8 research outputs found

    Harmonic reduction methods for electrical generation: a review

    Get PDF
    This paper provides a comprehensive literature review of techniques for harmonic related power quality improvement of electrical generation systems. An increasing interest in these aspects is due to the ever more stringent power quality requirements, deriving from new grid codes and compliancy standards, aimed at limiting waveform harmonic distortion at all points of the distribution network. Although a wealth of literature is available for such techniques, it has never been compiled into a handbook incorporating all the solutions aimed at both electrical machine and power systems engineers

    Sensorless Direct Flux Vector Control of Synchronous Reluctance Motors Including Standstill, MTPA and Flux Weakening

    Get PDF
    This paper proposes a sensorless direct flux vector control scheme for synchronous reluctance motor drives. Torque is controlled at constant switching frequency, via the closed loop regulation of the stator flux linkage vector and of the current component in quadrature with it, using the stator flux oriented reference frame. A hybrid flux and position observer combines back-electromotive force integration with pulsating voltage injection around zero speed. Around zero speed, the position observer takes advantage of injected pulsating voltage. Instead of the commonly used current demodulation, the position error feedback is extracted here at the output of the observer’s flux maps, thus resulting in immunity towards the cross-saturation position error. The Maximum Torque per Ampere (MTPA) strategy is used. A detailed analysis puts in evidence the key advantages and disadvantages related to the use of the MTPA in the sensorless control of the Synchronous Reluctance machine, for both the saliency based and the back-EMF based sensorless methods. Extensive experimental results are reported for a 2.2 kW synchronous reluctance motor prototype, showing the feasibility of the proposed method. These include speed response to step and sinusoidal load disturbances at standstill, up to 121% of rated torque, and speed response tests covering the flux weakening speed region

    An Improved Delay-Suppressed Sliding-Mode Observer for Sensorless Vector-Controlled PMSM

    Get PDF

    Speed Sensorless Control of SPMSM Drives for EVs with a Binary Search Algorithm-Based Phase-Locked Loop

    Full text link
    © 1967-2012 IEEE. This article presents a new method to extract accurate rotor position for the speed sensorless control of surface-mounted permanent-magnet synchronous motors (SPMSMs), based on the back electromotive force (EMF) information. The concept of finite control set-model predictive control is employed, and its cost function is related to the back EMF. An optimal voltage vector is selected from several given voltage vectors by comparing their fitness values. Moreover, the position space is divided into four sectors, and the fitness of each sector boundary is calculated and compared. The rotor position is first located in the sector surrounded by two boundaries that minimize the cost function. Then the selected sector is split into two parts, and the binary search algorithm is applied to reduce the sector area to improve the accuracy of position estimation. To overcome the drawback of the back EMF-based sensorless scheme, an I-f startup method is employed to accelerate the motor to the desired speed. An experiment has been carried out to compare the performance of the proposed method and the conventional phase-locked loop (PLL) in terms of steady-state and transient conditions

    Performance of a Sensorless Controlled Concentrated-Wound Interior Permanent-Magnet Synchronous Machine at Low and Zero Speed

    No full text
    This paper concerns the sensorless direct torque and flux control (DTFC) of a 14-pole/18-slot, fractional-slot concentrated winding interior permanent-magnet synchronous machine (IPMSM). The dynamic performance of the prototype machine at or near base speed was found to be comparable to a distributed wound IPMSM. However, the lowest operating speed of the machine under sensorless control scheme was only about 30% of the base speed. This paper demonstrates experimentally that this lack of performance can be overcome substantially by using the extended-flux linkage model and high-frequency (HF) injection methods. By using the extended-flux model, the lowest operable speed was reduced from 30% to 5% of the base speed. In order to operate the machine, at a standstill under sensorless control, the HF injection method was employed. Factors that affect the performance at zero speed were investigated systematically

    Sensorless Commissioning and Control of High Anisotropy Synchronous Motor Drives

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Control of a fractional-slot, concentrated-wound interior permanent magnet generator for direct-drive wind generation applications

    Full text link
    This thesis assesses improvements to two types of control for a novel interior permanent magnet (PM) synchronous generator with fractional-slot, concentrated-wound stator designed for direct-drive wind energy conversion. The two control techniques assessed are a) field oriented control using a back-to-back converter arrangement and b) a current controller with a rectifier-connected boost converter. These were chosen to understand the potential and the limitations of the generator and its control. Modifications to the control techniques are proposed to improve the generator efficiency, the dynamic performance in the flux-weakening range and the torque ripple performance. The adequacy of the distributed-wound PM synchronous machine model for steady-state and dynamic control of this generator was experimentally validated under field oriented control using a back-to-back converter connected to the grid. The effectiveness of the existing current trajectory controls on the efficiency of the new generator was evaluated. A new flux-prioritized maximum torque per ampere technique which is independent of speed-dependent predefined trajectories was introduced, and a similar efficiency improvement was gained as the conventional loss minimization method in the partial load range. Thus, the control model validation and efficiency imrpovement of the new generator are the primary contributions. The dynamic performance of the generator, directly driven by a non-pitchable wind turbine emulator was investigated from cut-in speed to cut-out speed using maximum power point tracking and then constant power control above rated speed. A significant contribution was done in the power control above base wind speed that was achieved by utilizing the extended flux-weakening capability of the machine with its wide constant power-speed range. High torque ripple was observed when operated with a rectifier and boost converter using boost converter inductor current control. A new direct torque control technique using a machine rotor position based torque estimator was proposed to minimize this torque ripple. Eventhough the reduced torque ripple is still higher than that with back-to-back converter, the achieved ripple reduction is significant. The control of generator speed under each method is also demonstrated. Although the new method gives a faster speed dynamics than the conventional method, it shows slower speed response than that of back-to-back converter control. However, the significance of the study using a diode rectifier-connected boost converter control is highlighted with the achieved torque ripple minimization and performance enhancement of the generator. This study is expected to open new investigations in flux-weakening control of the PM generators using rectifier-connected boost converter. In this thesis, back to back converter control is demonstrated in order to optimally control the novel generator under the field oriented control, energy efficient current control and power control together with voltage control operating above rated speed. Torque ripple minimization of the generator is also presented when used with a diode rectifier-connected boost converter control
    corecore