14 research outputs found

    Design and analysis of space-time block and trellis coding schemes for single-band UWB communications systems

    Get PDF
    Ultra Wide-Band (UWB) technology has recently attracted much research interest due to its appealing features in short-range mobile communications. These features include high-data rates, low power consumption, multiple-access communications and precise positioning capabilities. Space-Time Coding (STC) techniques, such as block coding and trellis coding, are known to be simple and practical ways to increase both the spectral efficiency and the capacity in wireless communications. The the- sis aims at designing robust and efficient space-time coding schemes well adapted to single-band UWB signalling. Thus, this work incorporates a fine analysis of a stan- dard Single Input Single Output (SISO) single-band UWB system, scrutinising every important aspect of this system including transceiver structure, channel modelling, multiple-access techniques and detection process. Research also leads to the deriva- tion of a novel closed-form approximation for the average probability of bit-error for single-band UWB systems. This in-depth study highlights drawbacks inherent to UWB systems such as time-jitter effects or rake-receiver complexity and proposes schemes that benefit from spatial diversity to mitigate these problems. Thus, the thesis concentrates on the design of new multiple-antenna space-time coding systems tailored for UWB communications. As a result, this work derives and generates gen- eralised full-rate space-time block codes based on orthogonal pulses to capture both spatial and multipath diversities. Space-time trellis coded modulation is then revis- ited to further improve the spectral efficiency limit and to deliver the high-data rates promised by UWB technology. A new version of space-time trellis coding is developed for the peculiar UWB signalling structure. Finally, thanks to a novel closed-form ap- proximation, a theoretical comparison is undertaken between any SISO-UWB system and the multiple antenna UWB systems proposed in this thesis. The results clearly underline the impact of STC on a single-band UWB system in terms of enhanced robustness against timing-jitter effects, higher spectral efficiency and capacity im- provement. These advantages are finally confirmed through the numerical evaluation of the error-rate performance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Contribution à la conception d'un système de radio impulsionnelle ultra large bande intelligent

    No full text
    Faced with an ever increasing demand of high data-rates and improved adaptability among existing systems, which inturn is resulting in spectrum scarcity, the development of new radio solutions becomes mandatory in order to answer the requirements of these emergent applications. Among the recent innovations in the field of wireless communications,ultra wideband (UWB) has generated significant interest. Impulse based UWB (IR-UWB) is one attractive way of realizing UWB systems, which is characterized by the transmission of sub nanoseconds UWB pulses, occupying a band width up to 7.5 GHz with extremely low power density. This large band width results in several captivating features such as low-complexity low-cost transceiver, ability to overlay existing narrowband systems, ample multipath diversity, and precise ranging at centimeter level due to extremely fine temporal resolution.In this PhD dissertation, we investigate some of the key elements in the realization of an intelligent time-hopping based IR-UWB system. Due to striking resemblance of IR-UWB inherent features with cognitive radio (CR) requirements, acognitive UWB based system is first studied. A CR in its simplest form can be described as a radio, which is aware ofits surroundings and adapts intelligently. As sensing the environment for the availability of resources and then consequently adapting radio’s internal parameters to exploit them opportunistically constitute the major blocks of any CR, we first focus on robust spectrum sensing algorithms and the design of adaptive UWB waveforms for realizing a cognitive UWB radio. The spectrum sensing module needs to function with minimum a-priori knowledge available about the operating characteristics and detect the primary users as quickly as possible. Keeping this in mind, we develop several spectrum sensing algorithms invoking recent results on the random matrix theory, which can provide efficient performance with a few number of samples. Next, we design the UWB waveform using a linear combination of Bsp lines with weight coefficients being optimized by genetic algorithms. This results in a UWB waveform that is spectrally efficient and at the same time adaptable to incorporate the cognitive radio requirements. In the 2nd part of this thesis, some research challenges related to signal processing in UWB systems, namely synchronization and dense multipath channel estimation are addressed. Several low-complexity non-data-aided (NDA) synchronization algorithms are proposed for BPSK and PSM modulations, exploiting either the orthogonality of UWB waveforms or theinherent cyclostationarity of IR-UWB signaling. Finally, we look into the channel estimation problem in UWB, whichis very demanding due to particular nature of UWB channels and at the same time very critical for the coherent Rake receivers. A method based on a joint maximum-likelihood (ML) and orthogonal subspace (OS) approaches is proposed which exhibits improved performance than both of these methods individually.Face à une demande sans cesse croissante de haut débit et d’adaptabilité des systèmes existants, qui à son tour se traduit par l’encombrement du spectre, le développement de nouvelles solutions dans le domaine des communications sans fil devient nécessaire afin de répondre aux exigences des applications émergentes. Parmi les innovations récentes dans ce domaine, l’ultra large bande (UWB) a suscité un vif intérêt. La radio impulsionnelle UWB (IR-UWB), qui est une solution intéressante pour réaliser des systèmes UWB, est caractérisée par la transmission des impulsions de très courte durée, occupant une largeur de bande allant jusqu’à 7,5 GHz, avec une densité spectrale de puissance extrêmement faible. Cette largeur de bande importante permet de réaliser plusieurs fonctionnalités intéressantes, telles que l’implémentation à faible complexité et à coût réduit, la possibilité de se superposer aux systèmes à bande étroite, la diversité spatiale et la localisation très précise de l’ordre centimétrique, en raison de la résolution temporelle très fine.Dans cette thèse, nous examinons certains éléments clés dans la réalisation d'un système IR-UWB intelligent. Nous avons tout d’abord proposé le concept de radio UWB cognitive à partir des similarités existantes entre l'IR-UWB et la radio cognitive. Dans sa définition la plus simple, un tel système est conscient de son environnement et s'y adapte intelligemment. Ainsi, nous avons tout d’abord focalisé notre recherché sur l’analyse de la disponibilité des ressources spectrales (spectrum sensing) et la conception d’une forme d’onde UWB adaptative, considérées comme deux étapes importantes dans la réalisation d'une radio cognitive UWB. Les algorithmes de spectrum sensing devraient fonctionner avec un minimum de connaissances a priori et détecter rapidement les utilisateurs primaires. Nous avons donc développé de tels algorithmes utilisant des résultats récents sur la théorie des matrices aléatoires, qui sont capables de fournir de bonnes performances, avec un petit nombre d'échantillons. Ensuite, nous avons proposé une méthode de conception de la forme d'onde UWB, vue comme une superposition de fonctions B-splines, dont les coefficients de pondération sont optimisés par des algorithmes génétiques. Il en résulte une forme d'onde UWB qui est spectralement efficace et peut s’adapter pour intégrer les contraintes liées à la radio cognitive. Dans la 2ème partie de cette thèse, nous nous sommes attaqués à deux autres problématiques importantes pour le fonctionnement des systèmes UWB, à savoir la synchronisation et l’estimation du canal UWB, qui est très dense en trajets multiples. Ainsi, nous avons proposé plusieurs algorithmes de synchronisation, de faible complexité et sans séquence d’apprentissage, pour les modulations BPSK et PSM, en exploitant l'orthogonalité des formes d'onde UWB ou la cyclostationnarité inhérente à la signalisation IR-UWB. Enfin, nous avons travaillé sur l'estimation du canal UWB, qui est un élément critique pour les récepteurs Rake cohérents. Ainsi, nous avons proposé une méthode d’estimation du canal basée sur une combinaison de deux approches complémentaires, le maximum de vraisemblance et la décomposition en sous-espaces orthogonaux,d’améliorer globalement les performances

    Improving the data rate versus distance in communications using ultra wide bandwidth technology, 2007

    Get PDF
    Ultra-Wideband Communication is increasingly being considered as an attractive solution for high data rate short range wireless and position location applications. Current designs for UWB focus on a small number of modulation and pulse shaping schemes and antenna design techniques. As such, simple improvements should be investigated first to increase system range, such as better modulation schemes, channel coding, antenna types, and/or Rake receivers. More sophisticated designs should then be investigated. In this thesis we investigate the use of M-ary PPM modulation techniques using isotropic, dipole, and horn antennas to improve the data rates versus distance in communications using UWB technology, by means of using two different path loss models

    Enhancing the bit error rate performance of ultra wideband systems using time-hopping pulse position modulation in multiple access environments

    Get PDF
    Ultra-Wide Band (UWB) technology is one of the possible solutions for future short-range indoor data communication with uniquely attractive features inviting major advances in wireless communications, networking, radar, imaging, and positioning systems. A major challenge when designing UWB systems is choosing a suitable modulation technique. Data rate, transceiver complexity, and BER performance of the transmitted signal are all related to the employed modulation scheme. Several classical modulation schemes can be used to create UWB signals, some are more efficient than others. These schemes are namely, Pulse Position Modulation (PPM), Pulse Amplitude Modulation (PAM), Binary Phase Shift Keying (BPSK), and On-Off Keying (OOK) are reviewed. In the thesis, the performance of PPM system, combined with Time Hopping Spread Spectrum (THSS) multiple access technique is evaluated in an asynchronous multiple access free space environment. The multiple access interference is first assumed to be a zero mean Gaussian random process to simulate the scenario of a multi user environment. An exact BER calculation is then evaluated based on the characteristic function (CF) method, for Time Hopping-Pulse Position Modulation Ultra Wide Band (TH-PPM UWB) systems with multiple access interference (MAI) in AWGN environment. The resulting analytical expression is then used to assess the accuracy of the MAI Gaussian Approximation (GA) first assumed. The GA is shown to be inaccurate for predicting BERs for medium and large signal-to-noise ratio (SNR) values. Furthermore, the analysis of TH-PPM system is further extended to evaluate the influence of changing and optimising some of the system or signal parameters. It can be shown how the system is greatly sensitive to variations in some signal parameters, like the pulse shape, the time-shift parameter associated with PPM, and the pulse length. In addition, the system performance can be greatly improved by optimising other system parameters like the number of pulses per bit, Ns, and the number of time slots per frame, Nh. All these evaluation are addressed through numerical examples. Then, we can say that, by improving signal or system parameters, the BER performance of the system is greatly enhanced. This is achieved without imposing exact complexity to the transceiver and with moderate computational calculations

    Design of low power CMOS UWB transceiver ICs

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Pulse shape design for ultra wide band communications

    Get PDF
    Ultra Wideband (UWB) technology is promising for high-speed short-range communication applications due to its large bandwidth, high data rate, low power requirement and short-range characteristics. Instead of exploring new unused frequency band, the UWB communication follows the overlay principle. The great potential of UWB lies in the fact that it can co-exist with the already licensed spectrum users and can still pave the way for a wide range of applications. Pulse shape design is a key technique in the UWB system. This thesis concentrates on pulse shaping techniques for UWB communication system. -- This thesis first summarizes the main pulse shaping schemes, and then describes the design of a pulse shaping method based on combining Gaussian derivative pulses for impulse based UWB systems. New pulse shapes are created to satisfy the Federal Communications Commission (FCC) spectral mask by this method. Since the objective function of the received signal-to-noise ratio (SNR) optimization is affected by different factors, multiple parameters are also designed to try to achieve the best received SNR. The performance of new pulses and other frequently used UWB pulses are compared through theoretical calculations and simulations coded in MATLAB. -- The main contributions of this thesis include the new determined way of combining certain numbers of Gaussian derivative pulses to create a single pulse that not only conforms to the FCC spectral mask, but also effectively exploits the permitted frequency spectrum, as well as the development of an end-to-end UWB signal transmission simulation chain that can use Time Hopping Pulse Position Modulation (TH-PPM) modulation and Time Hopping Binary Phase Shift Keying (TH-BPSK) modulation through an Additive White Gaussian Noise (AWGN) channel and the IEEE 802.15.3a standard channel model. -- Comparisons have been done of the overall performance of the systems using different pulses in various scenarios such as: single link system use AWGN channel and IEEE standard channel and multiuser system using AWGN channel and IEEE standard channel. In order to exploit the temporal diversity of the multi-path IEEE channel to improve performance of the decision process, a perfect RAKE receiver simulation model is used in the simulation chain. The theoretical calculation and simulation results indicate that the proposed pulses outperform other pulses to different extents under different situations. Discussions on the implementation issues of the pulse shaper are also provided in this thesis. -- The work reported here could act as a starting point from which improvements and extensions can be made and incorporated
    corecore