418 research outputs found

    Annual Research Briefs: 1995

    Get PDF
    This report contains the 1995 annual progress reports of the Research Fellows and students of the Center for Turbulence Research (CTR). In 1995 CTR continued its concentration on the development and application of large-eddy simulation to complex flows, development of novel modeling concepts for engineering computations in the Reynolds averaged framework, and turbulent combustion. In large-eddy simulation, a number of numerical and experimental issues have surfaced which are being addressed. The first group of reports in this volume are on large-eddy simulation. A key finding in this area was the revelation of possibly significant numerical errors that may overwhelm the effects of the subgrid-scale model. We also commissioned a new experiment to support the LES validation studies. The remaining articles in this report are concerned with Reynolds averaged modeling, studies of turbulence physics and flow generated sound, combustion, and simulation techniques. Fundamental studies of turbulent combustion using direct numerical simulations which started at CTR will continue to be emphasized. These studies and their counterparts carried out during the summer programs have had a noticeable impact on combustion research world wide

    Local energy transfer theory in forced and decaying isotropic turbulence

    Get PDF

    Local dynamic subgrid-scale models in channel flow

    Get PDF
    The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow

    Variational Multiscale Modeling and Memory Effects in Turbulent Flow Simulations

    Full text link
    Effective computational models of multiscale problems have to account for the impact of unresolved physics on the resolved scales. This dissertation advances our fundamental understanding of multiscale models and develops a mathematically rigorous closure modeling framework by combining the Mori-Zwanzig (MZ) formalism of Statistical Mechanics with the variational multiscale (VMS) method. This approach leverages scale-separation projectors as well as phase-space projectors to provide a systematic modeling approach that is applicable to complex non-linear partial differential equations. %The MZ-VMS framework is investigated in the context of turbulent flows. Spectral as well as continuous and discontinuous finite element methods are considered. The MZ-VMS framework leads to a closure term that is non-local in time and appears as a convolution or memory integral. The resulting non-Markovian system is used as a starting point for model development. Several new insights are uncovered: It is shown that unresolved scales lead to memory effects that are driven by an orthogonal projection of the coarse-scale residual and, in the case of finite elements, inter-element jumps. Connections between MZ-based methods, artificial viscosity, and VMS models are explored. The MZ-VMS framework is investigated in the context of turbulent flows. Large eddy simulations of Burgers' equation, turbulent flows, and magnetohydrodynamic turbulence using spectral and discontinuous Galerkin methods are explored. In the spectral method case, we show that MZ-VMS models lead to substantial improvements in the prediction of coarse-grained quantities of interest. Applications to discontinuous Galerkin methods show that modern flux schemes can inherently capture memory effects, and that it is possible to guarantee non-linear stability and conservation via the MZ-VMS approach. We conclude by demonstrating how ideas from MZ-VMS can be adapted for shock-capturing and filtering methods.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145847/1/parish_1.pd

    The 1999 Center for Simulation of Dynamic Response in Materials Annual Technical Report

    Get PDF
    Introduction: This annual report describes research accomplishments for FY 99 of the Center for Simulation of Dynamic Response of Materials. The Center is constructing a virtual shock physics facility in which the full three dimensional response of a variety of target materials can be computed for a wide range of compressive, ten- sional, and shear loadings, including those produced by detonation of energetic materials. The goals are to facilitate computation of a variety of experiments in which strong shock and detonation waves are made to impinge on targets consisting of various combinations of materials, compute the subsequent dy- namic response of the target materials, and validate these computations against experimental data

    Numerical Simulations of Incompressible Flows in Complex Geometries.

    Get PDF
    A mainly spectral code along with domain-decomposition, a combination that is not widely in use in complex problems, has been developed for the solution of the 3-D unsteady incompressible Navier-Stokes equations. The code uses fully spectral or a combination of spectral-collocation and finite difference approximations and a 3-step splitting time-marching scheme. The developed Poisson solver utilizes matrix diagonalization and incorporates a direct sub-structuring method based on the influence matrix technique. As a first step, laminar and turbulent confined flows were simulated, initially with DNS, then with LES, using a modified Smagorinksi model. The domain-decomposition technique and parallel implementation were tested on the Poisson solver. The study focused on fluid flow phenomena and did not involve chemical reactions. We compared our calculations with numerical experiments performed on turbulent developed channel and pipe flow at Retau = 180. Annular flow, interesting but less popular, was also simulated. Finally we attempted to approach the problem of pipe flow with sudden expansion (confined jet) at low and moderate Reynolds numbers to investigate the ability of the code to handle complex geometries

    Large-eddy simulations of a jet in crossflow using Julia

    Get PDF
    The jet in crossflow (JICF) is a complex flow that has applications in many fields, from pollutant dispersion into air or water to the injection and mixing of fuel in engines. In this thesis, large-eddy simulations, using a stretched-vortex sub-grid model, of a JICF with a non-reactive scalar are performed using a discrete numerical method that is implemented using code written in the computational language Julia. Velocity profiles, trajectories, entrainment, power spectra, turbulent kinetic energy and dissipation of energy are analysed for simulations run at velocity ratios varying between 0.405 and 3.3, crossflow boundary layer thicknesses between 0.28 and 2.06 and Reynolds numbers between 243 and 20500. Simulations are compared to published experimental and simulation-based results, and a full comparison was performed with a simulation provided by Mattner, run on the same computational grid. It was found that the mathematical model used in this thesis performs better at higher velocities and Reynolds numbers. An investigation into the effect of the ratio of average jet inlet velocity to maximum crossflow velocity was performed. It was found that a jet with a higher velocity ratio showed increased penetration into the crossflow. The amount of turbulent kinetic and scalar energy in the system, as well as the amount of dissipation of energy from the system, also increased with velocity ratio. Finally, a comparison of large-eddy simulation (LES) and direct numerical simulation (DNS) of a JICF was performed on the same computational grid for low and moderate Reynolds numbers. At low Reynolds numbers the di↵erences in results between the LES and DNS are minor, although it is not possible to resolve the flow on the computational grid that is used. At moderate Reynolds numbers, above Re = 1 x 10⁴, the differences between the LES and DNS are more pronounced. Deeper jet penetration is seen in the LES than in the DNS, and the distribution of energy in the system is different, with the sub-grid model used in the LES dissipating more energy from the high wavenumber scales.Thesis (M.Phil) -- University of Adelaide, School of Mathematical Sciences, 201
    corecore