40,086 research outputs found

    Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in Hybrid Tiered-Memories

    Full text link
    Modern computing systems are embracing hybrid memory comprising of DRAM and non-volatile memory (NVM) to combine the best properties of both memory technologies, achieving low latency, high reliability, and high density. A prominent characteristic of DRAM-NVM hybrid memory is that it has NVM access latency much higher than DRAM access latency. We call this inter-memory asymmetry. We observe that parasitic components on a long bitline are a major source of high latency in both DRAM and NVM, and a significant factor contributing to high-voltage operations in NVM, which impact their reliability. We propose an architectural change, where each long bitline in DRAM and NVM is split into two segments by an isolation transistor. One segment can be accessed with lower latency and operating voltage than the other. By introducing tiers, we enable non-uniform accesses within each memory type (which we call intra-memory asymmetry), leading to performance and reliability trade-offs in DRAM-NVM hybrid memory. We extend existing NVM-DRAM OS in three ways. First, we exploit both inter- and intra-memory asymmetries to allocate and migrate memory pages between the tiers in DRAM and NVM. Second, we improve the OS's page allocation decisions by predicting the access intensity of a newly-referenced memory page in a program and placing it to a matching tier during its initial allocation. This minimizes page migrations during program execution, lowering the performance overhead. Third, we propose a solution to migrate pages between the tiers of the same memory without transferring data over the memory channel, minimizing channel occupancy and improving performance. Our overall approach, which we call MNEME, to enable and exploit asymmetries in DRAM-NVM hybrid tiered memory improves both performance and reliability for both single-core and multi-programmed workloads.Comment: 15 pages, 29 figures, accepted at ACM SIGPLAN International Symposium on Memory Managemen

    Reconciling Contemporary Approaches to School Attendance and School Absenteeism: Toward Promotion and Nimble Response, Global Policy Review and Implementation, and Future Adaptability (Part 1)

    Get PDF
    School attendance is an important foundational competency for children and adolescents, and school absenteeism has been linked to myriad short- and long-term negative consequences, even into adulthood. Many efforts have been made to conceptualize and address this population across various categories and dimensions of functioning and across multiple disciplines, resulting in both a rich literature base and a splintered view regarding this population. This article (Part 1 of 2) reviews and critiques key categorical and dimensional approaches to conceptualizing school attendance and school absenteeism, with an eye toward reconciling these approaches (Part 2 of 2) to develop a roadmap for preventative and intervention strategies, early warning systems and nimble response, global policy review, dissemination and implementation, and adaptations to future changes in education and technology. This article sets the stage for a discussion of a multidimensional, multi-tiered system of supports pyramid model as a heuristic framework for conceptualizing the manifold aspects of school attendance and school absenteeism

    Closing the California Clean Energy Divide: Reducing Electric Bills in Affordable Multifamily Rental Housing with Solar+storage

    Get PDF
    This economic analysis indicates that pairing solar PV with battery storage systems can deliver significant electricity bill savings for California affordable housing residents and property owners.Battery storage is emerging as an effective new strategy for reducing electricity costs for affordable multifamily rental housing in California. Battery storage systems not only provide economic returns today, they can also preserve the value of solar in an evolving policy and regulatory environment. Because batteries empower owners of solar photovoltaic (PV) systems to take control of the energy they produce and when they consume it, storage can deliver deeper cost reductions that can be shared among affordable housing owners, developers, and tenants.California has installed numerous integrated solar and battery storage projects; however, few have served lowincome tenants or owners of affordable rental housing. This disparity is due to many factors, including a lack of information about the economics of these systems in multifamily housing. To provide that needed information, Clean Energy Group, California Housing Partnership, and Center for Sustainable Energy, with analytical support from Geli, are embarking on a series of reports on solar and storage in California affordable multifamily rental housing.This first report examines the utility bill impacts of adding battery storage to stand-alone solar in affordable rental housing facilities in California's three investor-owned utility service territories, each with different rate structures. It is the first such report ever completed on these technologies in this sector in California.The report reaches several key conclusions:Under current utility rate tariffs, the combination of solar and storage technologies could virtually eliminate electric bills for many owners of affordable housing properties. Unlike stand-alone solar, which reduces energy consumption expenses but does little to offset demand related charges, a properly sized solar and battery storage system can eliminate nearly all electricity expenses, resulting in an annual electric utility bill of less than a few hundred dollars in some cases.It makes good economic sense today for solar and battery storage to be installed in affordable multifamily rental housing in California. The addition of battery storage to solar improves the economics of each property analyzed across all utility territories, reducing project payback by over three years in some cases.The addition of storage technologies has the potential to nearly double stand-alone solar electricity bill savings at about a third of the cost of solar. For example, the addition of a 112,100batterystoragesystemtoa112,100 battery storage system to a 385,000 solar installation increased savings from 15,000peryearto15,000 per year to 27,900, an 85 percent increase in savings for only a 29 percent increase in cost

    Efficiency and equity considerations in pricing and allocating irrigation water

    Get PDF
    Economic efficiency has to do with how much wealth a given resource base can generate. Equity has to do with how that wealth is to be distributed in society. Economic efficiency gets far more attention, in part because equity considerations involve value judgements that vary from person to person. The authors examine both the efficiency and the equity of different methods of pricing irrigation water. After describing water pricing practices in a number of countries, they evaluate their efficiency and equity. In general they find that water use is most efficient when pricing affects the demand for water. The volumetric, output, input, tiered, and two-part tariff schemes all satisfy this condition and can be efficient although whether efficiency is short-run or long-run, first- or second-best, varies. Pricing schemes that do not directly influence water input -- per-unit areas fees for example -- lead to inefficient allocation. But they are usually easier to implement and administer and require less information. The extent to which water pricing methods can effect income redistribution is limited, the authors conclude. Disparities in farm income are mainly the result of factors such as farm size and location and soil quality, but not water (or other input) prices. Pricing schemes that do not involve quantity quotas cannot be used in policies aimed at affecting income inequality. The results somewhat support the view that water prices should not be used to effect income redistribution because water prices are a poor vehicle for reducing income inequality. But pricing schemes that involve water quota rules can reduce income inequality. The authors demonstrate this with a two-rate tiered pricing scheme combined with equal quotas of the cheaper water.Water Conservation,Environmental Economics&Policies,Water and Industry,Drylands&Desertification,Economic Theory&Research,Town Water Supply and Sanitation,Water Supply and Sanitation Governance and Institutions,Water Conservation,Water and Industry,Environmental Economics&Policies

    Towards a UK local government reform Act of 2015: improving public sector performance for 2025

    Get PDF
    This paper proposes a three tiered governance structure to rebalance local government within the United Kingdom. The introduction of a North of England assembly is proposed to rebalance the North / South divide. An international comparison of U.K. Australian and Canadian public sectors suggests that the U.K lags behind in competitiveness and wellbeing. Calling for equality for all citizens, the paper concludes that a shift in central government policy formulation is needed to enable equitable localisation of political power and improved global competitiveness of the U.K

    A Distributed Approach to Interference Alignment in OFDM-based Two-tiered Networks

    Full text link
    In this contribution, we consider a two-tiered network and focus on the coexistence between the two tiers at physical layer. We target our efforts on a long term evolution advanced (LTE-A) orthogonal frequency division multiple access (OFDMA) macro-cell sharing the spectrum with a randomly deployed second tier of small-cells. In such networks, high levels of co-channel interference between the macro and small base stations (MBS/SBS) may largely limit the potential spectral efficiency gains provided by the frequency reuse 1. To address this issue, we propose a novel cognitive interference alignment based scheme to protect the macro-cell from the cross-tier interference, while mitigating the co-tier interference in the second tier. Remarkably, only local channel state information (CSI) and autonomous operations are required in the second tier, resulting in a completely self-organizing approach for the SBSs. The optimal precoder that maximizes the spectral efficiency of the link between each SBS and its served user equipment is found by means of a distributed one-shot strategy. Numerical findings reveal non-negligible spectral efficiency enhancements with respect to traditional time division multiple access approaches at any signal to noise (SNR) regime. Additionally, the proposed technique exhibits significant robustness to channel estimation errors, achieving remarkable results for the imperfect CSI case and yielding consistent performance enhancements to the network.Comment: 15 pages, 10 figures, accepted and to appear in IEEE Transactions on Vehicular Technology Special Section: Self-Organizing Radio Networks, 2013. Authors' final version. Copyright transferred to IEE
    • …
    corecore