29 research outputs found

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder

    A Deterministic Construction for Jointly Designed Quasicyclic LDPC Coded-Relay Cooperation

    Get PDF
    This correspondence presents a jointly designed quasicyclic (QC) low-density parity-check (LDPC) coded-relay cooperation with joint-iterative decoding in the destination node. Firstly, a design-theoretic construction of QC-LDPC codes based on a combinatoric design approach known as optical orthogonal codes (OOC) is presented. Proposed OOC-based construction gives three classes of binary QC-LDPC codes with no length-4 cycles by utilizing some known ingredients including binary matrix dispersion of elements of finite field, incidence matrices, and circulant decomposition. Secondly, the proposed OOC-based construction gives an effective method to jointly design length-4 cycles free QC-LDPC codes for coded-relay cooperation, where sum-product algorithm- (SPA-) based joint-iterative decoding is used to decode the corrupted sequences coming from the source or relay nodes in different time frames over constituent Rayleigh fading channels. Based on the theoretical analysis and simulation results, proposed QC-LDPC coded-relay cooperations outperform their competitors under same conditions over the Rayleigh fading channel with additive white Gaussian noise

    Performance Analysis of Protograph LDPC Codes over Large-Scale MIMO Channels with Low-Resolution ADCs

    Full text link
    © 2013 IEEE. Protograph LDPC (P-LDPC) codes and large-scale multiple-input multiple-output (LS-MIMO) are cornerstones of 5G and future wireless systems, thanks to their powerful error-correcting capability and high spectral efficiency. To alleviate the high complexity in signal detection/decoding that dramatically grows with the number of antennas (in the order of tens or even hundreds), low-resolution analog-to-digital converters (ADCs) and joint detection and decoding using factor graph have recently attracted paramount interest. Unlike high-resolution ADCs, by using a small number of bits to quantize the received signal, low-resolution ADCs help reduce the hardware cost and power consumption of the RF circuit of practical LS-MIMO transceivers. Such a very much desirable reduction comes at the cost of additional quantization noise, introduced by low-resolution ADCs. This work aims to provide a unified framework to analyze the impact of the low-resolution ADCs on the performance of P-LDPC codes in practical LS-MIMO systems. It is worth noting that the previous analytical tools that have been used to evaluate the performance of P-LDPC codes do not account for the quantization noise effect of the low-resolution ADCs and the fact that the covariance of quantization noise depends on the fading channels. This article addresses this shortcoming by first leveraging the additive quantization noise model. We then derive the expression of extrinsic information for the belief-propagation LS-MIMO detector. The mutual information functions, which are the core elements of our proposed protograph extrinsic information transfer (PEXIT) algorithm, are analyzed for LS-MIMO communication systems. Our proposed PEXIT algorithm allows us to analyze and predict the impact of the low-resolution ADCs on the performance of P-LDPC codes, considering various input parameters, including the LS-MIMO configuration, the code rate, and the maximum number of decoding iterations, and the code structure. Based on our extensive analytical and simulation results, we found that the performance of 3-bit and 4-bit ADC systems only have a small gap to that of the unquantized systems. Especially when the 5-bit ADC scheme is applied, the performance loss is negligible. This finding sheds light on the practical design of LS-MIMO systems using P-LDPC codes

    Low-Density Graph Codes for slow fading Relay Channels

    Get PDF
    We study Low-Density Parity-Check (LDPC) codes with iterative decoding on block-fading (BF) Relay Channels. We consider two users that employ coded cooperation, a variant of decode-and-forward with a smaller outage probability than the latter. An outage probability analysis for discrete constellations shows that full diversity can be achieved only when the coding rate does not exceed a maximum value that depends on the level of cooperation. We derive a new code structure by extending the previously published full-diversity root-LDPC code, designed for the BF point-to-point channel, to exhibit a rate-compatibility property which is necessary for coded cooperation. We estimate the asymptotic performance through a new density evolution analysis and the word error rate performance is determined for finite length codes. We show that our code construction exhibits near-outage limit performance for all block lengths and for a range of coding rates up to 0.5, which is the highest possible coding rate for two cooperating users.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Analysis and construction of full-diversity joint network-LDPC codes for cooperative communications

    Get PDF
    Cooperative communication is a well known technique to yield transmit diversity and network coding can increase the spectral efficiency. These two techniques can be combined to achieve a double diversity order for a maximum coding rate Rc = 2/3 on the Multiple Access Relay Channel (MARC); Transmit diversity is necessary in harsh environments to reduce the required transmit power for achieving a given error performance at a certain transmission rate. In networks; where two sources share a common relay in their transmission to the destination. However; codes have to be carefully designed to obtain the intrinsic diversity offered by the MARC. This paper presents the principles to design a family of full-diversity LDPC codes with maximum rate. Simulation of the word error rate performance of the new proposed family of LDPC codes for the MARC confirms the full-diversity

    Low-Density Parity-Check Coded High-order Modulation Schemes

    Full text link
    In this thesis, we investigate how to support reliable data transmissions at high speeds in future communication systems, such as 5G/6G, WiFi, satellite, and optical communications. One of the most fundamental problems in these communication systems is how to reliably transmit information with a limited number of resources, such as power and spectral. To obtain high spectral efficiency, we use coded modulation (CM), such as bit-interleaved coded modulation (BICM) and delayed BICM (DBICM). To be specific, BICM is a pragmatic implementation of CM which has been largely adopted in both industry and academia. While BICM approaches CM capacity at high rates, the capacity gap between BICM and CM is still noticeable at lower code rates. To tackle this problem, DBICM, as a variation of BICM, introduces a delay module to create a dependency between multiple codewords, which enables us to exploit extrinsic information from the decoded delayed sub-blocks to improve the detection of the undelayed sub-blocks. Recent work shows that DBICM improves capacity over BICM. In addition, BICM and DBICM schemes protect each bit-channel differently, which is often referred to as the unequal error protection (UEP) property. Therefore, bit mapping designs are important for constructing pragmatic BICM and DBICM. To provide reliable communication, we have jointly designed bit mappings in DBICM and irregular low-density parity-check (LDPC) codes. For practical considerations, spatially coupled LDPC (SC-LDPC) codes have been considered as well. Specifically, we have investigated the joint design of the multi-chain SC-LDPC and the BICM bit mapper. In addition, the design of SC-LDPC codes with improved decoding threshold performance and reduced rate loss has been investigated in this thesis as well. The main body of this thesis consists of three parts. In the first part, considering Gray-labeled square M-ary quadrature amplitude modulation (QAM) constellations, we investigate the optimal delay scheme with the largest spectrum efficiency of DBICM for a fixed maximum number of delayed time slots and a given signal-to-noise ratio. Furthermore, we jointly optimize degree distributions and channel assignments of LDPC codes using protograph-based extrinsic information transfer charts. In addition, we proposed a constrained progressive edge growth-like algorithm to jointly construct LDPC codes and bit mappings for DBICM, taking the capacity of each bit-channel into account. Simulation results demonstrate that the designed LDPC-coded DBICM systems significantly outperform LDPC-coded BICM systems. In the second part, we proposed a windowed decoding algorithm for DBICM, which uses the extrinsic information of both the decoded delayed and undelayed sub-blocks, to improve the detection for all sub-blocks. We show that the proposed windowed decoding significantly outperforms the original decoding, demonstrating the effectiveness of the proposed decoding algorithm. In the third part, we apply multi-chain SC-LDPC to BICM. We investigate various connections for multi-chain SC-LDPC codes and bit mapping designs and analyze the performance of the multi-chain SC-LDPC codes over the equivalent binary erasure channels via density evolution. Numerical results demonstrate the superiority of the proposed design over existing connected-chain ensembles and over single-chain ensembles with the existing bit mapping design
    corecore