tokens in e plus the tokens in
e′. An increase of the capacity of e is expressed in the BPG
as an increase of the number of tokens in e′. For instance, the
buffer in Fig. 6(a) has capacity 2 and the addition of 1 token
to e′ = (v, u) increases its capacity to 3, see Fig. 6(b). The
capacity of a buffer e after resizing is denoted by C(e).

The following model for buffer resizing of ESs takes into
account that an increase of a given buffer capacity entails a
more complex control logic, and in turn an increase of the
corresponding edge delay. Such an increase of the delay is
usually logarithmic with respect to the increase of the capacity,
however, linear approximations work also reasonably well for
small values of the capacity. Let us assume that the buffer
corresponding to edge e is resize from capacity C0(e) to C(e),
then its new delay, δc(e), is:
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Figure 6. (a) Original buffer with capacity 2, i.e., C0(e) = 2; (b) Buffer is
resized to capacity 3, i.e., C(e) = 3.

δc(e) = δ(e) + h · (C(e)− C0(e)) (5)

where h is a real parameter to adjust the linear approximation
of the increase of delay with respect to the increase of capacity.
Obviously, if h = 0 the new delay is independent of the new
capacity.

Capacity dependent delays, δc, can be included in Theo-
rem 2.1 just by replacing δ(e) with δc(e). For instance, for a

given Θg ≤
1

δmax
the minimum sum of capacities that can

achieve Θg can be obtained by solving the following MILP:

minimize :
∑

e∈E

C(e),

subject to:
T (e)−Θg · δc(e) ≥ r(v)− r(u),
C(e)− T (e)−Θg · δc(e′) ≥ r(u)− r(v),
C(e) ∈ N, C(e) ≥ C0(e) for each e = (u, v) ∈ E

(6)
where C0(e) is the initial buffer capacity of the edge e, and
C(e) is a variable determining the new capacity of e. The
MILP (6) is feasible iff Θg is achievable by buffer resizing.
If all delays in (6) are equal to one and h = 0 then (6)
is equivalent to the model for buffer resizing of latency
insensitive systems proposed in [4].

B. MILP: Buffer insertion

In order to describe buffer insertion of a BPG one more
edge weight function is introduced: N : E → N, that specifies
the number of empty pipelined buffers, i.e., bubbles, of each
edge. For example, all the edges of the BPG in Fig. 4(c) have
no pipelined buffers except (a, c), which is pipelined with one
empty buffer (a, r), i.e., N((a, c)) = 1. Figure 7 exemplifies
how the BPG is modified when 2 empty buffers are inserted.

δ(e) δ(e)d f d f

d f d f δ(e’)δ(e’)

(b)(a)

u v u v

Figure 7. (a) Original buffer with capacity 2; (b) Result of inserting 2 empty
buffers, i.e., N(e) = 2, with capacity 2.

After buffer insertion, the number of tokens on the backward
edges from v to u is C(e) − T (e) + Cb · N(e), where Cb is
the capacity of the inserted buffers. For example, Cb = 2
for latency insensitive systems. Let df and db be the forward

and backward delays of the inserted empty buffers. Then, the
overall delay of the forward edges from u to v is δ(e) + df ·
N(e), and the overall delay of the backward edges from v to
u is δ(e′) + db ·N(e).

The use of Theorem 2.1 allows us to design a MILP that
minimizes the number of buffers that must be inserted to
achieve a given throughput Θg ≤

1
δmax

:

minimize :
∑

e∈E

N(e)

subject to:
T (e)−Θg · (δ(e) + df ·N(e)) ≥ r(v)− r(u),
C0(e)− T (e) + Cb ·N(e)

−Θg · (δ(e′) + db ·N(e)) ≥ r(u)− r(v),
N(e) ∈ N, for each e = (u, v) ∈ E

(7)
where N(e) is the number of empty buffers inserted in edge e
(capacity dependent delays, δc, are not considered in (7)
because capacities are kept to their initial values C0). The
MILP (7) is feasible iff Θg is achievable by buffer insertion.
The formulation in (7) is equivalent to the one obtained in [7]
for slack matching in asynchronous design.

C. MILP: buffer resizing and buffer insertion
The described transformations techniques have their own

advantages and disadvantages: buffer resizing might achieve
a higher throughput than buffer insertion but the complexity
of the required logic increases with the size of the computed
capacities; buffer insertion does not increase the complexity
of the control logic but it might achieve a lower throughput.
The MILP proposed in this section aims at combining both
techniques to minimize the cost involved by the implementa-
tion of the solution. The cost can refer to any index related
to the resizing and insertion of buffers, e.g., area required to
resize a buffer (insert a new buffer), complexity of the control
logic required to resize a buffer (insert a new buffer), etc.

In order to combine both techniques, we will make use of
a real parameter α > 0 that represents the ratio of the cost
required to increase in one unit the capacity of a buffer to
the cost required to insert a bubble between two nodes. If
α = 1(α < 1)(α > 1) the cost required to increase in one the
buffer size is assumed to be equal to(less than)(greater than)
the cost to insert one bubble. For instance, if one desires to
minimize the area of the implementation, and the area required
to insert one bubble is half the area required to increase the
capacity of a buffer in one unit, then α must be set to 2. For a

given Θg ≤
1

δmax
the solution of the following MILP provides

simultaneously a resizing and an insertion transformation that
achieves Θg and minimizes the overall cost.

minimize : α ·
∑

e∈E

C(e) +
∑

e∈E

N(e)

subject to:
T (e)−Θg · (δc(e) + df ·N(e)) ≥ r(v)− r(u),
C(e)− T (e) + Cb ·N(e)

−Θg · (δc(e′) + db ·N(e)) ≥ r(u)− r(v),
N(e), C(e) ∈ N, C(e) ≥ C0 for each e = (u, v) ∈ E

(8)
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where C(e) is the capacity of edge e, and N(e) is the
number of empty buffers inserted in edge e. The MILP (8)
is feasible iff Θg is achievable by buffer resizing and buffer
insertion. Notice that even a very high α is chosen, it might
not be possible to achieve Θg just by inserting bubbles (recall
Subsection I-H).

D. Search for the maximum throughput

The use of MILP (8) greatly eases the search for the
maximum throughput, Θ∗, achievable with buffer resizing and
buffer insertion. By Proposition 2.2, Θ∗ is upper-bounded by
ΘF , i.e., Θ∗ ≤ ΘF . On the other hand, Θ∗ is obviously greater
than or equal to the throughput, Θ, of the original BPG which
is given by (1), then Θ ≤ Θ∗ ≤ ΘF .

This way, the interval [Θ,ΘF ] can be taken to perform a bi-
nary search for Θ∗: if (8) is feasible for a given Θ1 ∈ [Θ,ΘF ]
then Θ1 ≤ Θ∗ ≤ ΘF and the interval [Θ1,ΘF ] is taken for the
next search; if (8) is not feasible for Θ1 then Θ ≤ Θ∗ ≤ Θ1

and the interval to be considered is [Θ,Θ1]. This procedure can
be repeated until a satisfactory precision for Θ∗ is obtained.

IV. EXPERIMENTAL RESULTS

A. Generation of BPGs

Two sets of BPGs have been used to evaluate the method
presented in this paper. On the one hand, the ISCAS89 circuits
have been used to extract the underlying graph. On the other
hand, some random graphs have also been generated (from
ge1 to ge10). The tokens, buffer capacities and delays of the
BPGs have been generated as follows:

Initial tokens: Each forward edge e is assigned a token,
i.e., T (e) = 1, with probability 0.9.

Capacities: The initial capacity of each edge e is 2, i.e.,
C0(e) = 2. The capacity of the inserted buffers is 2 as well,
i.e., Cb = 2.

Delays: Each forward delay e is generated randomly, more
precisely, δ(e) is a real number obtained from a random
uniform variable in the interval [1, 3]. The forward delay of
the inserted buffers is 1, i.e., df = 1. All backward delays are
set to 1, i.e., δ(e′) = 1 for each backward edge e′, and db = 1
for the inserted buffers. The dependence of the delay on the
capacity is modeled using Equation (5) with h = 0.5.

In order to test buffer resizing and buffer insertion, every
BPG in Table I satisfies Θ < ΘF , what implies that its
throughput can be improved.

B. Results

For each test case, buffer resizing and buffer insertion
solutions that provide a maximal throughput were obtained by
using the procedure in Subsection III-D. Three different values
of α were used, 6/5, 1, and 5/6, in order to test different
priorities for buffer resizing and buffer insertion.

Table I reports the obtained results. Columns |V | and |E|
are the number of vertices and forward edges respectively.
Column “Θ” is the throughput of the BPG computed with (1).
Column “Θ∗” provides the maximal throughput achieved with
buffer resizing and buffer insertion. Column “ΣN” reports the

number of inserted buffers. Column “Σ∆C” reports the overall
increase of buffer capacities,

∑
e∈E

(C(e)− C0(e)).

Observation 1: In every case, except ge5 and ge6, the
throughput upper bound, ΘF , provided by (2) is achievable,
i.e., Θ∗ = ΘF . For ge5 ΘF = 0.4037 and Θ∗ = 0.4025;
for ge6 ΘF = 0.4653 and Θ∗ = 0.4643, the precision of Θ∗

obtained by the binary search was set to 0.01%. That is, the
increase of delays due to buffer resizing avoids achieving ΘF

only in ge5 and ge6 (notice, however, that ΘF − Θ∗ is very
small in both cases) .

Observation 2: In most cases Θ∗ can be achieved only
by buffer insertion, see columns “ΣN” and “Σ∆C” below
α = 6/5. Only ge1, ge2, ge3, and ge4 require buffer resizing
to achieve Θ∗ (this happens even if arbitrarily high values of
α are considered).

Observation 3: With α = 5/6, Θ∗ is achieved only by
buffer resizing in all cases except in s27, s400 and ge7.
Nevertheless, if α is set to 0.5, i.e., higher cost is given to
buffer insertion, the maximum throughput of s27, s400 and
ge7 is achieved only by buffer resizing with Σ∆C equal to
12, 9 and 10 respectively.

Observation 4: In all cases except s27, s400 and ge7,
it holds that Σ∆C + ΣN keeps the same for any α > 0
(see observation 3). In all cases except ge1, ge2, ge3, and
ge4, the maximum throughput can be achieved with buffer
insertion only (see observation 2). Therefore, in all cases
except s27, s400, ge1, ge2, ge3, ge4, and ge7, if α = 1 then
any interchange of new buffers and capacities achieves Θ∗

with the same cost in (8).
Observation 5: Although MILP problems are NP-complete,

the CPU times spent for the largest test cases ge7, ge8,
ge9 and ge10 were 10, 15, 45 and 540 seconds respectively.
This because only the variables corresponding to cycles with
minimum cycle ratio close to Θ are significant in the objective
function, the rest of variables are set to 0 in the first steps
performed by the solver. The CPU time for the rest of cases
was less than one second.

All the experiments were run on XEON 3.8Gh with 14Gb
RAM. CPLEX [22] was used as MILP solver.

V. CONCLUSIONS

The performance of an elastic system can be enhanced by
using appropriate buffers between computational blocks. The
main system transformations concerning buffers are the resiz-
ing of existing buffers and the insertion of new empty buffers.
Buffer resizing might achieve higher throughput than buffer
insertion, but its implementation is usually more complex than
the insertion of new buffers.

In order to exploit the advantages of both transformations,
a method that combines buffer resizing and buffer insertion
has been proposed. The solution of the method provides
the maximum throughput achievable with buffer resizing and
buffer insertion, and minimizes the cost involved by the
implementation of the resized and new buffers. The model
used along the paper takes into account that the system delays
depend on the capacity of the buffers. As it is shown in the
experimental results, the method is applicable to large systems.
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Table I
EXPERIMENTAL RESULTS

Buffer resizing & buffer insertion
|V | |E| Θ Θ∗ α = 6/5 α = 1 α = 5/6

ΣN Σ∆C ΣN Σ∆C ΣN Σ∆C
s27 31 78 0.2634 0.3399 11 0 11 0 1 10
s298 823 7154 0.0341 0.0383 37 0 37 0 0 37
s349 139 241 0.2110 0.2663 2 0 2 0 0 2
s400 119 273 0.1963 0.2892 8 0 8 0 1 7
s526 145 382 0.1215 0.1835 2 0 2 0 0 2
s641 182 298 0.2062 0.2855 2 0 2 0 0 2
s713 208 350 0.2935 0.3099 1 0 1 0 0 1
s820 183 919 0.1094 0.1320 10 0 10 0 0 10
s832 191 972 0.1181 0.1356 7 0 7 0 0 7
s953 373 704 0.2887 0.3233 15 0 15 0 0 15
s1423 484 942 0.1529 0.1784 1 0 1 0 0 1
s1488 321 1662 0.0716 0.0867 1 0 1 0 0 1
s1494 341 1775 0.0639 0.0911 22 0 22 0 0 22
s5378 1138 2484 0.2204 0.2527 5 0 5 0 0 5
s9234 1023 1992 0.1813 0.2133 3 0 3 0 0 3
ge1 10 30 0.5288 0.5897 3 1 3 1 0 4
ge2 20 50 0.5484 0.5916 2 1 2 1 0 3
ge3 70 100 0.5467 0.5785 2 1 2 1 0 3
ge4 30 100 0.5317 0.6470 6 1 6 1 0 7
ge5 20 100 0.3373 0.4025 1 0 1 0 0 1
ge6 10 30 0.4390 0.4642 1 0 1 0 0 1
ge7 5000 20000 0.0942 0.1250 9 0 9 0 1 8
ge8 10000 50000 0.0662 0.0834 8 0 8 0 0 8
ge9 20000 100000 0.0675 0.0857 10 0 10 0 0 10
ge10 50000 500000 0.0146 0.0220 8 0 8 0 0 8
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