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Abstract

The jet in crossflow (JICF) is a complex flow that has applications in many
fields, from pollutant dispersion into air or water to the injection and mixing
of fuel in engines. In this thesis, large-eddy simulations, using a stretched-
vortex sub-grid model, of a JICF with a non-reactive scalar are performed
using a discrete numerical method that is implemented using code written
in the computational language Julia. Velocity profiles, trajectories, entrain-
ment, power spectra, turbulent kinetic energy and dissipation of energy are
analysed for simulations run at velocity ratios varying between 0.405 and 3.3,
crossflow boundary layer thicknesses between 0.28 and 2.06 and Reynolds
numbers between 243 and 20500.

Simulations are compared to published experimental and simulation-based
results, and a full comparison was performed with a simulation provided by
Mattner, run on the same computational grid. It was found that the math-
ematical model used in this thesis performs better at higher velocities and
Reynolds numbers.

An investigation into the e↵ect of the ratio of average jet inlet velocity
to maximum crossflow velocity was performed. It was found that a jet with
a higher velocity ratio showed inreased penetration into the crossflow. The
amount of turbulent kinetic and scalar energy in the system, as well as the
amount of dissipation of energy from the system, also increased with velocity
ratio.

Finally, a comparison of large-eddy simulation (LES) and direct numerical
simulation (DNS) of a JICF was performed on the same computational grid
for low and moderate Reynolds numbers. At low Reynolds numbers the
di↵erences in results between the LES and DNS are minor, although it is
not possible to resolve the flow on the computational grid that is used. At
moderate Reynolds numbers, above Re = 1 ⇥ 104, the di↵erences between
the LES and DNS are more pronounced. Deeper jet penetration is seen in
the LES than in the DNS, and the distribution of energy in the system is
di↵erent, with the sub-grid model used in the LES dissipating more energy
from the high wavenumber scales.

xix
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Chapter 1

Introduction

The jet in crossflow is a complex flow in which a narrow stream of fluid, the
jet, is injected into a larger flow, the crossflow, as shown in Figure 1.1. The
jet can be injected perpendicularly to the crossflow, or at an angle, pointing
either upstream or downstream of the injection point. At su�ciently high
Reynolds number the interaction between them may be turbulent, causing
crossflow fluid close to the jet inlet to be entrained into the jet plume at a
higher rate than would be seen in the equivalent jet injected into stationary
fluid [41]. It is this enhanced mixing ability that makes the jet in crossflow
desirable for use in a number of systems, such as fuel injection in engines and
the dispersal of pollutants from smoke stacks.

Depending on the application, the jet and crossflow can be fluids of dif-
ferent densities. In this thesis we assume that both the jet and crossflow are
fluids of the same density, and that the fluid is incompressible.

Turbulence is characterised by fast and irregular changes in velocity and
pressure, and causes strong three-dimensional vortices to develop within a
fluid flow. Turbulence exists on a wide range of length scales, from large to
extremely small at high Reynolds numbers, and resolving all of these scales
requires a very fine grid. In many applications it is prohibitively expensive,
both in terms of time and computational power, to perform simulations on
such a large grid of points, so, in order to perform simulations in a reasonable
amount of time, models are used to approximate the e↵ect of the smallest
scales of turbulence on the large-scale flow. Models allow for fewer grid points
to be used, so the simulation is considerably less expensive. This method is
known as large-eddy simulation (LES), and models have been developed for
the approximation of the sub-grid stresses and flux.

In this thesis, a discrete numerical method written in the computational
language Julia is used to perform a large-eddy simulation of a jet in crossflow.
Julia is a new open-source language built for both e�ciency and ease of

1
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(a) (b)

Figure 1.1: (a) Diagram and (b) photo displaying vortex types seen in jets
in crossflow. Crossflow direction in (a) is indicated by large arrow, and in
(b) is from left to right. Images reproduced from Kelso et al. [22].

use, with support for code parallelisation, presenting new opportunities for
scientific and mathematical computing.

1.1 Jets in Crossflow

Jets in crossflow have been studied extensively both numerically and exper-
imentally, as they have a wide range of applications across many fields, such
as fuel mixing, pollutant dispersal and the estimation of the impact of vol-
canic ash plumes after an eruption [29]. Jets in crossflow display a number of
interesting vortex structures whose appearance depends on the ratio of the
jet and crossflow velocities, as well as the jet and crossflow velocity profiles.
The crossflow is a free stream flow that can be uniform or non-uniform, and
may have a laminar or turbulent wall boundary layer; here U

max

denotes the
maximum crossflow velocity at the inlet. The jet may be laminar or turbu-
lent when it enters the flow; V

av

denotes the average jet velocity at the jet
inlet. The ratio of the jet and crossflow velocities is quantified by V

av

/U
max

,
and is known as the velocity ratio.

There are a number of methods used to track the trajectory of a jet as
it interacts with a crossflow. One of these methods defines the trajectory as
the streamline starting at the centre of the jet inlet [8, 40]. This streamline
can be calculated either in the full three dimensional domain, or in the plane
that passes through the centre of the jet inlet. In a situation where a scalar
quantity such as concentration enters the flow via the jet inlet, the maximum
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Figure 1.2: Isosurface of enstrophy showing ring vortex folding that leads to
CVP formation.

value of the scalar at each position downstream of the jet can also be used
as a definition of the trajectory, as the scalar in the central region of the jet
will be the least mixed with the surrounding fluid [49]. It has been found
that the trajectory of the jet, once it encounters the crossflow, depends on the
ratio of the velocities of the jet and the crossflow [20, 40], with higher velocity
ratios leading to deeper penetration. The shape of the jet velocity profile can
also a↵ect the depth of penetration, with parabolic profiles penetrating much
further than plug-shaped profiles of the same average jet inlet velocity [40].

A well documented form of vortex that appears in a jet in crossflow is
the counter-rotating vortex pair (CVP), seen in Figure 1.1. These develop
downstream of the jet inlet, and persist far downstream [6]. They are caused
by the interactions in the shear layer between the two flows [22]. Near to
the jet inlet, the shear layer of the jet folds, and rolls up into a vortex ring,
called spanwise rollers by Yuan et al. [59], surrounding the jet [22]. These
vortex rings are deformed by the di↵erent conditions on the upstream and
downstream sides of the jet, and this deformation causes the vortex ring
to fold on the downstream side of the jet, so that the upstream portion of
the vortex ring remains curved around the jet, and the downstream portion
aligns with the direction of the jet [12]. It is this downstream portion that
contributes to the CVP’s development. An example of this vortex folding can
be seen in Figure 1.2. The distance downstream of the jet inlet to which the
CVP persists increases with the velocity ratio [20]. Kamotani and Greber
[21] found that increasing the velocity ratio delayed the formation of the
CVP.
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The trajectory of the CVP, which generally di↵ers from the centreline
trajectory, is also used to investigate the jet in crossflow. The CVP trajectory
is less easily tracked than the centreline trajectory, as the CVP does not begin
immediately when the jet enters the flow, but develops as the jet travels
downstream [6]. Once the CVP develops, its trajectory is defined as either
the line of maximum vorticity within one of the vortices in the pair [17] or
as the line of maximum vertical velocity [6]. Often the line of maximum
vertical velocity is chosen as it is simpler to measure. Penetration of the
CVP is a↵ected by the velocity ratio, V

av

/U
max

, and jet velocity profile in
a similar manner to the jet trajectory [40], however these are not the only
factors that have an e↵ect. The depth of the boundary layer of the crossflow
can also alter the height of the CVP trajectory. A thin boundary layer has
more momentum close to the jet injection nozzle, which causes the jet to
bend earlier, and the CVP to develop closer to the lower wall [6].

Other types of vortices identified by Kelso et al. [22] in their flow visu-
alisation experiments include horseshoe vortices that surround the upstream
side of the jet inlet, ring-like vortices that shed from the near field shear
layer, and streamwise wall vortices and vertical shedding vortices that ap-
pear beneath the downstream side of the jet. All of these vortices contribute
to the mixing properties of the system.

Wegner et al. [56] investigated the relationship between the angle of the jet
with respect to the crossflow and the extent to which the two fluids mixed,
using large-eddy simulation with a Smagorinsky turbulence model [28] to
model the sub-grid turbulence and an eddy-viscosity model for the sub-grid
flux. The large-scale flow was simulated using a finite volume method for
the spatial derivatives, and a second-order Crank–Nicholson scheme for the
temporal integration. They found that the flows mixed more e↵ectively, and
in a shorter distance, for jets inclined more strongly against the direction
of the crossflow. This more e↵ective mixing was caused by the stronger
shear between the two flows, which led to stronger vortices forming, and
thus more entrainment of the crossflow fluid into the jet. An inclined gas
phase sonic jet entering a supersonic turbulent crossflow was also investigated
by Ferrante et al. [18], using large-eddy simulation with the stretched-vortex
sub-grid model. Di↵erent methods of producing turbulent inflow conditions
were compared, and it was found that synthetic turbulence constructed from
a modified version of the method given by Le et al. [27] produced large
amounts of turbulent kinetic energy closer to the jet inlet than either single
mode forcing or a non-turbulent inflow condition. Cutler [13] found that
the decay of concentration on the jet centreline increased with velocity ratio,
indicating increased mixing.
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1.2 Problem Statement

We consider a constant density incompressible jet in crossflow, where the jet
enters the domain perpendicular to the crossflow, as shown in Figure 1.1.
We investigate the influence of the ratio of average jet velocity to maximum
crossflow velocity on characteristics of the flow, such as the trajectory, power
spectra and dissipation. Large-eddy simulation (LES) is used to model the
sub-grid scale stresses and flux, and results of these simulations are compared
to equivalent direct numerical simulations (DNS) on the same grid to ascer-
tain the e↵ect of the LES model. Both low and medium Reynolds numbers
are considered.

1.2.1 Simulation Domain

The simulation domain, shown in Figure 1.3, is a rectangular prism. The
x-direction is the streamwise direction, that is the direction of the crossflow.
The y-direction is the transverse direction, and the z-direction is the cross-
stream direction. The components of velocity in the x-, y-, and z-directions
are u, v, and w respectively. The crossflow enters the region at x = �5L and
exits at x = 15L, where L is the diameter of the jet, while the jet enters the
region at (x/L, y/L, z/L) = (0, 0, 0). The two side boundaries, at z = ±5L,
have periodic boundary conditions, which results in the simulation actually
being of an infinite array of cloned jets, rather than a single jet. The height
and width of the domain have been set to 10 times the diameter of the jet
so that the jet does not come into contact with the top wall or either of the
side boundaries.

1.2.2 Governing Equations

The motion of a constant density incompressible fluid is governed by the
incompressible Navier–Stokes equations,

@u
i

@t
+ u

j

@u
i

@x
j

= �1

⇢

@P

@x
i

+ ⌫
@2u

i

@x
j

@x
j

, (1.1)

and the continuity equation,
@u

i

@x
i

= 0, (1.2)

presented using Einstein notation, where repeated indices imply summation,
and where x

i

is the i-th coordinate in a Cartesian coordinate system, u
i

is the
velocity in the i-th direction, t is time, P is pressure, ⇢ is density, and ⌫ is the
kinematic viscosity. Equation (1.1) ensures conservation of momentum, while
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Figure 1.3: Simulation domain with location and size of jet inlet indicated
by a black circle.

equation (1.2) ensures conservation of mass. In addition to these equations,
a scalar transport equation,

@c

@t
+ u

j

@c

@x
j

= D @2c

@x
j

@x
j

, (1.3)

which conserves the mass of the scalar, is used to track the concentration of
a dye or other non-reactive substance within the fluid. In this equation, c is
the concentration of the scalar and D is the di↵usivity of the scalar. Again,
Einstein summation notation has been used.

1.2.3 Non-Dimensionalisation

Equations (1.1)-(1.3) are non-dimensionalised to extract dimensionless pa-
rameters that define properties of the flow. A set of dimensionless parame-
ters, indicated by stars, are defined as

u⇤
i

=
u
i

V
av

, x⇤
i

=
x
i

L
, P ⇤ =

P

V 2

av

⇢
, t⇤ =

t

T
, c⇤ =

c

C
,

where V
av

is the average jet velocity at the inlet, L is the diameter of the jet,
C is the concentration of the scalar at the jet inlet, assumed to be constant,
and T = L/V

av

is the characteristic time scale. With these scalings, equations
(1.1)-(1.3) become

@u⇤
i

@t⇤
+ u⇤

j

@u⇤
i

@x⇤
j

= �@P ⇤

@x⇤
i

+
1

Re

@2u⇤
i

@x⇤
j

@x⇤
j

, (1.4)
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@u⇤
i

@x⇤
i

= 0, (1.5)

@c⇤

@t⇤
+ u⇤

j

@c⇤

@x⇤
j

=
1

Pe

@2c⇤

@x⇤
j

@x⇤
j

, (1.6)

where Re = V
av

L/⌫ is the Reynolds number, and Pe = V
av

L/D is the Péclet
number. We use the Reynolds number as a guide to determine whether the
flow is turbulent or laminar. Dimotakis [15] found that a Reynolds num-
ber, defined as it is here, of approximately 1 � 2 ⇥ 104 marked a transition
to a fully developed turbulent flow, independent of the flow geometry. The
Péclet number is used to determine whether advection or di↵usion dominate
the transport of the scalar. A Péclet number greater than 1 indicates that
advection dominates, and a Péclet number of less than 1 indicates that dif-
fusion dominates. The Péclet number can also be written as Pe = Re ⇥ Sc,
where Sc = ⌫/D is the Schmidt number, the ratio of momentum di↵usivity
to mass di↵usivity. In this thesis the Schmidt number is fixed at 0.7 for
all simulations, which is typical of gas-phase mixing, and the e↵ect of the
Reynold number is investigated.

From this point forward, the asterisks will be dropped from the dimen-
sionless variables.

1.2.4 Boundary Conditions

Boundary conditions for velocity and scalar concentration at the inlet, x =
�5, outlet, x = 15, and upper and lower walls, y = 0 and y = 10, are specified
below. The final two boundaries, z = ±5, are periodic in both velocity and
scalar concentration.

Velocity Conditions

At the crossflow inlet, x = �5, Dirichlet boundary conditions are specified
for all three components of velocity. The velocities in the y and z directions
are set to zero, while u is given the velocity profile,

u(�5, y, z) = U
in

(y) = U
max

�
1� e�

10y
d

�
, (1.7)

as shown in Figure 1.4. This profile has an artificial boundary layer near
y = 0 whose thickness is determined by the parameter d. For y � d the
profile has u ⇡ U

max

, including the upper wall at y = 10, which is well
beyond the boundary layer. The boundary layer was chosen on the lower
wall to remove the numerical discontinuity between the streamwise velocity
on the lower wall and that within the jet inlet.
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Figure 1.4: Crossflow inlet profile, U
in

(y)

At the outlet, it is desirable for flow structures to be removed smoothly
from the simulation region. In order to achieve this, an advective outlet
condition is used [43]. The form of this condition is:

@�

@t
� �

@�

@x
= 0, (1.8)

where � is any component of velocity, and � is a constant. In these simula-
tions � is chosen to be the free stream velocity of the crossflow, U

max

.
The upper and lower walls of the simulation region are solid, and do

not allow any material to pass through them. As such, at these boundaries
v = 0. Conditions on the other two components of velocity at this boundary
are determined to enforce the no-slip condition on the walls. The no-slip
condition is that u = w = 0 on these walls.

Dirichlet boundary conditions are also applied at the circular jet inlet. A
circular Poiseuille profile, defined by the radial distance r from the centre of
the jet inlet, is used at the jet inlet. The radially symmetric velocity profile
over the jet inlet is given as

V
jet

= 2
�
1� 4r2

�
, r  1

2
. (1.9)

This allows the average jet velocity over the inlet to be calculated as

V
av

=

R 1
2
0

V
jet

r dr
R 1

2
0

r dr
= 8

Z 1
2

0

V
jet

r dr, (1.10)

Which for the defined V
jet

gives unit dimensionless average jet inlet ve-
locity, which is desirable. The shape is shown in Figure 1.5.
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Figure 1.5: Poiseuille jet profile

Scalar Conditions

At the crossflow inlet, the scalar concentration is set to zero, as the scalar is
introduced to the domain via the jet. At the outlet, equation (1.8) is used
with � = c to carry the scalar smoothly out of the simulation domain.

The boundary condition for the scalar within the jet inlet is

c(r) = C
max

for r  1

2
, (1.11)

where C
max

is the maximum concentration of the scalar. At all other points
on the upper and lower walls, a no-flux boundary condition,

@c

@y
= 0, (1.12)

is used.

1.2.5 Initial Conditions

Initial conditions for the velocity inside the domain are u(x, y, z) = U
in

(y),
as given in equation 1.7, and v = w = 0. The scalar concentration is also set
to zero everywhere.

1.3 Large-Eddy Simulation

Large-eddy simulation (LES) is a method of simulating turbulent flows that
falls between Reynolds-averaged Navier–Stokes methods (RANS) and direct
numerical simulation (DNS) in terms of both accuracy and computational
expense. RANS involves decomposing each of the velocity components and
the pressure into a temporal mean and a time-dependant fluctuation, and
temporally averaging the resultant equations. It is necessary to use a model
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to approximate the value of terms involving products of fluctuations, such
as those produced by the non-linear terms. This is the least accurate and
least expensive method for simulating turbulence. DNS involves solving the
Navier–Stokes equations numerically on a grid that is fine enough to resolve
all scales of the flow. This is very expensive in terms of both time and
computer power. LES is performed on a grid that is too coarse to resolve all
scales of turbulence. The flow scales that are larger than the grid size are
resolved by the equations, and the sub-grid scales are approximated using a
model. LES is less accurate than DNS as it uses a model to approximate the
smallest scales of the flow, rather than resolving all scales using the Navier–
Stokes equations, however it is less computationally expensive as it does not
require such a fine grid. LES is more accurate than RANS in producing a
time-dependant solution, but RANS is also less computationally expensive
than LES, as it produces a single temporally averaged result, which only
requires the equations to be solved once at each grid point, rather than a
time-dependant series of results requiring the equations to be solved multiple
times.

1.3.1 Modification of the Navier–Stokes Equations

In LES, velocity fields and other quantities are decomposed into large scales
and sub-grid scales using a low-pass filter. The large-scale portion of a vari-
able � is given by

�̄(x, t) =

Z

⌦

G(r,x)�(x� r, t) dr, (1.13)

where a bold variable indicates a vector. The vector x is the vector of Carte-
sian positions and r is a vector of dummy integration variables. The function
G is a low-pass filter. Applying the filter to the Navier–Stokes equations gives
modified versions of equations (1.1) – (1.3),
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where the velocities u
i

and concentration c are replaced with their filtered
counterparts, ū

i

and c̄. A number of di↵erent filters can be used in the
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derivation of a large-eddy simulation scheme, however once the scheme has
been derived the filtered Navier–Stokes equations are independent of the filter
used [47]. Additional terms, marked with the superscript SGS are added to
represent the impact of the small scale turbulence on the flow. In these
equations

⌧SGS

ij

= u
i

u
j

� ū
i

ū
j

(1.17)

is the tensor of sub-grid stresses, and

qSGS

j

= u
j

c� ū
j

c̄ (1.18)

is the vector of sub-grid flux.
Models are used to evaluate these sub-grid terms, while larger scales are

resolved directly using the Navier-Stokes equations. This allows a coarser
grid to be used than is possible for direct numerical simulation, decreas-
ing computational expense. The accuracy of the simulation depends on the
model used to evaluate the sub-grid stresses and other sub-grid quantities.

1.3.2 Sub-grid Models

There are two main types of model used to simulate the sub-grid scales in a
large-eddy simulation, eddy-viscosity models, such as the Smagorinsky model
[48], Dynamic Vreman model [55] or Sigma model [42], and stretched-vortex
models, such as that of Misra and Pullin [37]. Eddy viscosity models use
the resolved rate-of-strain tensor and a characteristic length scale dependent
on the size of the coarse grid in order to calculate the sub-grid stresses.
Other sub-grid quantities such as the turbulent di↵usivity and viscosity are
calculated as functions of the resolved scale velocities [19].

Ghaisas et al. [19] tested a number of di↵erent models on the same prob-
lems and found that the Dynamic Smagorinsky, Stretched Vortex and Sigma
models all showed strong agreement with experimental results, while the Dy-
namic Vreman model was highly inaccurate. When evaluating their stretched
vortex model, Misra and Pullin [37] found that it performed well in modelling
both decaying and forced isotropic turbulence. Using a modification of this
model in a turbulent mixing layer simulation, Mattner [36] found that the
simulation slightly over-predicted quantities such as the degree of mixing
and the variation of composition of the mixed fluid, while still producing a
reasonable solution.

In the stretched vortex model of Misra and Pullin [37] the sub-grid stresses
are written as a function of the sub-grid energy and the orientation of the sub-
grid vortices [37]. This model assumes that the turbulence is homogeneous,
which is not the case in general but, as an approximation of the behaviour of
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the sub-grid scale flow, it is su�cient. Modifications to this model have been
made by others [10, 24, 32, 35, 54], to allow for its application to a wider
range of systems.

The stretched vortex model has been applied to a wide range of turbulent
flow types. Faddy and Pullin performed simulations of a trailing vortex wake,
using direct numerical simulation at low Reynolds numbers and large-eddy
simulation with the stretched vortex model developed by Misra and Pullin
[37] at higher Reynolds numbers [16]. Helical instabilities were visible in both
the DNS and LES simulations. It was shown that the model could produce
up to 70% of the total dissipation in the system, although at longer times this
percentage dropped, indicating that the flow was becoming more resolved.
As suggested by Dimotakis [15], a transition from unsteady to fully turbulent
flow conditions was seen at Re = (1�2)⇥104. Voelkl, Pullin and Chan devel-
oped a physical space version of the stretched vortex model, and tested it on
simulations of both decaying isotropic turbulence and turbulent channel flow
[54]. It was found from the decaying isotropic turbulence simulation that the
model underestimated the sub-grid kinetic energy. The channel flow simula-
tions showed that the model predicted the mean flow velocity profiles very
well at low and moderately high Reynolds numbers, but that there was little
model dissipation and poor turbulence-energy balance close to the walls of
the simulation domain. Away from the walls, the model was shown to predict
these values more accurately. Kosovic, Pullin and Samtaney [24] developed a
stretched-vortex model to be used for simulations of compressible turbulence
and applied it to decaying compressible isotropic turbulence. It was found
that both the total and sub-grid turbulent kinetic energy were satisfactorily
predicted when compared to a direct numerical simulation. Energy spectra
from the large-eddy simulation also showed good agreement with the direct
numerical simulation, although a slight build-up of energy at the highest re-
solved wavenumber was seen at longer simulation times. It was also found
that while the model did allow for backscatter of energy from the sub-grid
scales to the large scales, the amount of backscatter was underestimated.
Matheou and Chung developed a buoyancy-assisted stretched vortex model,
and applied it to the simulation of a number of di↵erent atmospheric bound-
ary layers [10, 32]. Good agreement with both experimental observations
and previous large-eddy simulations without buoyancy assistance was seen,
although the maxima of both statistical vertical velocity variance and turbu-
lent kinetic energy were larger than seen previously. Simulations were also
used to investigate grid convergence of the model. It was found that, for this
particular model, it was necessary for 90% of the turbulent kinetic energy to
be resolved in the large scales to achieve convergence of solutions, whereas
for previous models it was necessary to resolve only 80% of the turbulent
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kinetic energy. It is necessary to reduce the grid size to achieve the increase
in turbulent kinetic energy resolution.

In this work we use the stretched vortex model of Misra and Pullin [37],
with modifications by Mattner [35]. The derivation of the stretched vortex
model is given in Misra and Pullin [37]. In this derivation second-order
structure functions are used in the calculation of a constant term, K

0

"
2
3 ,

which is involved in the definition of the energy spectrum. Mattner used
the local energy balance between the large and sub-grid scales to evaluate
this same term without the need to use structure functions [35]. Mattner’s
method ensures that the energy transfer from the large to the sub-grid scales
matches the energy that is dissipated from the sub-grid scales.

According to the stretched vortex model, the sub-grid scale stress is
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and the sub-grid flux is
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In these equations, �
ij

is the Kronecker delta, ev
i

are the components of a
unit vector aligned with the sub-grid vortex axis, � is the grid spacing and
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where  = ⇡/� is the cuto↵ wavenumber, and �2

⌫

= 2⌫/3|a|, a being a
constant chosen to balance the rate of transfer of energy from the large to
the sub-grid scales with the sub-grid dissipation [35].

1.4 Julia

Julia is an open-source computational language that was released in February
2012. It was developed to address a number of issues surrounding scientific
and mathematical computing. One of these issues is the developer-user di-
vide, due to the underlying code being written at a level too high to be
understood or manipulated by the average programmer. Another is the two
language problem, that is prototyping and debugging a code by a program-
mer using a less powerful but easier to understand language, after which the
code is rewritten in a more powerful language for data manipulation.

It is often thought that there are parts of a computational language that
are for the developers alone, parts that are too complex for a user to un-
derstand or manipulate. The developers of Julia have attempted to shake
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this idea by writing all of the standard Julia library in Julia itself, so it can
be understood as easily by users as developers. As Julia is an open source
language, user modifications and additions are welcome. Even in the first 6
months after its release, a good proportion of new additions to the function
library were provided by “new” users outside of the development team [2],
and this has continued to the present day. Graphical packages that allow the
production of graphs and images have also been developed by users. This
implies that the language is easy to learn and productive, as it aimed to be.

There are two main types of computational languages that are used in
scientific and mathematical computing. The first of these are dynamically
typed languages, such as MATLAB or R. These languages do not require
assigning types to variables, making codes simpler and more convenient to
write. This is good for testing and code development, however the conse-
quence of this simplicity is a slower and less e�cient code that struggles with
large data sets and computationally expensive manipulations. The alterna-
tive to a dynamically typed language is a statically typed language, such as
Fortran or C. In these languages, it is necessary to declare types for all vari-
ables before they are assigned values. While this can result in more complex
code, the prior knowledge of data types allows codes written in these lan-
guages to be more e�cient. Julia attempts to span the divide between these
two language types, with the ease of use of a dynamically typed language
while approaching the e�ciency and performance of a statically typed lan-
guage. It is not necessary to declare the types of variables in Julia, although
it is possible, as the type will be determined by context. Julia’s inbuilt func-
tions have also been developed to take in variables of many di↵erent types,
and evaluate them in the same way, recognising their similarities rather than
their di↵erences. In cases where this is not possible, the type of a variable is
evaluated and the most e�cient algorithm to manipulate data of each type is
used. This allows for the production of a code that is as e�cient as possible
at each step.

Another of Julia’s features which contributes to its e�ciency is its par-
allelisation capability, which has been written into the language from the
beginning. This parallelisation ability has three levels of increasing complex-
ity and e�ciency, parallelisation within a single CPU, multi-threading, where
operations are performed on arrays distributed between multiple CPUs on a
single machine, and distributed memory programming, where arrays are split
between multiple machines, each with multiple CPUs [1]. These methods are
applied using a built in message based multi-processing system that is part
of the standard library of the language [2].

Julia’s e�ciency has been tested against a number of other languages,
both statically and dynamically typed, with execution speeds of a number of
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data manipulations on both scalars and arrays measured and compared to
that of C++. It was found that Julia is not as e�cient as C for many of the
tested operations, but is on par for some, and consistently performs better
than other dynamically typed languages, such as JavaScript and Python [1].
This suggests that the developers claim of it approaching the e�ciency of
statically typed languages is valid.

The community of Julia users has expanded greatly since its public release
in 2012. From the beginning of 2016 until the beginning of 2017 the number
of packages developed for the Julia language increased by 72%, while the
number of downloads of the Julia language increased by 161% [11].

Julia was chosen as the language for this investigation to determine its
usefulness when applied to fluid dynamics simulations. It was also chosen
due to its straightforward code parallelisation process, which could reduce
the computational time necessary to perform simulations. Unfortunately, we
were not able to implement this within the timeframe of the project.

1.5 Thesis Summary

The primary objective of the present work is to produce and validate a code
in the computational language Julia to perform a large-eddy simulation of
a jet in crossflow, using the stretched-vortex sub-grid model. Simulations
produced by this code are used to determine the e↵ect of velocity ratio on
the flow, as well as the e↵ect of the sub-grid model at low and moderate
Reynolds numbers.

In Chapter 2 a detailed description of the numerical methods used is
presented. The numerical methods are tested through the direct numerical
simulation of a Taylor–Green vortex, which has an analytic solution. Visu-
alisations of general flow properties of a jet in crossflow are also presented in
Chapter 2.

In Chapter 3 the code is tested further by comparison of simulation results
to the published results of experimental studies, LES and DNS. An in depth
comparison with an LES performed using di↵erent numerical methods but
the same sub-grid model is also presented.

In Chapters 4 and 5 the results of a number of LES are presented. In
Chapter 4 the Reynolds number and boundary-layer thickness are held con-
stant while the velocity ratio is varied. This is used to investigate the e↵ect
of velocity ratio on flow characteristics such as the jet trajectory, mixing,
spectra and dissipation. It is found that a jet with a higher velocity ratio
will penetrate more deeply into the crossflow, and that at higher velocity
ratios the flow as a whole will contain more energy. In Chapter 5 LES and
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DNS are performed at the same grid resolution for low and high Reynolds
numbers. The e↵ects of the sub-grid model on velocity and scalar concentra-
tion profiles, trajectories and spectra are investigated. It is found that at low
Reynolds number there is little di↵erence between an LES and a DNS, as the
sub-grid scale model switches o↵, and that at higher Reynolds numbers the
sub-grid scale model has a strong impact on the magnitude and distribution
of the energy present in the system.

A summary including conclusions and suggested future work is presented
in Chapter 6.



Chapter 2

Numerical Methods

2.1 Considerations

When using numerical methods to simulate any system, there are a number
of considerations that must be made. A simulation must be a su�ciently
accurate representation of the system, however high accuracy methods of-
ten require a large amount of computational power. It is often necessary to
sacrifice some accuracy in order to have the simulation run in a reasonable
amount of time. It is also important to consider the appropriateness of any
models used for the system in question. For example, a large-eddy simulation
of a flow that interacts closely with a boundary should use a model which
takes boundary e↵ects into consideration. Finally, it is important, particu-
larly for physical systems, that properties such as mass and momentum are
conserved, and that numerical dissipation is kept to a minimum, to ensure
that the simulation is as physically representative as possible.

The size of the error present in a solution produced by a central finite-
di↵erence scheme decreases as the order of the scheme increases. Desjardins
et al. [14] found that, for a number of test cases, moving from second to
fourth order numerical methods provided a large increase in accuracy, while
the increase in accuracy caused by increasing from fourth to sixth order
was significantly smaller. Furthermore, the computational cost was found
to double in each case. A modified wavenumber analysis, in which finite-
di↵erence methods are used to represent the first derivative of an equation
of the form

�(x, t) = eıx, (2.1)

and the resulting formula is rearranged into a form

d�

dx
= ı0eıx, (2.2)

17
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where 0 is the modified wavenumber shown in Figure 2.1 and � is the grid
spacing, can be used to analyse the accuracy of di↵erent numerical approx-
imations of the first derivative. The modified wavenumber is the multiplier
produced by finite di↵erence methods that is equivalent to the wavenumber
that appears in exact di↵erentiation of exponential terms. This form of the
approximation to the derivative would be equivalent to the exact derivative if
0 = . It can be seen that a fourth-order scheme, shown as a blue line with
0� = (4/3) sin(�)�(1/6) sin(2�), captures more of the high wavenumber
region accurately than the second-order scheme, shown as a green line with
0� = sin(�). A sixth order central-di↵erence method, the red line with
0� = (1/30)(45 sin(�) � 9 sin(2�) + sin(3�)), shows further improve-
ment, but the increase is significantly smaller than seen when going from
second to fourth order. Fourier spectral methods, shown as the dashed line
with 0� = �, give the most accurate solutions, and give exact solutions
for exponential equations such as that used here. However, the use of some
spectral methods requires particular conditions, such as periodic boundaries
for Fourier spectral methods, which are not always applicable to the flow
system.

It is also desirable for the finite-di↵erence schemes to conserve not only
mass and momentum but also kinetic energy, particularly for turbulent flows
where numerical dissipation of energy can lead to a reduction in turbulent
characteristics. Morinishi et al. [39] developed a fourth order accurate finite-
di↵erence scheme for solving the Navier-Stokes equations for incompressible
flows which discretely conserves mass, momentum and kinetic energy on a
staggered grid. The staggered grid also prevents zigzagging in the pressure
field, a phenomenon which numerically satisfies conservation of mass in a
way that is not physically possible. This scheme was initially developed only
for constant density flows, however it was extended by Desjardins et al. [14]
to also be applicable to variable density flows.
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Figure 2.1: Modified wavenumber (0) vs wavenumber () for second-order
central-di↵erence (green), fourth order central-di↵erence (blue), sixth order
central-di↵erence (red) and spectral methods (black dashed line). � is the
grid spacing.
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2.2 Spatial Discretisation

We approximate the solution of the Navier–Stokes equations by first discretis-
ing the spatial derivatives, then applying a time-stepping algorithm to track
how the velocities change over time. The physical-space variables are first
transformed into wavenumber-space variables by taking the Fourier trans-
form of all variables in the cross-stream direction. This direction is chosen
as it is assumed to be periodic. The discrete Fourier transform of a function
�(x, y, z, t) is

�(x, y, z, t) =

N

z

2X

n=�N

z

2 +1

�̂(x, y, 2⇡n/`, t)eı(2⇡n/`)z, (2.3)

where �̂ is a Fourier coe�cient, n is the wavenumber, N
z

is the number of
physical-space modes in the z direction or the number of discrete wavenum-
bers, and ` is the length of the domain in the z direction, in this case 10.
From here we will use the substitutions 2⇡n/` =  and

N

z

2X

n=�N

z

2 +1

=
X



(2.4)

for simplicity. In these equations � can be any dependent variable.
Using equation (2.3) the Navier–Stokes equations are rewritten as
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+ ıŵ = 0, (2.8)

@ĉ

@t
+ N̂

c

=
1

Pe

⇣ @2ĉ

@x2

+
@ĉ
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respectively, with N̂
i

and N̂
c

representing the non-linear terms of the Navier–
Stokes and scalar transport equations. The calculation of these terms will be
discussed in section 2.2.5 ahead. The transformation into wavenumber space
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means that only derivatives in the x and y directions are calculated using
finite-di↵erence methods, while derivatives in the z direction are calculated
by spectral methods. All wavenumber based analysis, such as energy spectra,
is also performed in the z direction.

All calculations other than the evaluation of the non-linear terms and the
calculation of the sub-grid stresses and flux are performed on the wavenumber-
space variables. Where necessary, the variables are transformed to physical
space by the application of the inverse Fourier transform.

2.2.1 Discretised Domain and Staggered Grid

When discretising the domain, it was decided that a series of two-dimensional
grid systems, layered in the z direction, rather than a three-dimensional cell
system, would be used for the storage of data. As such, the discretised
domain is made up of a number of xy slices, as shown in Figure 2.2. This
was chosen to remove the need for interpolation in the z direction. In physical
space, the size of the grid used is 200⇥ 100⇥ 100, which is fairly coarse but
was chosen to allow for reasonably fast simulation times. By transforming
from physical-space to wavenumber-space it is possible to reduce the size of
the grid to 200 ⇥ 100 ⇥ 51, as we can discard the slices that pertain to the
negative wavenumbers by assuming that the physical solution to the Navier–
Stokes solution is real, and thus that the Fourier coe�cients of the negative
wavenumber variables will be complex conjugates of those of the equivalent
positive wavenumber coe�cients. This simplifies many calculations, as it is
only necessary to work with the positive wavenumbers.

Within each xy slice, a staggered grid format is used, in which the three
components of velocity are stored at di↵erent points within a cell. As shown
in Figure 2.3 the streamwise component of velocity (u) is located at the centre
of the left and right edges of each cell, while the transverse component (v) is
located at the centre of the upper and lower edges. The cross-stream velocity
(w), along with the pressure (P ) and the scalar concentration (c) is located at
the centre of each two dimensional cell. The staggered grid has been shown
by Morinishi [39] to conserve discrete momentum and energy a priori in a
second-order finite-di↵erence scheme. It also prevents oscillatory solutions
as, when calculating derivatives using a central-di↵erence method, values at
adjacent points are used rather than those at alternate grid points [25].
Using the staggered grid with finite-di↵erence approximations to x and y

derivatives leads to di↵erent terms being evaluated at di↵erent points on the
grid. Interpolation and first derivative calculations lead to a shift of half a
cell in the direction of the operation, while calculating a second derivative
retains the original location of the variable. Locations of common terms
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Figure 2.2: Simulation domain with one slice shaded. For any particular
value of z, in this case z = 0, all data points are located within the indicated
plane.

within a cell are shown in Figure 2.3. Wavenumber-space terms are stored
in the same positions as their physical-space equivalents.
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Figure 2.3: Four staggered grid cells. Positions where di↵erent terms are
calculated are as marked.

2.2.2 Interpolation

When using a staggered grid it is necessary to interpolate some quantities
during operations, so that they are available for computations at locations
other than their ‘home’. A simple, second-order-accurate scheme is used for
these interpolation operations, of the form

�
x

�
x+

�x

2
, y,

�
=

�(x+�x, y,) + �(x, y,)

2
, (2.10)

where the superscript attached to the overline indicates the direction of the
interpolation, in this case the x direction. This operation approximates the
value of � midway between �(x, y,) and �(x+�x, y,). A similar method
can be used to interpolate values in the y direction, indicated by a super-
script y. At no point is it necessary to interpolate in the z direction, as the
grid is not staggered in this direction. It is sometimes necessary to apply
the operation multiple times, in di↵erent directions, to find the value of �
at the position where it is needed. The same operation can be applied to
wavenumber-space variables.

2.2.3 First Derivatives

The first derivative of a variable � in the streamwise direction is evaluated
using a second-order central-di↵erence method, with the discrete approxima-
tion to the derivative indicated by the use of a � rather than a @. In the x
direction, this is

@�

@x
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�x

�
x+

�x

2
, y,

�
=

�(x+�x, y,)� �(x, y,)

�x
. (2.11)
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This method is not location preserving on a staggered grid, and the derivative
is stored at the grid point midway between �̂(x, y,) and �̂(x+�x, y,). A
similar method can be used in the y direction, resulting in a point midway
between �̂(x, y,) and �̂(x, y + �y,). This method of calculating discrete
derivatives can also be applied to wavenumber-space variables as necessary.

2.2.4 Second Derivatives

The second derivative of a variable � in the streamwise direction is calculated
using a second-order central-di↵erence method, with the discrete approxima-
tion to the derivative again represented by a � rather than a @. In the x
direction the discrete derivative is given as

@2�

@x2

⇡ �2�

�x2

�
x, y,

�
=

�(x+�x, y,)� 2�(x, y,) + �(x��x, y,)

�x2

,

(2.12)
which is equivalent to applying the discrete first-order derivative operation
twice. A similar method is used for y direction second derivatives. This
method is location preserving, so it is not necessary to perform any inter-
polation operations on these terms. This method can also be applied to
wavenumber-space variables as necessary.

2.2.5 Non-Linear Terms

The non-linear convective terms, N
i

and N
c

, are calculated in physical space,
then converted to wavenumber space. This is done for e�ciency. Calculation
of the non-linear terms in wavenumber space involves the evaluation of a
double sum, taking N2

z

operations, where N
z

is the number of points in the
cross-stream direction. Converting to and from physical space by way of the
Fast Fourier Transform takes O(N

z

log
2

N
z

) operations each, and in physical
space the multiplication of terms takes N

z

operations. For su�ciently large
N

z

, fewer operations are needed for a physical space calculation.
It is necessary, however, to consider the errors produced when calculating

the non-linear terms in physical space and converting them to wavenumber
space. If discrete Fourier approximations of two functions f(x) and g(x) are
multiplied together, the resulting product is

f(x)g(x) =
X



X

̄

f̂()ĝ(̄)eı(+̄)x (2.13)

where for some values of  and ̄ the value of (+ ̄) will be outside the range
of discrete wavenumbers used, ⇡(�N

z

+2)

`

   ⇡N

z

`

. In wavenumber space
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calculations these wavenumbers are removed from the calculations, however
in transforming the resulting term from physical space to wavenumber space
these high wavenumbers are aliased into lower wavenumbers, within the range
of discrete wavenumbers used [3]. This can lead to numerical instability. To
counteract this, we calculate the convective terms in skew-symmetric form,
as given by Morinishi et al. [39], which has been shown to minimise aliasing
errors [3, 60]. This form of the terms is calculated by taking the average of
the advective and divergence forms of the non-linear terms
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j
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. (2.14)

This form is energy conserving a priori for a fully second-order central-
di↵erence method [39], however it may not be in my hybrid finite-di↵erence
spectral method. Where necessary, cross-stream derivatives are calculated
in wavenumber space before being transformed into physical space to be
used in the following calculations. Streamwise and transverse derivatives are
calculated in physical space. Once the non-linear terms have been calculated,
they are transformed back into wavenumber space before being used in the
solution of the Navier–Stokes equations.

The main complication present in calculating the non-linear terms on a
staggered grid is shifting the component terms to a shared location before
they can be multiplied. The interpolation steps necessary for the calculation
of the advective and divergence forms are described below, along with the
methods of calculating these terms.

Advective Form

Streamwise and transverse derivatives are calculated in physical space using
the method given in section 2.2.3. This produces derivatives that are located
at cell centres or corners, so it is necessary to interpolate the physical velocity
components to the same points using the method given in section 2.2.2. These
interpolated values are then multiplied with the derivatives, and the resulting
values interpolated back to the correct locations.

For example, the streamwise advective term u
j
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is calculated as
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The resulting term, located at the left and right cell edges, is transformed
back into wavenumber space before being used in equation (2.5). Similar
methods can be used to calculate advective terms for the other two directions,
although di↵erent interpolation operations are required.
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Divergence Form

In this form, the components of velocity are first multiplied, then the deriva-
tive of the product is taken. As before, it is necessary to interpolate the
components of physical velocity to a shared position before multiplication,
using the method given in section 2.2.2.

For example, the streamwise divergence term @uu

j
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j

is calculated as
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The resulting term, again located at left and right cell edges, is trans-
formed back into wavenumber space before being used in equation (2.5).
Similar methods can be used to calculate the transverse and cross stream
terms, although di↵erent interpolation operations are required.

2.3 Temporal Integration

2.3.1 Adam–Bashforth–Moulton Predictor-Corrector

The evolution equations (2.5), (2.6), (2.7) and (2.9) are solved by the third-
order, constant timestep, Adam–Bashforth–Moulton (ABM3) scheme [57].
For the model problem

@y

@t
= f(t, y), (2.17)

this is given as
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h
f (⇤) � 2f (n) + f (n�1)

i
, (2.19)

where n is the time step index, �t = t(n+1)� t(n), f (n) = f(y(n), t(n)) and f (⇤)

is the function f evaluated at the point y(⇤).

To use the ABM3 scheme to solve the Navier–Stokes equations and ensure
that the continuity equation is satisfied, we first split the pressure term, and
write equations (2.5) - (2.7) in the form
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Applying the predictor (2.18) to these equations and simplifying gives
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Taking the divergence of the vector (û(⇤), v̂(⇤), ŵ(⇤)) and applying the incom-
pressibility constraint (2.8) gives
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We solve (2.33) subject to the boundary conditons given in section 1.2.4, us-
ing the method that will be described shortly in section 2.5, and substitute
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P
(⇤)

into (2.28) to obtain u(⇤), v(⇤) and w(⇤). This completes the predictor
step.

Applying the corrector, (2.19), and simplifying, gives
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@P

@y
(2.35)

ŵ(n+1) = �
3

� ı�tP (2.36)

where

�
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= û(⇤) +
5�t
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h
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, (2.37)
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i
, (2.39)

and

P =
5

12

h
P

(⇤) � 2P̂ (n) + P̂ (n�1)

i
. (2.40)

Again, taking the divergence and applying the incompressibility constraint
gives

@2P

@x2

+
@2P

@y2
� 2P =

1

�t

⇣@�
1

@x
+

@�
2

@y
+ ı�

3

⌘
. (2.41)

Solving (2.41) subject to the boundary conditons given in section 1.2.4 gives
P , which can be substituted into (2.36) to obtain û(n+1), v̂(n+1) and ŵ(n+1).
This completes the corrector step.

Stability Analysis

To obtain a rough estimate of the stability of our numerical method, we
analyse the stability of the Adam–Bashforth–Moulton predictor corrector by
first applying both steps of this method to the model problem

dy

dt
= �y, (2.42)

giving

y(n+1) = y(n)
⇣
1 +

13

12
��t+

5

8
(��t)2

⌘
+ y(n�1)

⇣ 1

12
��t+

5

24
(��t)2

⌘
. (2.43)
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The solution of the di↵erential equation (2.42) is y(t(n)) = C�n, where � =
e��t. By substituting this solution into (2.43), we arrive at

�2 � �
⇣
1 +

13

12
��t+

5

8
(��t)2

⌘
+
⇣ 1

12
��t+

5

24
(��t)2

⌘
= 0, (2.44)

which has solutions
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⇣
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2
. (2.45)

If the real part of � is positive, |�| > 1, which leads to growth of the error,
and instability. If the real part of � is negative, |�| < 1, so the error decays
and the solution is stable. By investigating the region where |�| = 1, we can
see where solutions are stable and unstable. Figure 2.4 shows the stability
boundary, where |�| = 1. The interior of this region is stable, and the exterior
is unstable.

Figure 2.4: Stability boundary of Adam–Bashforth–Moulton method, for
complex values of ��t.

Approximate stability criteria are obtained by analysing the one-dimensional
advection and di↵usion equations subject to 2⇡-periodic boundary condi-
tions. We also investigate the Fourier transform method of calculating the
derivatives rather than the finite-di↵erence method, because the maximum
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modified wavenumber of the first derivative is higher when using this method,
as can be seen in Figure 2.1, also leading to conservative stability criteria.

For advective stability, we investigate the basic advection PDE,

@u

@t
= �c

@u

@x
, (2.46)

which has c as a positive real constant. Setting u(x, t) = û(t)eix, where  is
the wavenumber, and simplifying, we achieve the form

dû

dt
= �û, (2.47)

where � = �ci. We assume that  is positive without loss of generality. In
Figure 2.4 above, the stability boundary crosses the imaginary axis at ±1.2.
Thus we set

c�t  1.2, (2.48)

where in the worst case,  = N

2

= ⇡

�x

. The condition for advective stability
[38] is that

�
adv.

=
c�t

�x
 1.2

⇡
⇡ 0.38. (2.49)

To investigate the viscous stability condition, we begin with the equation

@u

@t
= ⌫

@2u

@x2

, (2.50)

and substitute in u = ûeix as before. This gives

dû

dt
= �û (2.51)

with � = �2⌫. The stability boundary crosses the real axis at -2.4, so
2⌫�t  2.4. As before, we take the worst case value of  = ⇡

�x

. The viscous
stability condition [38] is that

�
visc.

=
⌫�t

�x2

 2.4

⇡2

⇡ 0.24. (2.52)

At high Reynolds numbers, we expect (2.49) to be the critical constraint.
This is because ⌫ is small. The contstraint (2.52) becomes critical only if �x
is of the same order of magnitude as ⌫, which is not the case here. By exper-
imenting with di↵erent values of �

adv.

it was found that stable simulations
could be run with values as high as 0.3. This gave a good balance between
stability of the numerical method and length of timestep. In my simulations
c is chosen to be 10, to be always larger than the maximum velocity, and
⌫ = V

av

L/Re.
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2.3.2 Euler Method

The scheme given in section 2.3.1 is a multistep method, so it requires that
a di↵erent method be applied at the first time step. In my simulations, the
first timestep is calculated using the Euler method.

The Euler method is

y(1) = y(0) +�tf(y(0), 0) (2.53)

where �t = t(1) � t(0). The application of this method is similar to that of
the predictor step of the Adam–Bashforth–Moulton method, and as such will
not be given here.

2.4 Boundary Conditions

The boundary conditions discussed in section 1.2.4 must be applied on the
boundaries of the discretised domain. The crossflow inlet boundary con-
ditions are simply evaluated on the discrete grid at x = �5, however the
application of other conditions is more complicated, and is discussed below.

2.4.1 Outlet

The advective outlet boundary condition is implemented by applying the
ABM3 predictor-corrector (Euler’s method for the first timestep) to (1.8),
which has the same form in wavenumber space. The spatial derivative in the
streamwise direction is calculated using a backwards di↵erence method, as
using a central-di↵erence method would require points outside of the simu-
lation region. For Euler integration, a variable �̂ at the outlet is updated
by

�̂(n+1)(x
end

, y,) = �̂(n)(x
end

, y,)���t

�x
(�̂(n)(x

end

, y,)��̂(n)(x
end

��x, y,))

(2.54)
where x

end

denotes the outlet boundary position, and � is the free stream
velocity of the crossflow, U

max

.
When �̂ = û the values at the outlet are scaled after the integration step

to ensure that the mass fluxes entering and exiting the simulation region
are equal. This involves multiplying the unscaled streamwise outlet velocity,
û⇤
out

by a scaling coe�cient ↵, such that the final streamwise velocity at the
outlet, û

out

, is given by
û
out

= ↵û⇤
out

. (2.55)
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The scaling coe�cient is given by

↵ =
Q

in

Q⇤
out

=

R
û
in,0

dy +
R
v̂
jet,0

dxR
û⇤
out,0

dy
⇡ �y

P
y

û
in,0

+�x
P

x

v̂
jet,0

�y
P

y

û⇤
out,0

, (2.56)

where Q
in

is the flux into the domain through both the crossflow and jet
inlets, Q⇤

out

is the unscaled flux through the outlet, and û
in

and v̂
jet

are the
streamwise velocity at the inlet and the transverse velocity within the jet inlet
respectively. In the integrals the velocity at the outlet prior to performing the
scaling, here denoted as û⇤, with subscript 0 indicates the Fourier coe�cients
relating to the zero wavenumber, or the mean flow.

2.4.2 No-slip walls

The walls at y = 0 and y = 10 have the condition that u = v = w = 0.
In the staggered grid system v is located on the upper and lower edges of
each cell, so this value can be easily set by overwriting the boundary values
with zeros. However, neither u or w are calculated directly on the boundary,
so we use interpolation to define the value of a ghost point outside of the
simulation region. A ghost point is a point outside of the simulation region
whose value is required for intermediate calculations during the simulation
but is not stored after these calculations are performed. For y = 0 we have

û(x, 0,) =
û(x,��y

2

,) + û(x, �y

2

,)

2
= 0, (2.57)

which rearranges to û(x,��y

2

,) = �û(x, �y

2

,). These values of û outside
of the simulation region can be used to find the values of various derivatives
in the transverse direction. A similar method is used to calculate values of
û outside of the other transverse wall, at y = 10, and ŵ outside of both of
these walls.

2.5 Pressure Correction

In the solution of the Navier Stokes equations as described in section 2.3, it
is necessary to solve

�2P̂

�x2

+
�2P̂

�y2
� 2P̂ =

1

�t

⇣��̂
1

�x
+

��̂
2

�y
+ ı�̂

3

⌘
, (2.58)

or
(A� 2I)P̂ = f̂(x, y,) (2.59)
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The system of equations (2.59) is a system of uncoupled linear systems for
each wavenumber . In these equations,  are the wavenumbers, P̂ is a vector
of elements of the array of pressure values at each , with element P̂ (i, j) of
the pressure array located in P̂(N

x

(j � 1) + i) where N
x

is the number of
grid points in the x direction, f is a vector of elements from the right hand
side of equation (2.58), with elements ordered in the same way as for P̂, and
A is an N

x

N
y

⇥N
x

N
y

matrix.

In the  = 0 case, we set the pressure in the lower left-hand corner of the
pressure array, equivalent to P̂(1), to zero, which fixes the mean pressure.
As the solution requires only the derivatives of P̂ , and not P̂ itself, it does
not matter what value we choose for the mean pressure, so zero was chosen
for simplicity.

On the boundaries, the matrix entries are modified to enforce the bound-
ary conditions on the wall-normal component of velocity. On the upstream
streamwise boundary equation (2.36) becomes

û(n+1)(0, y +
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, (2.60)

where the negative coordinate indicates a value outside of the simulation re-
gion, called a ghost point. For a boundary cell, the discrete second-derivative
of pressure in the x direction is
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The ghost point in (2.61) is eliminated using (2.60), in which case
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Further substituting this into equation (2.58) allows the cancelling of some
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terms, to give
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(2.63)

The discrete x-derivative on the right-hand side of (2.63) has the same
form as it has in the original equation, (2.58), except that the unknown
�̂

1

(0, y + �y

2

,) is replaced by the known values û(n+1)(0, y + �y

2

,). This
substitution is achieved in the code by overwriting the boundary values of
û(⇤) with the specified boundary conditions before the derivative is taken. A
similar method can be used to manage the downstream streamwise bound-
ary, and both of the transverse boundaries. On the corners of the domain,
where both boundary conditions apply, the modification is applied in both
directions simultaneously.

After applying these boundary conditions, we construct the matrix A as
an N

y

⇥ N
y

matrix of N
x

⇥ N
x

matrices, where N
x

is the number of grid
points in the x direction, and N

y

is the number of points in the y direction.
The matrix A is block tridiagonal, with blocks
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2.6 Analysis

2.6.1 Mean Field

Time averages are used to estimate mean quantities. Simulations were first
run without collecting data for a period of 35000 - 42000 timesteps, ap-
proximately long enough for the crossflow to pass through the domain three
times, to allow the transient period of the flow to pass. Velocity and scalar
concentration data were then collected at evenly spaced times, and running
averages of speed and concentration were calculated to confirm that tran-
sience had passed, as shown in Figure 2.5. A separation between collections
of 20 timesteps, for �t ⇡ 1.9⇥ 10�3, was chosen.

The mean field is given by

h�i
T

=
1

t
f

� t
i

Z
t

f

t

i

�(t) dt ⇡ 1

N

NX

n=1

�(n), (2.64)

where � can be a component of velocity or the scalar concentration, t
i

and t
f

are the initial and final times of the period over which � is integrated, which
was 16000 timesteps or a non-dimensional time of approximately 30.4, N is
the total number of data sets used, which was 801, and �(n) is the value of �
at the n-th sample time.

The temporal mean was chosen for the analysis of flow statistics as the jet
in crossflow is an inherently three-dimensional flow, so any spatial averaging
could lead to a loss of spatial information. It is also known that the counter-
rotating vortex pair is most easily visualised in the time-averaged flow [5].

2.6.2 Trajectories

The trajectory of the jet as it is deflected by the crossflow is of interest. Dif-
ferent methods of calculating this trajectory have been suggested, and each
of these methods produces a slightly di↵erent trajectory that can provide in-
formation on di↵erent characteristics of the flow. Trajectories are calculated
from the mean-field data using the methods described below.

Centreline Trajectory

The centreline trajectory of the jet is defined as the streamline that begins
at the centre of the jet inlet. It has been used by Kelso et al. [22], Muppidi
and Mahesh [40] and Yuan and Street [59].

The streamline is calculated using MATLAB’s inbuilt stream3d function.
This function requires that all three components of velocity are calculated
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(a)

(b)

Figure 2.5: Running Averages of (a) speed and (b) concentration at
(x, y, z) = (7.7, 5.9, 0) for Re = 2⇥ 104 and V

av

/U
max

= 2.25.
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at the same position, so it is necessary to interpolate both the streamwise
and transverse components of the mean velocity field to cell centres before
using them as inputs in this function. The stream3d function produces a
three dimensional trajectory, however only the x and y components of the
trajectory are reported in the results, as there is little variation from z = 0.

Concentration Trajectory

The concentration trajectory is defined as the locus of maximum scalar con-
centration. This method is used by Smith and Mungal [49], and the resulting
trajectory is generally quite similar to the centreline trajectory.

This trajectory is calculated by finding the position of maximum concen-
tration in the yz-plane for each value of x downstream of the centre of the
jet inlet. Again, only the x and y components of the trajectory are reported
in the results, as there is little variation from z = 0.

Counter-rotating Vortex Pair Trajectory

The counter-rotating vortex pair (CVP) trajectory shows the location of the
centreline of the counter-rotating vortex pair, and is measured either by the
locus of maximal transverse velocity or the maximal swirling strength of the
flow. Unlike the other two trajectory types, this trajectory does not begin
at the centre of the jet inlet. Instead, it begins slightly downstream, at the
point in the streamwise direction where the swirling strength is largest [62].
The counter-rotating vortex pair trajectory is used by Cambonie et al. [6],
who note that it generally appears lower than, and parallel to, the centreline
trajectory.

In this thesis, this trajectory is calculated by finding the position of max-
imum transverse velocity in the yz-plane for each value of x downstream of
the centre of the jet inlet. As the transverse velocity values are stored on the
upper and lower edges of the staggered grid, while the other two trajectory
types are evaluated at cell centres, there may be a small inconsistency be-
tween the CVP trajectory and the other two trajectories, but the grid is fine
enough to discount this.

2.6.3 Jet Spreading

Jet spreading measures the extent to which the jet entrains fluid from the
crossflow. A small value of scalar concentration, in this case c = 0.05, is used
to plot a contour in each yz-plane, and the maximum height and width of
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the contour is recorded. The wider the jet, the more it has mixed with the
surrounding crossflow.

2.6.4 Spectra

Spectra are calculated to show the distribution and magnitude of energy
in a flow. The stretched vortex model makes the assumption that energy
is proportional to � 5

3 in the inertial subrange, assuming that Re is large
enough. Spectra of turbulent kinetic energy and scalar concentration are
calculated in the cross-stream direction, as this direction is periodic and
Fourier coe�cients are already available because of our numerical method.
At each timestep, the fluctuation from the temporal mean is calculated,

�0 = �� h�i
T

, (2.65)

where � is the scalar concentration, c, or the kinetic energy, 1

2

(u2+ v2+w2),
h�i

T

, is the temporal mean and �0 is the fluctuation in the same.
As the Fourier transform is taken in the cross-stream direction, coe�-

cients are dependent on x, y and t. Spectral density, the amount of energy
present in the system at each wavenumber , given by R̂

�

, is calculated on
the jet centreline trajectory, 7.7 diameters downstream of the jet inlet at
each sample time. This position was chosen to be far enough away from the
inlet for turbulent flow to be developed, while also far enough away from the
outlet to be una↵ected by the outlet boundary conditions. The set of result-
ing spectra is then temporally averaged using the method given in section
2.6.1, and hR̂

�

()i
T

is plotted for positive wavenumbers on a loglog plot for
visualisation.

We expect that the majority of the energy will be located in the low
wavenumbers, and that the energy will drop o↵ as the wavenumbers in-
crease. In an LES simulation using the stretched vortex sub-grid model, at
su�ciently high Reynolds number we would expect the slope of the spectra
to be approximately �5/3 at the higher end of the wavenumber range.

2.6.5 Dissipation

The total dissipation of energy due to turbulence, ", is split into two compo-
nents,

" = "LS + "SGS (2.66)

where "LS is the resolved-scale dissipation and "SGS is the sub-grid scale
dissipation. The resolved-scale dissipation rate is given by [35]

"LS = 2⌫S̄
ij

S̄
ij

, (2.67)
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where
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, (2.68)

in Einstein notation. The sub-grid dissipation is approximated by the rate
at which kinetic energy is transferred from resolved to sub-grid scales [35],

"SGS = �⌧SGS

ij

S̄
ij

. (2.69)

Dissipation is calculated at each point within the simulation domain indi-
vidually, using time-averaged quantities. The ratio of the sub-grid scale
dissipation to the large scale dissipation, "SGS/"LS, can give an indication of
how resolved the flow simulation is at a point within the flow. If the ratio
is greater than one, the sub-grid scale dissipation dominates, indicating that
the turbulence model is active. If the ratio is less than one, the majority of
the dissipation happens in the large scales, and the flow is well resolved on
the computational grid being used. This generally happens at low Reynolds
numbers, where the flow in not necessarily turbulent. At high Reynolds num-
ber, a ratio of less than one would indicate that the turbulence model was
not working properly.

The total dissipation at each point is used to calculate the Kolmogorov
length scale for that point [26],

⌘ =
⇣⌫3

"

⌘ 1
4
. (2.70)

This scale is indicative of the size of the smallest eddies [26]. By comparing
this to the grid size �x, we can determine whether or not all of the eddies
are being resolved.

Both the dissipation ratio, "SGS/"LS, and the Kolmogorov ratio, ⌘/�x,
are plotted as filled contours on the centreplane, z = 0, within the jet plume,
chosen as the region where the scalar concentration, c � 0.05. This allows
the e↵ect of the sub-grid stress model to be visualised in a region that is
expected to be turbulent.

2.6.6 Turbulent Kinetic Energy

In an LES simulation, it is desirable for a minimum of 80% of the turbulent
kinetic energy (TKE) to be resolved on the computational grid [31]. By
calculating both the large scale and sub-grid TKE we can confirm whether
this is achieved in our simulations.

The large-scale TKE is calculated by

K(t) =
1

2
u0
i

(t)u0
i

(t), (2.71)
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where u0
i

is the fluctuation in the velocity, calculated as in equation (2.65).
This calculation is performed at each timestep then averaged over time to
produce the final result. The sub-grid TKE is

KSGS =
1

2
⌧
ii

, (2.72)

calculated from the time averaged values of ⌧
ii

.
To determine what proportion of the energy is resolved by the large scale

solver, we compute the ratio of the resolved scale TKE to the total TKE,
K

rat

= K

K+K

SGS , at all cell centres within the grid. This is plotted as a contour
plot on the centreplane, z = 0.

2.6.7 Vortex identification

Vortices are an important feature of turbulent flows and, in jets in crossflow,
are responsible for much of the entrainment of crossflow fluid into the jet.
Two methods were used to identify the location of vortices within the flow.

The first method is to calculate the vorticity, ! = r ⇥ u, where u is
the vector of velocities, and plot contours or isosurfaces of single vorticity
components to visualise the location of regions with high vorticity. This can
be extended to the enstrophy, !2 = !2

1

+!2

2

+!2

3

, a scalar quantity indicative
of the magnitude of vorticity, irrespective of the direction.

The second method uses Chong et al.’s [9] result that vortices are regions
where the eigenvalues of the velocity gradient tensor, ru, are complex. This
corresponds to regions where the discriminant, �, of the velocity gradient
tensor is positive. For an incompressible flow � is given by
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and
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, (2.75)

in Einstein notation [23]. By plotting isosurfaces of positive � we can see
regions where the eigenvectors of ru are complex, and thus where vortices
are present in the flow.
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2.7 Implementation

The majority of the functions used to produce simulations for this thesis are
written in the computational language Julia. The only exception is the sub-
grid stress and sub-grid flux model, provided by Trent Mattner [34], which
is written in Fortran.

2.7.1 Fourier transform

The Fourier transform is done using the Fast Fourier Transform (FFTW)
algorithm, which is implemented as a built-in set of functions in Julia. We
assume that all flows which are investigated will have only real components,
so we can use the real Fast Fourier Transform, rfft, and its inverse, irfft, to
reduce the size of the arrays used. These functions assume that the Fourier
coe�cients have conjugate symmetry, so it is only necessary to store the
coe�cients for  = 0, ..., Nz

2

, rather than the full range of  = �N

z

2

+1, ..., Nz

2

.
This change means that the arrays of coe�cients are slightly more than half
the size of those that would be produced by the regular fft function, which
allows for a more e�cient solver.

The function rfft has two inputs: an array of physical space values and
a specification of the dimension, or dimensions, of that array on which the
Fourier transform will act. In these simulations, the Fourier transform was
used in the third dimension, corresponding to the z direction. The function
irfft takes three inputs: an array of Fourier coe�cients, the length of the
physical space array in the transformed dimension, and a specification of
the dimension, or dimensions, of that array on which the inverse Fourier
transform will act.

2.7.2 Producing and factorising matrices

The matrices used to solve the pressure Poisson equation, given in section 2.5,
are large and prohibitively expensive to solve in their full state. To reduce
the computational expense to manageable levels, the matrices are produced
and stored in sparse form. The locations and values of non-zero elements
are stored in vectors, and the sparse matrix produced using sparse(I,J,V),
where I and J are the indices at which the value V appears.

To further reduce computational cost, the sparse matrices are factorised
at the beginning of the simulation, and those factorised matrices are used for
the duration of the simulation. This is done by using the inbuilt Julia function
lufact, which performs LU factorisation on two dimensional arrays. A large



42 Chapter 2. Numerical Methods

number of these factorised arrays are necessary, one for each of the non-
negative wavenumbers. For simplicity, all of these two-dimensional factorised
arrays were stored in one three-dimensional array, and called individually as
necessary.

2.7.3 Calling Fortran functions

Julia has an inbuilt function, ccall, which allows calls to functions written
in other languages, particularly C and Fortran. The code written in the
other language must be available as a shared library, and can be called with
or without input variables as necessary.

The four inputs of the ccall function are a function-library pair, which
indicate where the function is located; a tuple of the types of the output
variables; a tuple of the types of the input variables; and a tuple of the input
variables themselves. In the functions used in these simulations the values
of the input variables are modified by the code, rather than being output as
new data, so the second ccall input is given as Void.

2.7.4 Saving Data - HDF5

Data that is used for analysis is saved in the Hierarchical Data Format,
HDF5 [51]. This format allows a large number of arrays to be stored within
a single file, with no limit on the size or type of the array. Arrays from within
the files can be accessed individually by a number of di↵erent programs and
languages. Along with the arrays of concentration and velocity data, arrays
containing metadata such as the viscosity, di↵usivity, boundary conditions
and timestep are saved for reference.

HDF5 files are created and opened using the command
h5open(filename, write status) do file.

The write status can be set to "w" to write new data and overwrite old data;
"r" to only read data without modifying the file; or "r+" to append new
arrays to an already created file. Arrays are written to the opened file using
the command write(filename,directory,array). The file is then closed
using an end. Data can also be quickly read from an HDF5 file using the
command h5read(filename,directory).
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2.8 Comparisons to Known Solutions

In order to determine the accuracy of the numerical solver, a direct numerical
simulation of a two dimensional Taylor–Green vortex, combined with uniform
flow in the third dimension, was performed without the turbulence model
implemented. The two-dimensional Taylor–Green vortex is one of the few
analytic solutions to the Navier–Stokes equations. The exact solution is [50]

u(x, y, z, t) = 1,

v(x, y, z, t) = sin(y) cos(z)e�2⌫t, (2.76)

w(x, y, t, z) = � cos(y) sin(z)e�2⌫t.

The simulation was run on a 2⇡ cubic domain, with 100 grid cells in each
direction, for 10000 timesteps, with U�t

�x

⇡ 0.3, where U is a number larger
than the highest velocity that appears during the simulation, in this case
chosen as U = 2. The viscosity, ⌫, of the flow was set to zero so that the
Taylor–Green vortex did not decay with time. Boundary conditions requiring
no tangential stress,

@u

@y
=

@w

@y
= 0, (2.77)

along with v = 0, were used on the walls at y = 0 and y = 2⇡. These
boundary conditions are consistent with the exact solution. As u and w
are located away from the boundaries on a staggered grid, when a central-
di↵erence method is applied the value of the wall-normal derivative will be
located on the boundary. The boundary condition at y = 0 is implemented
by setting

��̂

�y
(x, 0,) =

�̂(x, �y

2

,)� �̂(x,��y

2

,)

�y
= 0, (2.78)

where � is u or w, yielding �̂(x,��y

2

,) = �̂(x, �y

2

,). The variable at
the ghost point (x,��y

2

,) is substituted as necessary to calculate other
derivatives in the transverse direction. A similar method is used to produce
a ghost point for the value of � outside the other transverse wall, at y =
2⇡+�y. On x = 2⇡ the advective boundary condition specified by equation
(1.8) was used. This outlet condition is consistent with the solution, as
streamwise derivatives of all three components of velocity are zero, and the
solution does not decay with time, leading to a zero temporal derivative.

The initial conditions in three dimensions are given by (2.76) at t = 0,
and are consistent with the boundary conditions at y = 0, y = 2⇡ and
x = 2⇡, as well as at the two periodic boundaries at z = 0, 2⇡. Equation
(2.76) with ⌫ = 0 is also used as the boundary conditionat x = 0 throughout
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Figure 2.6: Average error in u (blue), v (red) and w (black) over time for
Taylor-Green vortex with ⌫ = 0.

the simulation. The uniform flow in u is equivalent to the artificial boundary
layer condition given in section 1.2.4 in the limit d ! 0.

As all derivatives of u are zero, the streamwise flow should have no impact
on the Taylor–Green vortex in the other two directions. As the solution does
not decay with time, the error is determined by comparing the results of the
simulation to the exact solution.

The average error was calculated thus:

Error(t) =
1

N
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, 0)|. (2.79)

where �(x, y, z, t) is any component of velocity at timestep t. Figure 2.6
shows the evolution of the error in time. The error in v and w follow a
similar path, while the error in u grows di↵erently. Overall, the magnitude
of the error is small, on the order of 10�3, suggesting that the solver is
working correctly. It should be noted that this simulation did not test the
accuracy of the calculation of the streamwise derivatives, as here they are
zero everywhere.
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2.9 General flow properties

We conclude this chapter with an example jet in crossflow simulation for a
velocity ratio of V

av

/U
max

= 2.3 and Re = 640 to show the general properties
of the flow, and ensure that the code is acting as expected. The simulation
was run with �t = 1.9⇥ 10�3.

Isosurfaces of individual velocity components, velocity magnitude and
scalar concentration are plotted for three early simulation times, after non-
dimensional times of 6.9, 34.5 and 69, and for the time averaged flow, which
is calculated from 800 flow instances between non-dimensional times of 269.1
and 279.5. Early times were chosen to show the changes that occur in the
transient portion of the flow.

Isosurfaces of the streamwise velocity, shown in Figure 2.7, display the
spreading of the jet, both near to the jet inlet and further downstream, as
time passes. In Figures 2.7a - 2.7c rings of streamwise velocity can be seen
wrapped around the jet inlet and travelling downstream. These are indicative
of the spanwise rollers discussed by Yuan et al. [59]. These spanwise rollers
can also be seen in the isosurfaces of cross-stream vorticity and enstrophy
shown in Figure 2.11. In the isosurface of time averaged velocity, Figure
2.7d, all of the turbulent fluctuations are smoothed out, and only the mean-
flow feature, the central portion of the jet plume, remains. The isosurfaces
of transverse velocity in Figure 2.8, and cross-stream velocity in Figure 2.9
also show structures in the transient images that are not present in the time
averaged flow, which are likely indicative of vortical structures.

Isosurfaces of scalar concentration are shown in Figure 2.10, and reveal
that while the higher concentration regions, c = 1 and c = 0.5, do not
significantly change in shape over time, the low concentration isosurface,
c = 0.05, changes shape dramatically over time, giving a good indication of
the shape of the jet. Figure 2.10b shows a wide plume until around x = 10,
and a narrow plume thereafter. In Figure 2.10c the wide plume has travelled
to the outlet of the simulation domain. The narrower region of the jet is
likely the inner jet plume, travelling faster than the surrounding crossflow,
while the wider region is caused by entrainment of fluid into the jet over
time. The time averaged isosurfaces of the scalar concentration show the
shape generally associated with the counter-rotating vortex pair.

2.9.1 Counter-rotating vortex pair

The counter-rotating vortex pair (CVP) is a flow characteristic of time av-
eraged jets in crossflow that has been investigated at length through both
experiments [4, 5, 6, 17, 21, 22] and simulations [46, 58, 59]. The presence of
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(a)

(b)

Figure 2.11: Isosurfaces of (a) cross-stream vorticity, !
z

= 5, and (b) enstro-
phy, !2 = 20, at 10000 timesteps, showing spanwise rollers.
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Figure 2.12: Isosurface of time-averaged enstrophy, !2 = 5, showing CVP
development.

the CVP in our results was investigated using vorticity, scalar surfaces and
the discriminant, as described in section 2.6 above.

Isosurfaces are used to investigate the three-dimensional structure of the
CVP. An isosurface of enstrophy in Figure 2.12 shows two spiralling regions
fairly close to the jet inlet that may indicate the early sections of the counter-
rotating vortex pair. In Figure 2.13 the isosurface of the discriminant of the
velocity gradient tensor is shown for the time-averaged flow. This shows
regions of the flow where vortices are present. Of particular interest here
are the two central tube-shaped protrusions on the downstream side of the
jet. These tube-shaped vortices are indicative of the CVP. The two tubes
are not exactly the same shape or size, suggesting that the strengths of the
two vortices are di↵erent, and the CVP is not exactly symmetrical.

Figure 2.14 shows contours of scalar concentration at positions down-
stream of the jet inlet. At x = 1 the jet has already begun to take on
the recognised kidney-like shape of the CVP. This shape persists for the full
length of the simulation domain.
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Figure 2.13: Isosurface of the time-averaged discriminant, � = 1 ⇥ 10�3

showing CVP.
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The counter-rotating vortex pair can also be visualised in contour plots of
the streamwise component of vorticity, as shown in Figure 2.15. In this series
of images the development of the CVP as the jet plume travels downstream
can be seen. Close to the jet inlet the regions with high vorticity magni-
tude (both positive and negative, indicating the direction of the vortices) are
around the outer regions of the jet, surrounding a region of lower vorticity.
Further downstream the two round high vorticity magnitude regions indicate
where the CVP has formed.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Contours of time-averaged scalar concentration in yz-plane.
Slices taken at (a) x = 1, (b) x = 3.5, (c) x = 6, (d) x = 8.5, (e) x = 11 and
(f) x = 13.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.15: Contours of time-averaged vorticity in yz-plane overlaid with
quiver plot of velocity. Slices taken at (a) x = 1, (b) x = 3.5, (c) x = 6, (d)
x = 8.5, (e) x = 11 and (f) x = 13.5.
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2.10 Conclusion

In this chapter a hybrid second-order finite-di↵erence and spectral finite-
di↵erence method for solving the Navier–Stokes equations is described, to
be applied to the large-eddy simulation of a jet in crossflow. Methods for
analysing the results of these simulations are also presented.

The Navier–Stokes solver is used, with the sub-grid scale model switched
o↵, to perform a simulation of a zero-viscosity Taylor–Green vortex, a flow
with a known exact solution. The results of this simulation show that the
Navier–Stokes solver is working as expected.

Finally, the Navier–Stokes solver, with the sub-grid scale model switched
on, was used to simulate a low Reynolds number jet in crossflow. Isosur-
faces of velocity, scalar concentration, vorticity, enstrophy and the discrimi-
nant were used to show various well-documented flow characteristics, such as
spanwise rollers and the counter-rotating vortex pair. The counter-rotating
vortex pair was also shown through contour plot of time averaged scalar
concentration and vorticity.

In the following chapters further simulations of jets in crossflow will be
analysed. First, simulations will be compared to experiments and other pub-
lished and unpublished simulations, to ensure that the Navier–Stokes solver
and sub-grid scale model produce reasonable results. A series of simulations
with all parameters but the velocity ratio held constant will then be analysed
to determine the e↵ect of velocity ratio on the behaviour of the jet. Finally,
large-eddy simulations of a jet in crossflow will be compared to their direct
numerical simulation counterparts, at low and moderate Reynolds numbers,
to investigate the e↵ects of the sub-grid model on the large-scale flow.



Chapter 3

Comparison to experiments
and other simulations

Seven simulations (see Table 3.1) were run for comparison of our large-eddy
simulation (LES) method with experiments and other simulations. Exper-
imental results from Cambonie et al. [6] were used to validate the data
produced by our simulations. LES performed by others [40, 56, 59] were
used to validate our numerical methods. A full comparison of flow character-
istics was carried out using results produced from my code and from a code
written by Trent Mattner.

Re V
av

/U
max

d Notes
243 0.54 1.83 Cambonie et al., 2013 [6]
640 3.05 2.06 Cambonie et al., 2013 [6]
1500 1.52 0.44 Muppidi and Mahesh, 2005 [40]
6930 3.3 0.5 Yuan et al., 1999 [59]

2.05⇥ 104 0.5 1 Wegner et al., 2004 [56]
2⇥ 104 2.25 1 Thomas’ simulation, for full code valiadation
2⇥ 104 2.25 1 Mattner’s simulation, for full code validation

Table 3.1: Table of parameters for simulations discussed in this chapter,
showing Reynolds number, Re, velocity ratio, V

av

/U
max

, and crossflow bound-
ary layer thickness, d.

The Reynolds number, Re, the velocity ratio, V
av

/U
max

, and the boundary
layer thickness at the inlet, d, were chosen to correspond to the cases con-
sidered in the given publications. The apparent di↵erence in the Reynolds
numbers given in Table 3.1 and those given by the original authors in some
cases is due to di↵erent definitions of the Reynolds number. Further, all simu-

57
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lations other than Wegner use boundary layer thicknesses that were specified
in the original papers. No boundary layer thickness was specified in Wegner
et al.’s paper [56], so a value of d = 1 was chosen.

3.1 Comparison with published experimental
results

Cambonie et al. [6] performed a series of experiments in which a range of jets
in crossflow, with di↵erent jet velocities, Reynolds numbers, and boundary
layer thicknesses, were produced in a water tunnel, and velocity data was
collected using 3D particle tracking velocimetry. Figure 3.1a shows a com-
parison of counter-rotating vortex pair trajectories between my simulation,
run for Re = 243, V

av

/U
max

= 0.54 and d = 1.83 and experiment 1 from Cam-
bonie et al. Figure 3.1b shows a comparison of counter-rotating vortex pair
trajectories between a second simulation, run at Re = 640, V

av

/U
max

= 3.05
and d = 2.06 and experiment 16 from Cambonie et al.

Cambonie et al. locate two transverse velocity maxima at each x position
downstream of the jet [6]. The maximum with the lower position in the y
direction is used to track the CVP trajectory, and the maximum with the
higher y position is used to track the jet trajectory. In my analysis, only
a global maximum is recorded. Close to the jet inlet, this single maximum
captures the jet trajectory, as the initial velocity of the jet has a larger
transverse component than the CVP close to the inlet. Further away from
the inlet, the transverse velocity induced by the CVP is larger than that of
the jet itself, which causes the drop o↵ that can be seen around x = 2 in my
results in both Figures 3.1a and 3.1b. We compare the trajectories of my
simulation to the experiments only after this drop.

Better agreement between CVP trajectories is seen for the simulation
with the higher velocity ratio and Reynolds number, in Figure 3.1b, than for
the low Reynolds number and low velocity ratio simulation in Figure 3.1a,
especially downstream of the jet inlet. The agreement between the CVP
trajectories for the lower velocity ratio and Reynolds number is not as good,
as shown in Figure 3.1a. Cambonie et al. do not specify their definition
of the boundary layer thickness, so it is likely that it is di↵erent to the
definition that is used for these simulations. If this is the case, the boundary
used in my simulation would be thinner than that seen in Cambonie et al.’s
experiments, as my value of d indicates the 99.99% thickness, rather than the
80% or 99% thickness, as is common. This would contribute to the di↵erences
seen between the results of my simulations and those of Cambonie et al.’s
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(a)

(b)

Figure 3.1: Counter-rotating vortex pair trajectories of my simulation (line)
and Cambonie et al.’s configuration 1 (circles) for (a) Re = 243, V

av

/U
max

=
0.54, d = 1.83, and (b) Re = 640, V

av

/U
max

= 3.05 and d = 2.06.

experiments, as a thinner boundary layer would lead to earlier bending of
the jet, as the jet comes in contact with the maximum crossflow velocity
closer to the lower wall. This can be seen in Figure 3.1a. The di↵erence is
less noticeable at higher velocity ratios, such as in Figure 3.1b, as the jet
penetrates further beyond the boundary. The shape of the jet inlet profile
is also significantly di↵erent, with Cambonie et al.’s experiments reporting
an approximate profile that is more plug-shaped than parabolic. This would
also contribute to the di↵erences seen in the results, as plug-shaped velocity
profiles lead to a larger proportion of the jet travelling at it’s maximum
velocity, which allows for deeper penetration.
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3.2 Comparison with published simulations

Trajectories and velocity profiles of simulations were compared to results
reported in previous studies [40, 56, 59].

3.2.1 Re = 1500, V
av

/U
max

= 1.52, d = 0.44

Muppidi and Mahesh performed a direct numerical simulation (DNS) of a jet
in crossflow using a finite volume method on an unstructured grid [30, 40].
The published centreline trajectory of Muppidi and Mahesh’s simulation 3II
was compared to the results of my simulation, run at Re = 1500, V

av

/U
max

=
1.52, and d = 0.44, and shown in Figure 3.2.

Figure 3.2: Centreline trajectory from my simulation (blue line) and that of
Muppidi and Mahesh [40] (orange circles).

Close to the jet inlet, Figure 3.2 shows that the trajectory of my sim-
ulation is significantly di↵erent to the direct numerical simulation. In my
simulation the jet penetrates more deeply into the crossflow before being
deflected, and the deflection is much sharper. Muppidi and Mahesh’s simu-
lation shows a much more gradual deflection. Further away from the jet inlet
the two simulations show very good agreement, matching position and angle
almost exactly.

Muppidi et al. [40] report an 80% boundary layer thickness of 0.44,
meaning that in their simulation when y = 0.44 the velocity is 80% of its
maximum. In my simulation the boundary layer reaches its maximum much
closer to y = 0.44, resulting in a much thinner boundary layer. As a result,
we would expect to see the trajectory of my jet bend much earlier, as it
would interact with higher velocity flow closer to the jet inlet. This is not
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the case. In section 3.3 ahead, it is shown that in my model the flow near
to the jet inlet is not fully resolved on the computational grid, so the results
are less accurate than a DNS. In this same area less than 80% of the kinetic
energy is resolved by the large-scale model, so the sub-grid scale model is
not performing as expected in this area. Because of this the results of my
simulation close to the inlet are likely to be less accurate than a DNS.

Overall, although my LES does not match well with Muppidi and Ma-
hesh’s simulation close to the jet inlet, the agreement is much better far
downstream of the jet inlet. The results are not exactly as would be expected
due to the di↵erence in boundary-layer thickness, but these di↵erences may
be explained by the behaviour of the turbulence model used in my simulation
in the region near to the jet inlet.

3.2.2 Re = 6930, V
av

/U
max

= 3.3, d = 0.5

Yuan et al. performed a large-eddy simulation of a jet in crossflow using
a finite volume method, with the turbulence model given by Zang et al.
[59, 61]. Prior to entering the crossflow, the jet was simulated as a turbulent
pipe flow for a short distance to produce a turbulent inlet velocity profile.
Published velocity magnitude profiles were compared to my simulation, run
for Re = 6930, V

av

/U
max

= 3.3, and d = 0.5, and given in Figure 3.3.
In Figure 3.3a, the shape of the velocity magnitude profile for my sim-

ulation is quite similar to that of Yuan et al.’s simulation, although my
simulation shows a slightly higher maximum velocity. In Figure 3.3b profiles
of both my simulation and Yuan et al.’s simulations show two peaks. The
higher of these peaks reach a similar maximum value, although Yuan’s peak
occurs closer to the lower wall of the domain. The centre of the lower peak
falls at approximately the same y value, although the heights are quite di↵er-
ent, with my simulation showing a broader, shallower peak. In Figures 3.3c
and 3.3d, the higher peak again takes approximately the same value, but the
position of the peaks in Yuan’s simulation is closer to the lower wall. In my
simulations the lower peak is better defined, with a deeper trough separating
the two peaks.

The di↵erences between the profiles of the simulations are caused by the
di↵erence in jet velocity that can be seen at the centre of the jet, x = 0, in
Figure 3.3a. The larger transverse velocity causes a deeper penetration of the
jet, shifting the upper peak away from the lower wall at each x position. Yuan
et al. simulate a turbulent flow in a pipe for a short distance, which is used
for the jet inlet velocity profile, while my simulation uses a laminar profile at
the jet inlet. This pipe flow simulation modifies the shape of the jet velocity
profile enough to cause the visible di↵erences between the simulations.
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(a) (b) (c) (d)

Figure 3.3: Velocity magnitude profiles in the jet centreline, z = 0, from
my simulation (blue lines) and Yuan et al. [59] (orange circles). Profiles are
given at (a) the centre of the jet inlet at x = 0, and downstream of the jet
inlet at (b) x = 1.84, (c) x = 3.67 and (d) x = 5.54.

Yuan et al. use a cylindrical mesh around the jet inlet to better capture
the circular boundary conditions that define the jet inlet [59]. This was not
done in my simulation, so the shape of the jet in my simulation is not exactly
circular. The grid in my simulation is also not as refined as that of Yuan et
al., as a finer grid would have led to unreasonable computational expense.
These issues will have had an overall e↵ect on the accuracy of my simulation.
Yuan et al. also use a di↵erent sub-grid scale turbulence model in their LES.

Despite the di↵erences, there is a recognisable qualitative agreement be-
tween the two simulations. The di↵erences that are seen can be attributed to
the di↵erences in jet inlet velocity profile and model used. This shows that,
for this particular set of parameters, my simulation is performing reasonably
well.

3.2.3 Re = 20500, V
av

/U
max

= 0.5, d = 1

Wegner et al. [56] performed a large-eddy simulation of a jet in crossflow
using a second order central collocated numerical solver and a Smagorin-
ski model to approximate the sub-grid stresses and flux. Following Wegner
et al., transverse profiles of single velocity components and scalar concen-
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tration, as well as the turbulent kinetic energy (TKE) were plotted for a
number of points both up and downstream of the jet inlet for Re = 20500
and V

av

/U
max

= 0.5. The boundary layer thickness d was not specified by
Wegner et al., so it was chosen as d = 1 to approximately match Wegner et
al.’s streamwise velocity profile upstream of the jet. These were compared
to the published velocity and scalar concentration profiles of a jet entering
perpendicularly to a crossflow.

Profiles of the streamwise component of velocity, u, have similar trends
although the maximum velocity u = 1, occurs further from the lower wall in
my simulation than in that of Wegner et al. at every x position. Upstream
of the jet centre point, in Figures 3.4a and 3.4b, this is due to a di↵erence in
boundary layer thickness. In both of these figures the boundary layer in my
simulation appears to be thicker, however as both x = �0.5 and x = �0.25
are within the jet inlet region the profiles are impacted by the jet. Wegner et
al. did not publish velocity profiles from further upstream so the thickness
of the boundary layers could not be compared without the impact of the jet.
Downstream of the jet inlet, the peak velocity occurring further from the
wall indicates deeper penetration of the jet into the crossflow.

Within the jet inlet region, x = �0.5 to 0.5, Figure 3.5 shows the trans-
verse velocity component v is higher in my simulation than in Wegner’s
results, however further from the wall they show good agreement, with v
decaying to 0 in both cases. The transverse velocity at the inlet is di↵erent
because Wegner et al. simulate a short region of pipe flow before the jet
enters the domain, whereas I assume that the jet enters the crossflow with
a parabolic profile. Wegner et al.’s jet profile also appears to be asymmet-
ric, indicating that the jet inflow is a↵ected by the crossflow while it is still
within the pipe. In my simulation the jet inflow is fixed by the inlet boundary
condition, which contributes to the deeper penetration of the jet seen in the
results of my simulation.

A significant di↵erence between the profiles can be seen in Figure 3.5e,
close to the lower wall, where Wegner et al.’s simulation shows a peak very
close to the lower wall that takes a maximum value close to one, whereas my
simulation shows remains close to zero at the same position. The cause of this
peak in Wegner et al.’s simulationat x = 0.5 is unknown, and no similar peak
can be seen in their simulation at either of the surrounding points, x = 0.25
or x = 1. Further downstream the two simulations show good agreement,
with slightly less penetration seen in Wegner’s results.

Within the jet inlet, concentration profiles given in Figures 3.6a to 3.6c
show qualitative agreement between my simulation and Wegner et al.’s re-
sults, however the jet appears to penetrate slightly more deeply in my simu-
lation, which is consistent with the streamwise velocity profiles. The deeper
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penetration seen in my simulation is not surprising as the transverse velocity
at the centre of the jet inlet is larger in my simulation. In Figures 3.6d and
3.6e the concentration of the scalar close to the wall is significantly less for
my simulation, however it shows a peak at around y = 0.75 that takes a
similar value to the maximum seen in Wegner et al.’s results. The concentra-
tion peak in my simulation is in the same position as the streamwise velocity
peak in Figure 3.4f, suggesting that, in my simulation, more of the scalar
is being carried in the jet plume itself than in the region between the jet
plume and the wall, whereas in Wegner et al.’s simulation the concentration
of the scalar is fairly consistent between the lower wall and the top of the jet.
Further downstream, in Figure 3.6f the two simulations are in much closer
agreement.

Within the jet inlet region peaks in the turbulent kinetic energy (TKE)
in my simulation are significantly larger than those in Wegner et al.’s results,
however their location is similar. Further downstream the transverse location
of the peaks is more noticeably di↵erent, although the amplitudes are more
consistent, with the kinetic energy peak occurring further from the lower
wall in my simulation. This is consistent with the deeper penetration of the
jet that has been deduced from the velocity and scalar profiles. Wegner et
al. include the sub-grid TKE in their plots [56], which I have not done.
The inclusion of the sub-grid TKE in my simulation will lead to less similar
results.

Overall, the results of the two simulations are quite similar, with a slight
di↵erence in penetration of the jet the most noticeable di↵erence. Most
di↵erences that can be seen between the two simulations is explained by
the di↵erence in velocity at the jet inlet, caused by the di↵erent methods of
calculating the jet inlet velocity profile.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Streamwise velocity profiles for my simulation (blue lines) and
Wegner et al. [56] (orange circles). Profiles given at (a) x = �0.5, (b)
x = �0.25, (c) x = 0, (d) x = 0.25, (e) x = 0.5, (f) x = 1, (g) x = 2, and (h)
x = 4.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.5: Transverse velocity profiles for my simulation (blue lines) and
Wegner et al. [56] (orange circles). Profiles given at (a) x = �0.5, (b)
x = �0.25, (c) x = 0, (d) x = 0.25, (e) x = 0.5, (f) x = 1, and (g) x = 2.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Concentration profiles for my simulation (blue lines) and Wegner
et al. [56] (orange circles). Profiles given at (a) x = �0.25, (b) x = 0, (c)
x = 0.5, (d) x = 1, (e) x = 2, and (f) x = 4.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.7: Turbulent kinetic energy profiles for my simulation (blue lines)
and Wegner et al. [56] (orange circles). Profiles given at (a) x = �0.25, (b)
x = 0, (c) x = 0.25, (d) x = 0.5, (e) x = 1, (f) x = 2, and (g) x = 4.



3.3. Verification against an alternative LES code 69

3.3 Verification against an alternative LES
code

An LES code using a fourth-order central finite-di↵erence method in all three
spatial directions and a low-storage third order Runge–Kutta timestepper
was provided by Trent Mattner in order to ascertain the e↵ect of the nu-
merical method on the solution of an LES. In the streamwise and transverse
directions, it is expected that the fourth-order scheme will be more accu-
rate than the hybrid scheme, as in the hybrid scheme these directions use
a second-order accurate method. In the cross-stream direction, the hybrid
scheme is expected to be more accurate, as a spectral scheme is used in this
direction.

The two codes were run on the same domain with the same sub-grid
model. The boundary conditions were almost the same, but a slip boundary
condition was applied on the upper and lower walls in the simulation using
Mattner’s code. Parameters were chosen as Re = 2 ⇥ 104, V

av

/U
max

= 2.25
and d = 1. Trajectories, velocity and scalar concentration profiles, spectra
and contour plots of turbulent kinetic energy ratio were calculated for both
of these simulations.

3.3.1 Trajectories

Time averaged centreline, concentration and counter-rotating vortex pair
(CVP) trajectories were calculated in the jet centreplane, z = 0.

The centreline trajectories of Mattner and my simulations, shown in Fig-
ure 3.8a follow the same curve close to the jet inlet. Travelling downstream
the centreline trajectory of my simulation falls lower than that of Mattner’s,
with a maximum deviation of approximately 0.6 of the jet diameter. This
suggests that Mattner’s fourth-order accurate method maintains the trans-
verse velocity of the jet for longer. A similar trend is seen in the concentration
trajectory, in Figure 3.8b.

Although once again following a similar course close to the jet inlet, the
CVP trajectories shown in Figure 3.8c are significantly di↵erent downstream
of the jet. The trajectory of my simulation drops from the initial high much
closer to the jet, and also drops a longer distance, remaining lower for the rest
of the length of the domain. The later drop of Mattner’s simulation reflects
the deeper penetration of both the centreline and concentration trajectories,
indicating that upwards momentum is conserved for longer in this simulation.

In Figure 3.9 we examine cross-stream contour plots of the transverse
velocity component v at a number of points downstream of the jet. From
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these, the cause of the di↵erence in drop distance can be seen. While there
are at most two local transverse velocity maxima in each cross-section of
my simulation, there are often three in Mattner’s simulation, as can be seen
in Figures 3.9b and 3.9c. The upper and lower of these maxima seem to
correspond to the two maxima of my simulation, while the third, falling
between the other two, is not present in my simulation.

Despite the noticeable di↵erences in the CVP trajectory, the both the
contour plots of transverse velocity in Figure 3.9 and the transverse velocity
profiles in Figure 3.11 are broadly similar. This indicates that the calculation
of the CVP trajectory by the locus of maximum transverse velocity is sensi-
tive to minor variations in the flow. It suggests that the numerical method
that is used will have a strong impact on the nature of this trajectory.

3.3.2 Velocity and Scalar Profiles

Profiles of individual velocity components, u and v, and scalar concentra-
tion, c, were plotted at z = 0 at a number of points up and downstream of
the jet inlet for both my simulation and Mattner’s simulation, as shown in
Figures 3.10 - 3.12. No profiles were produced for the cross-stream velocity
component, w, as the magnitude of this velocity component was very small
in both simulations.

Overall, these show both qualitative and quantitative agreement, although
the profiles of Mattner’s simulation are smoother than those of my simula-
tion. In the streamwise velocity and scalar concentration profiles, di↵erences
near the upper and lower walls are caused by di↵erent boundary conditions.

Upstream of the jet inlet (Figures 3.10a, 3.11a and 3.12a), there is varia-
tion between the two simulations in the lower half of the region, particularly
noticeable in the vertical velocity and scalar concentration. The fluctuations
seen in all three upstream profiles are numerical artifacts, caused by disper-
sion e↵ects as described by Trefethen [52] and Matheou and Dimotakis [33].
The range over which these variations occur is small, with the range in Mat-
tner’s simulations being smaller, as would be expected for a method that is
more accurate in the x and y directions [33].

In the streamwise velocity profiles (u), for x � 4, it can be seen that the
main peak caused by the jet begins closer to the lower wall for my simu-
lation than it does for Mattner’s simulation, the di↵erence becoming more
pronounced further downstream. This correlates with the di↵erence in cen-
treline trajectory seen in Figure 3.8a. The transverse velocity profiles in
Figure 3.11 are quite similar between the two simulations, but it is possible
to see the di↵erent values and positions of the local maxima, corresponding
to those seen in Figure 3.9 .
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In the scalar concentration profiles, the maximum concentration values
for Mattner’s simulation are higher than those for my simulation. These
maxima occur closer to the upper wall and are part of peaks that are more
skewed towards the upper wall, whereas the peaks in my simulation are less
skewed. The overall width of the peaks is fairly consistent between the two
simulations. The position of the maxima in the two simulations corresponds
with the di↵erences in centreline and concentration trajectories seen in Figure
3.8. The amplitude of the peaks indicates that more of the crossflow fluid is
being entrained into the jet in my simulation, making the jet more dilute.
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(a)

(b)

(c)

Figure 3.8: (a) Centreline, (b) concentration and (c) CVP trajectories of my
simulation (blue) and Mattner’s simulation (red).



3.3. Verification against an alternative LES code 73

(a)

(b)

(c)

(d)

Figure 3.9: Contours of vertical velocity in the cross section at (a) x = 5,
(b) x = 8, (c) x = 11 and (d) x = 14, for my simulation (left) and Mat-
tner’s simulation (right). Also shown are the positions of the jet centreline
trajectory (magenta circle) and CVP trajectory (red square). White areas
are regions where the vertical velocity is less than -0.05.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.10: Streamwise velocity profiles for my simulation (blue lines) and
Mattner’s simulation (orange lines) at (a) x = �2.5, (b) x = 0, (c) x = 1,
(d) x = 2, (e) x = 4, (f) x = 10, (g) x = 14.
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(a) (b) (c)

(d)

(e) (f) (g)

Figure 3.11: Transverse velocity profiles for my simulation (blue lines) and
Mattner’s simulation (orange lines) at (a) x = �2.5, (b) x = 0, (c) x = 1,
(d) x = 2, (e) x = 4, (f) x = 10, (g) x = 14.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.12: Scalar concentration profiles for my simulation (blue lines) and
Mattner’s simulation (orange lines) at (a) x = �2.5, (b) x = 0, (c) x = 1,
(d) x = 2, (e) x = 4, (f) x = 10, (g) x = 14.
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3.3.3 Spectral density

Time averaged spectra of turbulent kinetic energy and scalar concentration
were calculated in the z direction for my simulation and Mattner’s simulation
at x = 7.7, as this point is far enough from the jet inlet for the turbulent
flow to be developed, and far enough from the outlet to be una↵ected by
the outlet boundary conditions. The y coordinate for the spectra calculation
was chosen to correspond to the centreline trajectory at this point. This gave
positions of (x, y) = (7.7, 5.9) and (x, y) = (7.7, 5.0) for my simulation and
Mattner’s simulation respectively.

Overall the spectra of the two simulations show good qualitative and
quantitative agreement, particularly at low and medium wavenumbers. There
is some deviation at higher wavenumbers, most significantly in the spectrum
of the scalar concentration, in Figure 3.13b. Both of the spectra show a slope
close to the desired �5

3

slope at higher wavenumbers.
A small hook can be seen near the high wavenumber end of Figure 3.13b

for my simulation, which suggests that more energy than would be expected
is building up in the high wavenumber region. The corresponding spectrum
for Mattner’s simulation shows only a minor hook, indicating a more ac-
curate simulation. These hooks can be attributed to two main numerical
causes. The first of these causes is aliasing, where the energy that should be
attributed to wavenumbers higher than those used for the discrete Fourier
transform is misinterpreted as belonging to wavenumbers within the calcu-
lated range [53]. This is connected to the way the non-linear terms are calcu-
lated. Aliasing errors indicate that too few discrete modes are being used to
represent the flow [7], which is to be expected for a LES. The other possible
cause of the build up of energy in the upper end of the spectra relates to the
sub-grid scale stress and flux models used for the large-eddy simulation. The
vortex alignment model used, Misra and Pullin’s model 1b [37], allows for
the backscatter of energy from the sub-grid scales to the resolved scales of
the flow. While this is desirable to some extent, too much backscatter leads
to more energy than expected appearing in the high wavenumber regions of
the resolved flow.
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(a)

(b)

Figure 3.13: Time averaged spectral density of velocity components, (a)
kinetic energy and (b) scalar concentration, taken at (x, y) = (7.7, 5.9), for
my simulation (blue) and (x, y) = (7.7, 5.0) for Mattner’s simulation (red).
Black dashed line has ideal �5

3

slope.
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3.3.4 Turbulent Kinetic Energy

The turbulent kinetic energy ratio, K
rat

= K

K+K

SGS

, as calculated in section
2.6.6, is plotted in Figure 3.14 along the jet centreline, z = 0 for the two
simulations, to compare the extent to which the large-scale model resolves
the kinetic energy. In both simulations the desired 80% ratio is not achieved
near the jet inlet. In my simulation it appears that little to none of the TKE
is resolved on the computational grid, as shown by the dark blue area, while
in Mattner’s simulation it appears that at least 30% of the TKE is resolved
by the large scale, shown by the lighter shade of blue. In both simulations,
this could be fixed by using a more refined grid close to the jet inlet. Away
from the jet inlet, both simulations achieve the desired 80% ratio, as shown
by the orange contour.

Along the upper wall of the domain, my simulation shows a thin region
in which less than 80% of the TKE is resolved by the large scale equations.
This region is not present in Mattner’s simulation. This is caused by the
di↵erence in boundary conditions on this wall.

The other observable di↵erence between the two simulations is the streak-
ing of low values of K

rat

upstream of the jet inlet. While this does appear in
both simulations, it occurs only near the lower wall for Mattner’s simulation,
while in my simulation it continues to appear quite a distance from the wall.
This upstream streaking is a result of numerical dispersion caused by the use
of finite di↵erence methods [52], and matches what can be seen upstream of
the jet in the velocity and scalar concentration profiles.
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(a)

(b)

Figure 3.14: Contour plots of turbulent kinetic energy ratio at z = 0, with 0.8
contour marked in black for (a) my simulation and (b) Mattner’s simulation.
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3.3.5 Dissipation and Kolmogorov length scale

Large and sub-grid scale dissipation were calculated for all points on the
centreplane, z = 0, for both my simulation and Mattner’s simulation to as-
certain the e↵ect of the numerical method on energy loss and energy transfer
between scales. The Kolmogorov length ratio, ⌘/�x, is also calculated to
determine the necessity of using a sub-grid scale model.

Figure 3.15 shows contours of log("SGS/"LS). The black contour indicates
the points where log("SGS/"LS) = 0, equivalent to "SGS/"LS = 1, which is
where the sub-grid and large-scale dissipation is equal, separating the re-
gions where the large-scale and sub-grid dissipation dominate. Close to the
inlet, both my simulation and Mattner’s simulation show positive values of
log("SGS/"LS), indicating that the sub-grid scale dissipation dominates. The
region in which this is true is larger in Mattner’s simulation. Further down-
stream, where the values of log("SGS/"LS) are negative, the values seen in
Mattner’s simulation are less negative than those of my simulation for the full
length of the domain. This indicates that Mattner’s simulation is producing
either less large scale dissipation or more sub-grid scale dissipation than my
simulation.

Figure 3.16 shows contours of the Kolmogorov length scale ratio, ⌘/�x.
In both simulations, this ratio is less than one at all points, indicating that
the smallest eddies are smaller than the computational grid. In the region
surrounding the jet inlet, where the turbulence has not yet developed, my
simulations shows a ratio of close to zero, while Mattner’s ratio is closer to
0.1. Both of these values are very small, but the di↵erence indicates that
Mattner’s simulation is more resolved. This di↵erence in ratio continues
downstream of the jet for the full length of the domain.
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(a)

(b)

Figure 3.15: Logarithm of point-wise dissipation ratio on plane z = 0 for
regions where scalar concentration c � 0.05 for (a) my simulation and (b)
Mattner’s simulation. Black line shows contour where log("

SGS

/"
LS

) = 0.
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(a)

(b)

Figure 3.16: Point-wise Kolmogorov length scale ratio on plane z = 0 for
regions where scalar concentration c � 0.05 for (a) my simulation and (b)
Mattner’s simulation.
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3.4 Conclusion

For low velocity ratio flows interacting closely with the lower wall of the
simulation domain, such as those shown in sections 3.1 and 3.2.3 above,
my simulations show only reasonable qualitative agreement to the published
results. This is seen at both low and high Reynolds number. The poor agree-
ment is caused by a combination of interactions with the no-slip boundary
condition, chosen to justify the artificial boundary layer velocity profile at
the crossflow inlet, and the lack of boundary assumptions in the LES model
used.

For jets that have higher velocity ratios, and thus penetrate further into
the crossflow, the di↵erences between our results and those of previous studies
are much smaller, as there is less interaction between the jet and the no-slip
boundary conditions. Quantitative di↵erences that can be seen, such as those
in section 3.2.2, can be explained by di↵erences in the modelling of the jet
at the inlet.

It has also been shown that details of the jet inlet have a strong impact
on the overall flow. Small di↵erences in jet velocity maxima can lead to a
significant di↵erence in jet penetration, as can a di↵erence in velocity profile,
such as a plug-shaped profile rather than Poiseuille. Similarly, a jet that is
turbulent before entering the crossflow will behave di↵erently to a jet that
is laminar at the point where it enters the crossflow. Finally, the resolution
of a simulation in the vicinity of the jet inlet can impact the flow, as an
unresolved simulation cannot capture the same level of detail as that seen in
a simulation on a refined grid.

Comparing results using the same parameters and sub-grid stress and flux
model, but di↵erent large-scale numerical methods yielded much more simi-
lar results. Di↵erences were seen in the vertical velocity profiles, leading to
significant di↵erences in the CVP trajectory, and slight di↵erences in the con-
centration and centreline trajectories, however all spectra were very similar.
The observed di↵erences in dissipation and Kolmogorov length scale ratio are
caused by the di↵erent levels of accuracy between second- and fourth-order
finite di↵erence schemes.

Overall, the numerical methods and sub-grid scale model combine to pro-
vide acceptable qualitative agreement to the results of experiments and other
simulations.



Chapter 4

Parameter Investigation -
Velocity ratio

In this chapter, the e↵ect of varying the velocity ratio, while holding all other
parameters constant, will be investigated. Two large-eddy simulations (LES)
were performed at Re = 2⇥ 104, with velocity ratios of V

av

/U
max

= 2.25 and
V
av

/U
max

= 3 respectively, and one at Re = 2.05 ⇥ 104 with an average jet
velocity of V

av

/U
max

= 0.405 at the inlet. Trajectories, jet spreading, spectra
and dissipation were compared for the three simulations.

Name Re V
av

/U
max

d
I 2.05⇥ 104 0.405 1
II 2⇥ 104 2.25 1
III 2⇥ 104 3 1

Table 4.1: Names and parameters for the three simulations discussed in this
chapter.

4.1 Trajectories

Three types of time-averaged trajectories were calculated for low, middle and
highest velocity simulations. These are used to investigate the e↵ect of the
average jet velocity on the shape and penetration of the jet.

Figure 4.1a shows the centreline trajectory, the streamline taken from
the centre of the jet inlet, for each of the three velocity ratios. As the ve-
locity ratio increases the trajectories show deeper penetration, being less
readily deflected by the crossflow. The lowest velocity ratio simulation,
V
av

/U
max

= 0.405 is deflected until it is parallel to the crossflow free stream
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near to the jet inlet, and remains close to parallel for the remainder of the
length of the simulation domain. A slight downwards trend in the trajectory
is visible close to the outlet, which is most likely caused by the advective
outlet condition given in section 1.2.4. This simulation shows a maximum
penetration of approximately one jet diameter. In contrast, neither of the
two higher velocity ratio simulations reach the point where they are parallel
with the lower wall within the simulation domain. Because of this we cannot
ascertain and compare their maximum penetration, or even say definitely
if a point of maximum penetration will exist. The separation between the
V
av

/U
max

= 2.25 and V
av

/U
max

= 3 centreline trajectories at the outlet is
approximately 1.8 jet diameters.

The concentration trajectories, calculated as the maxima of scalar con-
centration in the centreplane, z = 0, at each x position downstream of the
jet inlet, for each of the three simulations are shown in Figure 4.1b. The
concentration trajectory of the V

av

/U
max

= 0.405 simulation initially has a
similar shape to its centreline trajectory, however it begins to drop toward
the lower wall of the domain, and from approximately 5 jet diameters down-
stream of the jet inlet the trajectory runs along the lower wall. This indicates
that the maximum concentration of the scalar is along the lower wall of the
domain, and that the jet streaks along the lower wall rather than separating
from the wall into a plume. This is supported by Figures 4.2a and 4.2b,
which show isosurfaces of scalar concentration for the V

av

/U
max

= 0.405 and
V
av

/U
max

= 3 simulations, and display the di↵erence between a low velocity
ratio, wall-attached jet, and a higher velocity ratio jet which separates from
the wall.

Both of the higher velocity ratio concentration trajectories follow much
the same shape as their respective centreline trajectories, although they do
not penetrate quite as deeply. This supports results that have been previ-
ously reported by Kamotani and Greber [21]. The separation between the
V
av

/U
max

= 2.25 and V
av

/U
max

= 3 concentration trajectories at the outlet
is approximately 2 jet diameters.

The separation between the centreline and concentration trajectories at
the outlet for the V

av

/U
max

= 2.25 and V
av

/U
max

= 3 simulations are approx-
imately 1 jet diameter and 0.8 jet diameters respectively. This indicates that
the jet in the V

av

/U
max

= 3 simulation is further from reaching its maximum
penetration than the V

av

/U
max

= 2.25 simulation, as the separation between
the two types of trajectory increases until the point where the jet becomes
parallel to the crossflow free stream.

The CVP trajectories, measured by the locus of maximum transverse
velocity along the centreplane, z = 0, of the three simulations is shown in
Figure 4.1c. All three CVP trajectories follow their respective centreline
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trajectories close to the jet inlet, however their behaviour further from the
inlet di↵ers significantly. The drop in transverse position occurs much closer
to the inlet in the V

av

/U
max

= 0.405 simulation than either of the V
av

/U
max

=
2.25 or V

av

/U
max

= 3 simulations, indicating that the initial vertical velocity
of the jet perseveres for longer at higher a higher average inlet velocity. The
trajectory of the V

av

/U
max

= 3 simulation after the drop is also higher than
that of the V

av

/U
max

= 2.25 simulation, which in turn is higher than that of
the V

av

/U
max

= 0.405 simulation, suggesting that the position of the CVP
is related to the position of the centreline trajectory. However, apart from
the di↵erence in penetration, all three curves behave in a similar manner
after the drop o↵, indicating that the CVP behaves in a similar manner,
irrespective of the velocity ratio.

Overall, there is a close relationship between the penetration of the jet
and the average velocity of the jet at the inlet. To quantify these relation-
ships it would be necessary to run more simulations, holding the Reynolds
number and boundary layer thickness constant while varying the velocity ra-
tio more widely, both higher and lower than the values used here. Running
simulations with the same parameters on a longer domain would also allow
us to further investigate the long-term relationships between velocity ratio
and penetration.
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(a)

(b)

(c)

Figure 4.1: (a) Centreline, (b) concentration and (c) CVP trajectories of
V
av

/U
max

= 0.405 (blue), V
av

/U
max

= 2.25 (green) and V
av

/U
max

= 3 (red)
simulations.
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(a)

(b)

Figure 4.2: Isosurfaces of scalar concentration for simulations run at (a)
V
av

/U
max

= 0.405 and (b) V
av

/U
max

= 2.25.
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4.2 Jet Spreading

Jet spreading is used to quantify the amount of entrainment of crossflow
fluid that occurs. Both the horizontal and vertical spread of the jets in the
three simulations were investigated from one jet diameter downstream of the
centre of the jet inlet to the outlet. The width and height of an isosurface of
scalar concentration, taken at c = 0.05, are used to determine the horizontal
and vertical jet spread respectively.

The vertical spread of the jet, shown in Figure 4.3a, varies greatly between
the smallest and two larger velocities investigated. The spread of the lowest
velocity simulation does not achieve values much higher than one jet diam-
eter, and remains fairly constant for the full length of the domain. With
reference to the trajectory information given in Section 4.1, this spread is
equivalent to the penetration of the jet above the lower wall to which the
jet is attached. In the other two simulations the jet is not attached to the
wall, and spread can occur both upwards and downwards. In these cases we
see a much larger spread which reduces slightly with streamwise distance. It
can be seen in Figure 4.4 that this occurs because the lower boundary of the
isosurface used to measure the spreading rises more sharply than the upper
boundary. The shape of the spread for the V

av

/U
max

= 2.25 simulation and
the V

av

/U
max

= 3 simulation are also very similar, but the heights are dif-
ferent. This is not unexpected, as the velocity ratios are similar. Figure 4.4
also shows that the upper boundary of the jet plume touches the upper wall
of the simulation domain near the outlet. As this limits the height of the jet
spread in this region, the results beyond approximately x = 13 are impacted
by the wall for the V

av

/U
max

= 3 simulation, and the spreading may be less
than would be seen if the simulation were performed in a taller domain.

The side boundaries of the simulation domain were set to be far enough
away from the jet that they would have only minimal e↵ect on the horizon-
tal spreading, particularly in the region close to the jet inlet. Figure 4.3b
shows that the horizontal spread close to the jet inlet is quite similar for
all three velocity ratios. In all three simulations, the horizontal spread of
the jet is approximately 2.5 times the width of the jet inlet, indicating that
much entrainment of crossflow fluid has ocurred close to the inlet. Further
downstream all three jets become wider as they entrain more fluid. Not
surprisingly, the larger the velocity ratio, the larger the horizontal spread.
The increase in width at the outlet between the two lower velocity ratio sim-
ulations is very similar to the equivalent increase between the two higher
velocity ratio simulations. As the di↵erence in velocity ratios between these
two sets of cases are significantly di↵erent, it appears that the relationship
between horizontal spread and velocity ratio is non-linear.
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(a)

(b)

Figure 4.3: (a) Vertical and (b) horizontal spreading of the jet for V
av

/U
max

=
0.405 (blue), V

av

/U
max

= 2.25 (green) and V
av

/U
max

= 3 (red) simulations.
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Figure 4.4: Isosurfaces of scalar concentration for V
av

/U
max

= 3 simulation.
Isosurface values are 1 (dark blue), 0.5 (cyan) and 0.05 (pink)

From these results we see that the jet with the largest velocity ratio en-
trains the largest amount of crossflow fluid and that with the lowest ratio
entrains the least, as would be expected. However, in order to properly inves-
tigate the relationships between the jet inlet velocity and both the horizontal
and vertical spread, many more simulations at di↵erent velocity ratios are
needed.

4.3 Spectra

Time averaged spectra of turbulent kinetic energy and scalar concentration
were calculated in the z direction for simulations run at the three velocity
ratios at x = 7.7, as this point is far enough from the jet inlet for the turbulent
flow to be developed, and far enough from the outlet to be una↵ected by the
outlet boundary conditions. The y coordinate for the spectra calculation
was chosen to correspond to the centreline trajectory at this point. This
gave positions of (x, y) = (7.7, 1.0), (x, y) = (7.7, 5.9) and (x, y) = (7.7, 7.6)
for the V

av

/U
max

= 0.405, V
av

/U
max

= 2.25 and V
av

/U
max

= 3 simulations
respectively.

The turbulent kinetic energy spectra of all three simulations, Figure 4.5a,
behave similarly, with the spectral density increasing with velocity ratio for
all . This indicates that proportionally more energy is present at all wave-
lengths for higher velocity ratios. In all three simulations, turbulent kinetic
energy spectra show a slope of approximately �5/3 for wavenumbers above
n = 6, equivalent to  = 6⇡/5. A �5/3 law is expected in the inertial range
by the model, so this suggests that the sub-grid scale model is operating as
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designed. A hook, the numerical artifact discussed in Section 3.3.3, is seen in
the spectrum of the turbulent kinetic energy for the smallest velocity ratio,
V
av

/U
max

= 0.405.
In Figure 4.5b, the spectra of scalar concentration show a higher spectral

density for higher velocity ratios, especially for low values of . For higher
values of  there is little di↵erence between the spectral density for the two
larger velocity ratio simulations, and close to  = 50 all three simulations
show similar scalar spectral densities. This suggests that the velocity ratio
has less impact on the spectral density of the scalar than it does on the
spectral density of the turbulent kinetic energy. Hooks are present at the
high wavenumber end of all three scalar spectra, although the hook is largest
in the V

av

/U
max

= 0.405 simulation and decreases in size with increase in
velocity ratio. The scalar spectra shows a �5

3

slope for wavenumbers of  ⇡ 2
through  ⇡ 20. For wavenumbers higher than 20, the slope becomes more
negative. Pullin [44] notes that the sub-grid flux model is over-dissipative in
the higher wavenumber range, and this more negative slope reflects this.
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(a)

(b)

Figure 4.5: Spectra of velocity components (a) kinetic energy, and (b) scalar
concentration for V

av

/U
max

= 0.405 (blue), V
av

/U
max

= 2.25 (green) and
V
av

/U
max

= 3 (red) simulations, with optimal [37] �5

3

slope marked (dashed
line).
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4.4 Dissipation and Kolmogorov length scale

For each simulation, the dissipation ratio, "SGS/"LS, and Kolmogorov length
scale ratio, ⌘/�x, were calculated using the methods given in Section 2.6.5
for each position on the jet centreplane, z = 0. Contours of log("SGS/"LS)
and ⌘/�x were plotted within the jet plume, defined as regions where the
scalar concentration c � 0.05.

Figure 4.6 shows contours of log("SGS/"LS). The black contour indicates
the points where log("SGS/"LS) = 0 which is where the sub-grid and large-
scale dissipation is equal, separating the regions where the large-scale and
sub-grid dissipation dominate. Close to the jet inlet "

SGS

/"
LS

is much greater
than one in all three simulations, however downstream of x = 5 the ratio is
less than one almost everywhere in both the V

av

/U
max

= 2.25 and V
av

/U
max

=
3 simulations. The "

SGS

/"
LS

� 1 region persists for longer in the V
av

/U
max

=
0.405 simulation, however it too does not last the full length of the domain.
In all three simulations the ratio becomes steadily smaller as x increases.
This shows that the turbulence model is active close to the jet inlet, but
much less active downstream.

Figure 4.7 shows contours of the Kolmogorov length scale ratio, ⌘/�x. At
all points within the jet plume the ratio is less than one, indicating that the
smallest turbulent eddies are smaller than the grid size. This in turn indicates
that the use of LES is justified. Close to the jet inlet the Kolmogorov length,
⌘, is much smaller than the grid size, �x, with a ratio of less than 0.1 in all
three simulations. In the V

av

/U
max

= 0.405 simulation the ratio does not take
values larger than 0.2, indicating that the eddies remain small throughout
the domain. In the V

av

/U
max

= 2.25 and V
av

/U
max

= 3 simulations the
ratio increases steadily in the streamwise direction, increasing to a maximum
of approximately 0.6, indicating that larger velocity ratio jets in crossflow
produce produce larger eddies downstream.
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(a)

(b)

(c)

Figure 4.6: Logarithm of point-wise dissipation ratio on plane z = 0 for
regions where scalar concentration c � 0.05 for simulations run at (a)
V
av

/U
max

= 0.405, (b) V
av

/U
max

= 2.25 and (c) V
av

/U
max

= 3. Black line
shows contour where log("

SGS

/"
LS

) = 0.
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(a)

(b)

(c)

Figure 4.7: Point-wise Kolmogorov length scale ratio on plane z = 0 for
regions where scalar concentration c � 0.05 for simulations run at (a)
V
av

/U
max

= 0.405, (b) V
av

/U
max

= 2.25 and (c) V
av

/U
max

= 3.
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4.5 Conclusion

It has been shown in this chapter that there is a relationship between the
velocity ratio at the jet inlet and the penetration and spread of the jet, as well
as the amount of kinetic and scalar energy in the system and the dissipation
of that energy. A higher jet velocity leads to a deeper penetrating jet that
spreads further, and contains and dissipates more energy at all length scales.

In order to properly quantify the relationships between the average jet
velocity at the inlet and all of these flow characteristics, it is necessary to run
more simulations. Time and computational constraints limited the number
of simulations that could be run. Of particular interest are simulations run
at V

av

/U
max

= 1, to see the e↵ect of equal jet and crossflow velocities, and
at higher velocity ratios than V

av

/U
max

= 3, to continue to track the changes
in flow characteristics. Simulating higher velocity ratio flows would require
increasing the height of the simulation domain, to avoid contact of the jet
plume with the upper wall. For the investigation of trajectories it would also
be beneficial to extend the length of the domain to allow the jets to reach
their maximum penetration. These increases in the size of the simulation
domain could be achieved in two ways. The first would keep the same grid
size, retaining the current resolution but increasing the number of grid points.
This would lead to much longer simulation times using the current code. The
other method would keep the number of grid points constant, but increase the
grid size, reducing the resolution of the results. The first of these would not
be feasible for my implementation in terms of both time and computational
resources, and the second might not provide reliable results.



Chapter 5

Comparison of large-eddy
simulation and direct numerical
simulation

In Chapter 3, some large-eddy simulations (LES) were performed at Reynolds
numbers that were lower than Re = 1⇥104, the Reynolds number at which a
change from laminar to turbulent flow is observed [15]. At these low Reynolds
numbers, we expect that the sub-grid scale stress and flux models would not
have a large impact on the results of the simulation, and thus that the results
of an LES and a direct numerical simulation (DNS) would be very similar.
At moderate Reynolds numbers, above Re = 1⇥ 104, we would expect to see
a much greater di↵erence between the LES and DNS.

Comparing the velocity and scalar concentration profiles, trajectories and
spectra of LES with their respective DNS equivalents, both performed on the
same grid, we show the impact that the addition of the sub-grid scale stress
and flux models have on the overall flow at di↵erent Reynolds numbers.

Name Simulation Re V
av

/U
max

d
I LES 640 3.05 2.06
II DNS 640 3.05 2.06
III LES 13640 2.2 0.28
IV DNS 13640 2.2 0.28

Table 5.1: Names, simulation types and parameters of the four simulations
discussed in this chapter.

In this chapter we consider both low and moderate Reynolds number
simulations, with parameters as designated in Table 5.1.

99
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5.1 Velocity and scalar profiles

Vertical profiles of the three components of velocity and the scalar concen-
tration were plotted on the centreplane through the jet, z = 0, at positions
both up and downstream of the jet inlet. The profiles for LES and DNS sim-
ulations were compared to determine the e↵ect of the sub-grid scale stress
and flux models on the components of velocity and the scalar concentra-
tion. Figures 5.1 - 5.3 show profiles of u, v, and c respectively for the low
Reynolds number case, while Figures 5.4 - 5.6 show the same profiles for the
high Reynolds number case. Profiles of the cross-stream velocity, w are not
given as the velocity fluctuations in this direction were minor.

The low Reynolds number LES and DNS simulations, Figures 5.1 and
5.2, give velocity profiles that are close to identical near to the jet inlet, and
that di↵er only slightly further downstream. The streamwise and transverse
velocity comparisons each show that both the LES and DNS have peaks at
the same depth, but that the LES peaks are narrower and have a higher max-
imum value. This di↵erence becomes more pronounced further downstream.
The scalar concentration profiles in Figure 5.3 also show good agreement,
with slightly narrower peaks in the LES. The narrower peaks seen in the
LES are unexpected, as the sub-grid model normally smooths out the veloc-
ity and scalar gradients, rather than making them more pronounced.

The higher Reynolds number LES and DNS simulations, Figures 5.4 -
5.6, show di↵erences between the LES and DNS that are more pronounced
and begin closer to the jet inlet than those that are seen in the low Reynolds
number case. The jet penetrates more deeply in the LES than the DNS,
with maximum streamwise and transverse velocity occuring further from the
lower wall. A higher maximum velocity is seen in both the streamwise and
transverse velocity profiles. A higher maximum scalar concentration can also
be seen in the LES, although this di↵erence is less pronounced. The velocity
and scalar profiles of the LES are smoother than those of the DNS, as would
be expected.

Overall it can be seen that a higher Reynolds number leads to greater
di↵erences between the LES and DNS results. The main di↵erence between
the two methods of simulation is the penetration of the jet, although a di↵er-
ence in the shapes of the velocity and scalar concentration profiles can also
be seen.
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Profiles of u for LES (blue) and DNS (black), for Re = 640 and
V
av

/U
max

= 3.05, at (a) x = �2, (b) x = 0, (c) x = 1, (d) x = 2, (e) x = 4,
and (f) x = 10. Note that the horizontal range changes between profiles.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Profiles of v for LES (blue) and DNS (black), for Re = 640 and
V
av

/U
max

= 3.05, at (a) x = �2, (b) x = 0, (c) x = 1, (d) x = 2, (e) x = 4,
and (f) x = 10. Note that the horizontal range changes between profiles.
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(a) (b) (c)

(d)
(e) (f)

Figure 5.3: Profiles of c for LES (blue) and DNS (black), for Re = 640 and
V
av

/U
max

= 3.05, at (a) x = �2, (b) x = 0, (c) x = 1, (d) x = 2, (e) x = 4,
and (f) x = 10. Note that the horizontal range changes between profiles.
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(a) (b) (c)

(d) (e)
(f)

Figure 5.4: Profiles of u for LES (blue) and DNS (black) for Re = 13640 and
V
av

/U
max

= 2.2, at (a) x = �2, (b) x = 0, (c) x = 1, (d) x = 2, (e) x = 4,
and (f) x = 10. Note that the horizontal range changes between profiles.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Profiles of v for LES (blue) and DNS (black) for Re = 13640 and
V
av

/U
max

= 2.2, at (a) x = �2, (b) x = 0, (c) x = 1, (d) x = 2, (e) x = 4,
and (f) x = 10. Note that the horizontal range changes between profiles.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Profiles of c for LES (blue) and DNS (black) for Re = 13640 and
V
av

/U
max

= 2.2, at (a) x = �2, (b) x = 0, (c) x = 1, (d) x = 2, (e) x = 4,
and (f) x = 10. Note that the horizontal range changes between profiles.



5.2. Trajectories 107

5.2 Trajectories

Centreline, concentration and CVP trajectories were calculated for both sets
of simulations (Figures 5.7 and 5.8). From these trajectories we examine
the e↵ect of the sub-grid scale model on the penetration of the jet and the
transport of the scalar.

Figure 5.7 shows that, at low Reynolds number, the di↵erence between
LES and DNS trajectories is very small, for all three trajectory types. The
LES leads to slightly deeper jet penetration in the central region of the do-
main, shown in Figure 5.7a, however by the end of the domain the trajectories
of the two simulations match very closely. The initial CVP trajectory, which
is tracked by the maximum vertical velocity in the plane z = 0, before the
drop o↵, is slightly longer in the LES case, suggesting that either the initial
vertical velocity is maintained for slightly longer in the LES, or that the CVP
is stronger close to the jet inlet in the DNS.

At higher Reynolds number, the di↵erence in jet penetration depth is
much more pronounced, as shown in Figure 5.8. This suggests that the initial
vertical velocity of the jet is maintained for longer before being deflected by
the crossflow in the LES case. The concentration trajectory in Figure 5.8b
shows similar results to the centreline trajectory, with the line of maximum
concentration occurring further from the lower wall for the LES simulation.
In Figure 5.8c the drop o↵ from the initial maximum vertical velocity occurs
at almost the same streamwise position, despite the di↵erence in depth. This
suggests that the CVP is large enough to develop equally with and without
the sub-grid stress model in this case.

Overall, these results support what was shown in section 5.1. The impact
of the sub-grid scale stress and flux models increases with Reynolds num-
ber. This is as expected, as the model assumes that the large scale stresses
dominate in the low Reynolds number limit, and scales its e↵ects accordingly
[37, 45]. This increase in e↵ect at higher Reynolds number is seen as a sig-
nificant di↵erence in jet penetration between the high Reynolds number LES
and DNS.
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(a)

(b)

(c)

Figure 5.7: Comparison of (a) centreline, (b) concentration and (c) CVP
trajectories of LES (blue) and DNS (black) simulations for Re = 640 and
V
av

/U
max

= 3.05.
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(a)

(b)

(c)

Figure 5.8: Comparison of (a) centreline, (b) concentration and (c) CVP
trajectories of LES (blue) and DNS (black) simulations for Re = 13640 and
V
av

/U
max

= 2.2.
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5.3 Spectra

Time averaged spectra of turbulent kinetic energy and scalar concentration
were calculated in the z direction for each pair of simulations. Spectra for
each flow were calculated at x = 7.7, as this point is far enough from the jet
inlet for the turbulent flow to be developed, and far enough from the outlet to
be una↵ected by the outlet boundary conditions, and the y value was chosen
to correspond to the centreline trajectory at this point. For the Re = 640
simulations, this gave positions of (x, y) = (7.7, 5.9) and (x, y) = (7.7, 5.8) for
the LES and DNS respectively. At Re = 13640, the positions were (x, y) =
(7.7, 4.3) and (x, y) = (7.7, 3.5) for the LES and DNS respectively. These
allow us to see the quantity and distribution of energy that is present at all
wavelengths of the large flow scales.

At low Reynolds number, in Figure 5.9, the di↵erence between simulations
for both the turbulent kinetic energy and scalar concentration spectra is
slight, in both shape and magnitude. The di↵erences between the spectra
increase with , indicating that the LES is damping the energy in the higher
wavenumbers, as would be expected. The di↵erences are more pronounced in
the scalar concentration spectra than in the turbulent kinetic energy spectra,
which reflects the overdamping e↵ect of the sub-grid-flux model [44]. The
high level of similarity between the two sets of spectra imply that at low
Reynolds number the sub-grid-scale models had little impact on the flow.
Neither of the low Reynolds number spectra show the �5/3 slope at the
high wavenumber end of the spectra that would be expected from a fully-
functioning LES. The sub-grid scale model works on the assumption that
the flow has an inertial subrange, which is not present in a low Reynolds
number flow, so the lack of a �5/3 slope indicates that the model is correctly
switching o↵ at low Reynolds numbers.

At higher Reynolds number the di↵erences between the LES and the DNS
are more pronounced, as can be seen in Figure 5.10. Significant di↵erences
can be seen in both the magnitude and the shape of the spectra. The shape
of the high Reynolds number LES spectra are closer to the �5

3

slope which is
assumed by the sub-grid stress and flux model. The high Reynolds number
LES shows more energy at low wavenumbers, and less energy at the highest
wavenumbers, than its corresponding DNS. This means that, in the LES,
more energy is present in the large motions within the flow, and more of the
energy from the small-scale motions is being dissipated from the system by
being transferred from the large scales to the sub-grid scales. The increased
impact of the large-scale motions in the LES reflect the larger velocity peaks
seen in the velocity profiles and the deeper penetration of the jet seen in the
trajectories.
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The scalar concentration spectra of both the high Reynolds number LES
and DNS show a hook at the high wavenumber end. The causes of these
hooks are discussed in section 3.3.3. As hooks are present in both the LES
and DNS scalar spectra, it is apparent that the sub-grid flux model alone is
not the cause of the hooks in this case.

Overall, these spectra confirm what has been shown in the previous two
sections; as the Reynolds number increases the impact of the sub-grid scale
model increases.
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(a)

(b)

Figure 5.9: Spectra of components of velocity (a) kinetic energy, and (b)
scalar concentration of LES (blue) and DNS (black) simulations for Re = 640
and V

av

/U
max

= 3.05.
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(a)

(b)

Figure 5.10: Spectra of components of velocity (a) kinetic energy, and (b)
scalar concentration of LES (blue) and DNS (black) simulations for Re =
13640 and V

av

/U
max

= 2.2.
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5.4 Kolmogorov length scale ratio

For each pair of simulations the Kolmogorov length scale ratio, ⌘/�x, was
calculated using the methods given in Section 2.6.5 for each position on
the jet centreplane, z = 0. In the DNS, the large-scale dissipation alone
was used as the total dissipation, while in the LES, total dissipation was
calculated as the sum of the large and sub-grid scale dissipations. Contours
of ⌘/�x were plotted within the jet plume, defined as regions where the scalar
concentration c � 0.05. In regions where ⌘/�x > 1, the smallest eddies are
larger than the grid size, and the flow is resolved. If ⌘/�x < 1 the simulation
is not resolved on the computational grid.

In the low Reynolds number simulations, shown in Figure 5.11, both the
LES and the DNS show regions where ⌘/�x > 1 away from the jet inlet,
indicating that the flow is resolved in this area. However, close to the jet inlet
the ratio is less than one in both simulations, indicating that this portion of
the flow is unresolved. From these results it can be seen that the flow cannot
be fully resolved on the computational grid, which is essential for a proper
DNS. From previous results in this chapter, the impact of adding a sub-grid
scale model to this simulation is minimal, so it would be necessary to refine
the grid close to the jet inlet to achieve a more accurate simulation.

At higher Reynolds numbers ⌘/�x < 1 for all points in the centreplane,
and for both the LES and the DNS, as shown in Figure 5.12. This indi-
cates that the flow is nowhere resolved at this Reynolds number, and thus
performing the simulation using a sub-grid scale model is necessary on this
computational grid.
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(a)

(b)

Figure 5.11: Point-wise Kolmogorov length scale ratio on plane z = 0 for
regions where scalar concentration c � 0.05 (a) LES and (b) DNS simulations
run at V

av

/U
max

= 3.05, d = 2.06 and Re = 640. Black line indicates the
contor where ⌘/�x = 1.
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(a)

(b)

Figure 5.12: Point-wise Kolmogorov length scale ratio on plane z = 0 for
regions where scalar concentration c � 0.05 (a) LES and (b) DNS simulations
run at V

av

/U
max

= 2.2, d = 0.28 and Re = 13640.
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5.5 Conclusion

At low Reynolds numbers the di↵erences between a direct numerical simula-
tion and a large-eddy simulation using the stretched-vortex model are very
small, indicating that the sub-grid scale model is switching o↵ as it should.
The Kolmogorov length scale ratio shows that the flow was not fully resolved
near the jet inlet on the computational grid that was used, so further grid
refinement is necessary to adequately resolve the flow for a DNS. At higher
Reynolds numbers the di↵erences between the two methods of simulation
increase, visible in velocity profiles, trajectories and power spectra. The sub-
grid model a↵ects the magnitude and distribution of energy in the system,
seen in the spectra, as well as the depth of penetration of the jet into the
crossflow, as seen in the trajectories and the velocity and scalar profiles.

To fully investigate the impact of the stretched-vortex model on a simula-
tion, it is necessary to run simulations at higher Reynolds numbers than were
used here. The low Reynolds number simulations were well below the recog-
nised point of Re = 1⇥ 104 for flows to transition into turbulence, while the
high Reynolds number simulations were only slightly above this transition
point.
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Chapter 6

Conclusion

The work undertaken in the current thesis investigated a single round jet
in crossflow, in a Reynolds number range of Re = 243 to Re = 2.05 ⇥ 104,
and a jet inlet velocity ratio range of V

av

/U
max

= 0.405 to V
av

/Umax = 3.
Large-eddy simulations were performed using a hybrid second-order central
finite di↵erence and spectral method, and the stretched vortex model to
approximate the impact of the sub-grid stresses and flux functions used in
the simulation were written in the computational language Julia.

Results of simulations were compared to experimental results from Cam-
bonie et al [6], and to simulations by Muppidi et al [40], Yuan et al [59],
Wegner et al [56] and to simulations using an independently written code. It
was shown that characteristics of the jet inlet, such as the average velocity
and velocity profile, had a strong impact on the results of the simulations.
Boundary conditions were also found to have an impact on the results, par-
ticularly in low velocity ratio flows that did not penetrate deeply into the
crossflow.

Simulations were run at average jet inlet velocities of V
av

/U
max

= 0.405,
V
av

/U
max

= 2.25 and V
av

/U
max

= 3, with boundary layer thickness and
Reynolds number held approximately constant. It was found that increasing
the velocity ratio leads to deeper jet penetration and more entrainment of
crossflow fluid into the jet plume. The amount of energy present at all
wavenumbers also increased, with energy spectra of all three simulations
being close to parallel.

Large-eddy simulations were performed at low Reynolds number, Re =
640, with an average jet inlet velocity of V

av

= 3.05 and high Reynolds num-
ber, Re = 13640, with an average jet inlet velocity of V

av

= 2.2. These
were compared to direct numerical simulations run on the same domain with
the same parameters. The low Reynolds number simulations showed little
di↵erence between the results of the large-eddy simulation and the direct nu-
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merical simulation, with trajectories, velocity and scalar profiles and spectra
all very similar, although an investigation of the Kolmogorov length scale
showed that the flow was still not fully resolved on the computational grid
used. At higher Reynolds numbers the di↵erence between the large-eddy
simulation and the direct numerical simulation was much more pronounced.
The jet in the large-eddy simulation penetrated significantly further into the
crossflow, shown in both velocity and scalar profiles and in trajectories. The
energy distribution also varied between the direct numerical simulation and
the large-eddy simulation, with more energy in the large scales and less in
the small scales in the large-eddy simulation. The spectra of the large-eddy
simulation also had a slope close to the ideal �5

3

.
The Julia language was found to be straightforward to use, with built-in

functions or downloadable packages available for everything that needed to be
done, from creating text strings for file names to debugging functions. It was
equally simple to use Julia both on desktop computers and high-performance
computers, and it ran smoothly in both simuations. The ccall function was
essential for the use of the turbulence model, allowing Fortran code to be
called natively within a Julia script. The only downside of Julia was the lack
of a reliable three-dimensional graphing package. While packages to produce
these graphics did become available over the course of the research, they were
not yet as well developed as those available in programs such as MATLAB.

6.1 Future work

In order to understand further the relationship between jet inlet velocity and
flow characteristics such as those investigated in chapter 4, it would be useful
to run simulations at a wider range of jet inlet velocities. It would also be
interesting to investigate the e↵ect of the Reynolds number when all other
parameters were held constant, to capture a mixing transition in the flow,
such as that described by Dimotakis [15].

The e↵ect of velocity profiles of both the jet and the crossflow were not
investigated during this work. The jet inlet profile and boundary layer thick-
ness have been shown by Muppidi and Mahesh to have an e↵ect on the
trajectory of the jet [40], however the impact of other crossflow inlet profiles
other than the boundary layer on flow characteristics have not been inves-
tigated. This could include the simulation of a jet in an atmospheric shear
layer, or a jet entering into a pipe flow with a parabolic or plug shaped profile.
The no-slip boundary conditions on the lower wall were shown here to have
an impact on low jet-inlet-velocity flows, so an investigation of di↵erent pos-
sibilities for lower and upper walls, such as a no-slip boundary on the lower
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wall and a no stress boundary on the upper wall, could prove interesting.
By using the dissipation ratio and Kolmogorov length scale ratio, it was

shown in this thesis that the simulations performed were highly unresolved
in the vicinity of the jet inlet. Muppidi and Mahesh [40] use a refined mesh
in the region surrounding the jet inlet to moderate this. It would be possi-
ble to implement a similar refined mesh in my code, to better capture the
development of turbulence in the flow.

The Julia language has native support for parallelisation of functions. In
the current setup of the code it would be possible to separate the wavenumber
space simulation domain into smaller regions by wavenumber range, however
there was not time to achieve this. Parallelisation would allow simulations
to be run with larger domains and velocity ratios without overly increasing
the computational time required.
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