925 research outputs found

    Radiometric Wireless Sensor Network Monitoring of Partial Discharge Sources in Electrical Substations

    Get PDF
    A wireless sensor network (WSN) with the potential to monitor and locate partial discharge (PD) in high-voltage electricity substations using only received signal strength (RSS) is proposed. The advantages of an RSS-based operating principle over more traditional methods (e.g., time-of-arrival and time-difference-of-arrival) are described. Laboratory measurements of PD that emulate the operation of a PD WSN are presented. The hardware architecture of a prototype PD WSN is described and the particular challenges of an RSS-based location approach in an environment with an unknown, and spatially varying, path-loss index are discussed. It is concluded that an RSS-based PD WSN is a plausible solution for the monitoring of insulation integrity in electricity substations

    Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios

    Full text link
    Connectivity is probably the most basic building block of the Internet of Things (IoT) paradigm. Up to know, the two main approaches to provide data access to the \emph{things} have been based either on multi-hop mesh networks using short-range communication technologies in the unlicensed spectrum, or on long-range, legacy cellular technologies, mainly 2G/GSM, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-GHz frequency bands, used to realize access networks with star topology which are referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications

    Future strategic plan analysis for integrating distributed renewable generation to smart grid through wireless sensor network: Malaysia prospect

    Get PDF
    AbstractIntegration of Distributed Renewable Generation (DRG) to the future Smart Grid (SG) is one of the important considerations that is highly prioritized in the SG development roadmap by most of the countries including Malaysia. The plausible way of this integration is the enhancement of information and bidirectional communication infrastructure for energy monitoring and controlling facilities. However, urgency of data delivery through maintaining critical time condition is not crucial in these facilities. In this paper, we have surveyed state-of-the-art protocols for different Wireless Sensor Networks (WSNs) with the aim of realizing communication infrastructure for DRG in Malaysia. Based on the analytical results from surveys, data communication for DRG should be efficient, flexible, reliable, cost effective, and secured. To meet this achievement, IEEE802.15.4 supported ZigBee PRO protocol together with sensors and embedded system is shown as Wireless Sensor (WS) for DRG bidirectional network with prospect of attaining data monitoring facilities. The prospect towards utilizing ZigBee PRO protocol can be a cost effective option for full integration of intelligent DRG and small scale Building-Integrated Photovoltaic (BIPV)/Feed-in-Tariff (FiT) under SG roadmap (Phase4: 2016–2017) conducted by Malaysia national utility company, Tenaga Nasional Berhad (TNB). Moreover, we have provided a direction to utilize the effectiveness of ZigBee-WS network with the existing optical communication backbone for data importing from the end DRG site to the TNB control center. A comparative study is carried out among developing countries on recent trends of SG progress which reveals that some common projects like smart metering and DRG integration are on priority

    Real World Assessment of an Auto-parametric Electromagnetic Vibration Energy Harvester

    Get PDF
    The convention within the eld of vibration energy harvesting (VEH) has revolved around designing resonators with natural frequencies that match single fixed frequency sinusoidal input. However, real world vibrations can be random, multi-frequency, broadband and time-varying in nature. Building upon previous work on auto-parametric resonance, the fundamentally different approach allows multiple axes vibration and has the potential to achieve higher power density as well as wider operational frequency bandwidth. This paper presents the power response of a packaged auto-parametric VEH prototype (practical operational volume 126 cm^3) towards various real world vibration sources including vibration of a bridge, a compressor motor as well as an automobile. At auto-parametric resonance (driven at 23.5 Hz and 1 grms), the prototype can output a peak of 78.9 mW and 4.5 Hz of -3dB bandwidth. Furthermore, up to ~1 mW of average power output was observed from the harvester on the Forth Road Bridge. The harvested electrical energy from various real world sources were used to power up a power conditioning circuit, a wireless sensor mote, a MEMS (micro-electromechanical system) accelerometer and other low power sensors. This demonstrates the concept of self-sustaining vibration-powered wireless sensor systems in real world scenarios, to potentially realise maintenance-free autonomous structural health and condition monitoring.This work was supported by EPSRC (grant EP/L010917/1) and the Cambridge Centre for Smart Infrastructure and Construction

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Femtocell deployment; next generation in cellular systems

    Get PDF
    The final Bachelor’s Thesis that is shown below has such a final purpose of giving an overview of the inclusion of the so-called Femtocells (or Home Node B) in the current cellular systems. The main objective is to give a clear but simple idea about the concepts of Femtocells, as well as to explain the benefits and disadvantages of the mass uses of these services both for consumers and associated companies with this phenomenon. In this text it is also possible to find a brief review of wireless technologies throughout the history of telecommunications, as well as an introduction to the more current wireless technologies, with a special interest in the concept of cellular systems. In the last chapter a simple mathematical explanation of the key issue of interference between Femtocells and macrocellular networks is presented, with a brief argument about possible solutions

    Wireless Patient Monitoring over 4G Network

    Get PDF
    The purpose of this thesis is to explain how remote patient monitoring systems work over the 4G network using wearable sensors and corresponding interface devices. Gathered data from the sensing devices are carried over the Monitoring Wireless Sensor Network to the more elaborate 4G Network where the data is then relayed to the interface devices for reading, storage, interpretation and effective utilization. This thesis describes the underlying technologies and principles of sensors and sensor net-works, the concept of the 4G Network and how it integrates with the sensor network. The goal of Wireless Patient Monitoring over the 4G Network is link the spatial gap that exist between Healthcare and ICT, this will in turn enhance patients care efficiency while cutting costs, maximising profits and increase security while monitoring patients. This thesis is important in that it gives the reader an overview and basic idea of how a wireless patient monitoring system works over the 4G Network. An increasing number of ICT firms, healthcare and medical institutions are investing heavily on remote patient monitoring systems technologies and this thesis provides the reader the insight of how such systems work and how they can be implemented

    High resilience wireless mesh networking characteristics and safety applications within underground mines

    Get PDF
    The work presented in this thesis has investigated the feasibility, characteristics and potential applications of low power wireless networking technology, particularly aimed at improving underground mine safety. Following an initial review, wireless technology was identified as having many desirable attributes as a modern underground data transmission medium. Wireless systems are mobile, flexible, and easily scalable. Installation time can be reduced and there is scope for rapid deployment of wireless sensor networks following an emergency incident such as a mine explosion or roof rock fall. Low power mesh technology, relating to the Zigbee and IEEE 802.15.4 LR-WPAN (low-rate wireless personal area network) standards, has been of particular interest within this research project. The new breed of LR-WPAN technology is specifically designed for low power, low data rate wireless sensor applications. The mesh networking characteristics of the technology significantly increase network robustness and resilience. The self-healing, self-organising, multiple pathway redundancy, and highly scalable attributes of mesh networks are particularly advantageous for underground, or confined space, high-integrity safety and emergency applications. The study and potential use of this type of technology in an underground mine is a novel aspect of this thesis. The initial feasibility and review examined the current and future trends of modern underground data transmission systems, with particular focus on mine safety. The findings following the review determined the ideal requirements of an underground data transmission in terms of robustness, integrity, interoperability, survivability and flexibility; with wireless mesh networking meeting many of these requirements. This research has investigated underground wireless propagation characteristics at UHF and microwave frequencies in tunnels. This has involved examining electromagnetic (EM) waveguide theory, in particular the lossy dielectric tunnel waveguide model e.g. (Emslie et al., 1975 and Delogne, 1982). Extensive tests have been carried out in three different underground locations (railway tunnel, hard rock mine, coal mine test facility) using continuous wave (CW), or ‘pure’ transmission at 2.3GHz and 5.8GHz, along with a range of throughput performance tests using various wireless technologies: IEEE 802.11b, 802.11g, SuperG, SuperG (plus BeamFlex antennas), 802.11pre-n. 802.11draft-n, and Bluetooth. The results of these practical tests have been compared with the lossy dielectric tunnel waveguide model showing good agreement that tunnels will in fact enhance the EM propagation through the waveguide effect. Building on previous research during the last 30 years into high frequency underground radio transmission, this work presents a novel investigation into the performance of modern underground wireless technologies operating in underground mines and tunnels. 4 The feasibility and performance of low power wireless mesh networking technology, relating to Zigbee/IEEE 802.15.4, operating in various underground and confined space environments has been investigated through a series of practical tests in different locations including: a hard rock test mine, a coal mine and a fire training centre (confined space built infrastructure). The results of these tests are presented discussing the significant benefits in employing ‘mesh’ topologies in mines and tunnels. Following this, key applications were identified for potential development. Distributed smart sensor network e.g. environmental monitoring, machine diagnostics or remote telemetry, applications were developed to a proof-of-concept stage. A remote 3D surveying telemetry application was also developed in conjunction with the ‘RSV’ (remote surveying vehicle) project at CSM. Vital signs monitoring of personnel has also been examined, with tests carried out in conjunction with the London Fire Service. ‘Zonal location information’ was another key application identified using underground mesh wireless networks to provide active tracking of personnel and vehicles as a lower cost alternative to RFID. Careful consideration has also been given to potential future work, ranging from ‘mine friendly’ antennas, to a ‘hybrid Zigbee’, such as, optimised routing algorithms, and improved physical RF performance, specifically for high-integrity underground safety and emergency applications. Both the tests carried out and key safety applications investigated have been a novel contribution of this thesis. In summary, this thesis has contributed to furthering the knowledge within the field of subsurface electromagnetic wave propagation at UHF and microwave frequencies. Key characteristics and requirements of an underground critical safety data transmission system have been identified. Novel aspects of this work involved investigating the application of new wireless mesh technology for underground environments, and investigating the performance of modern wireless technologies in tunnels through practical tests and theoretical analysis. Finally, this thesis has proved that robust and survivable underground data transmission, along with associated mine safety applications, can feasibly be achieved using the low power wireless mesh networking technology. Robust underground wireless networking also has potential benefits for other industrial and public sectors including tunnelling, emergency services and transport
    corecore