5,811 research outputs found

    Applied constant gain amplification in circulating loop experiments

    Get PDF
    The reconfiguration of channel or wavelength routes in optically transparent mesh networks can lead to deviations in channel power that may impact transmission performance. A new experimental approach, applied constant gain, is used to maintain constant gain in a circulating loop enabling the study of gain error effects on long-haul transmission under reconfigured channel loading. Using this technique we examine a number of channel configurations and system tuning operations for both full-span dispersion-compensated and optimized dispersion-managed systems. For each system design, large power divergence was observed with a maximum of 15 dB at 2240 km, when switching was implemented without additional system tuning. For a bit error rate of 10-3, the maximum number of loop circulations was reduced by up to 33%

    Four-Way Microstrip-Based Power Combining for Microwave Outphasing Power Amplifiers

    Get PDF
    A lossless multi-way outphasing and power combining system for microwave power amplification is presented. The architecture addresses one of the primary drawbacks of Chireix outphasing; namely, the sub-optimal loading conditions for the branch power amplifiers. In the proposed system, four saturated power amplifiers interact through a lossless power combining network to produce nearly resistive load modulation over a 10:1 range of output powers. This work focuses on two microstrip-based power combiner implementations: a hybrid microstrip/discrete implementation using a combination of microstrip transmission line sections with discrete shunt elements, and an all-microstrip implementation incorporating open-circuited radial stubs. We demonstrate and compare these techniques in a 2.14 GHz power amplifier system. With the all-microstrip implementation, the system demonstrates a peak CW drain efficiency of 70% and drain efficiency of over 60% over a 6.5-dB outphasing output power range with a peak power of over 100 W. We demonstrate W-CDMA modulation with 55.6% average modulated efficiency at 14.1 W average output power for a 9.15-dB peak to average power ratio (PAPR) signal. The performance of this all-microstrip system is compared to that of the proposed hybrid microstrip/discrete version and a previously reported implementation in discrete lumped-element form.Massachusetts Institute of Technology. Center for Integrated Circuits and SystemsMassachusetts Institute of Technology. Microsystems Technology Laboratories. GaN Energy Initiativ

    Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light

    Full text link
    We developed an improved model in order to predict the RF behavior and the slow light properties of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and the injected current. The present model is validated by showing a good agreement with experiments for small and large modulation indices.Comment: 9 pages, 5 figure

    Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment

    No full text
    The performance of future ultra-long haul communication systems exploiting phase-encoded signals is likely to be compromised by noise generated during signal transmission. One potential way to mitigate such noise is to use Phase Sensitive Amplifiers (PSAs) which have been demonstrated to help remove phase as well as amplitude noise from phase-encoded signals. Recently, we showed that a PSA-based signal regenerator based on degenerate four-wave mixing can be implemented in a network-compatible manner in which only the (noisy) signal is present at the device input (black-box operation). The developed regenerator was also able to perform simultaneous wavelength conversion and multicasting, details/analysis of which are presented herein. However, this scheme was tested only with artificial noise generated in the laboratory and with the regenerator placed in front of the receiver, rather than in-line where even greater performance benefits are to be expected. Here, we address both theoretically and experimentally the important issue of how such a regenerator, operating for convenience in a multicasting mode, performs as an in-line device in an installed transmission fiber link. We also investigate the dispersion tolerance of the approach

    SITE project. Phase 1: Continuous data bit-error-rate testing

    Get PDF
    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon

    Get PDF
    A 77-GHz, +17.5 dBm power amplifier (PA) with fully integrated 50-Ω input and output matching and fabricated in a 0.12-µm SiGe BiCMOS process is presented. The PA achieves a peak power gain of 17 dB and a maximum single-ended output power of 17.5 dBm with 12.8% of power-added efficiency (PAE). It has a 3-dB bandwidth of 15 GHz and draws 165 mA from a 1.8-V supply. Conductor-backed coplanar waveguide (CBCPW) is used as the transmission line structure resulting in large isolation between adjacent lines, enabling integration of the PA in an area of 0.6 mm^2. By using a separate image-rejection filter incorporated before the PA, the rejection at IF frequency of 25 GHz is improved by 35 dB, helping to keep the PA design wideband

    Measurement of the stimulated carrier lifetime in semiconductor optical amplifiers by four-wave mixing of polarized ASE noise

    Get PDF
    We present a simple experiment aimed at measuring the stimulated carrier lifetime in semiconductor optical amplifiers (SOA's). The technique relies on polarization-resolved nearly degenerate four-wave mixing (FWM) of a laser source with an amplified spontaneous emission (ASE) noise source. The method can quickly characterize the bandwidth performance of active layers for application in a cross-gain or cross-phase wavelength converter
    corecore