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Analysis and construction of full-diversity joint

network-LDPC codes for cooperative

communications
Dieter Duyck, Daniele Capirone, Joseph J. Boutros, and Marc Moeneclaey

Abstract—Transmit diversity is necessary in harsh environ-
ments to reduce the required transmit power for achieving a given
error performance at a certain transmission rate. In networks,
cooperative communication is a well known technique to yield
transmit diversity and network coding can increase the spectral
efficiency. These two techniques can be combined to achieve a
double diversity order for a maximum coding rate Rc = 2/3 on
the Multiple Access Relay Channel (MARC), where two sources
share a common relay in their transmission to the destination.
However, codes have to be carefully designed to obtain the
intrinsic diversity offered by the MARC. This paper presents the
principles to design a family of full-diversity LDPC codes with
maximum rate. Simulation of the word error rate performance of
the new proposed family of LDPC codes for the MARC confirms
the full-diversity.

Index Terms—Cooperative communication, physical layer
network coding, fading channels, binary erasure channel,
low-density parity-check code, mutual information, density
evolution.

I. INTRODUCTION

Multipath propagation (small-scale fading) is an important

salient effect of wireless channels, causing possible destructive

adding of signals at the receiver. When the fading varies very

slowly, error-correcting codes cannot combat the detrimental

effect of the fading on a point-to-point channel. Space diver-

sity, i.e., transmitting information over independent paths in

space, is a means to mitigate the effects of slowly varying

fading. Cooperative communication [1]–[4] is a well known

technique to yield transmit diversity. The most elementary

example of a cooperative network is the relay channel, con-

sisting of a source, a relay and a destination [3], [5]. The task

of the relay is specified by the strategy or protocol. In the

case of coded cooperation [4], the relay decodes the message

received from the source, and then transmits to the destination

additional parity bits related to the message; this results in a

higher information theoretic spectral efficiency than simply

repeating the message received from the source [6]. The

resulting outage probability [7] exhibits twice the diversity, as

compared to point-to-point transmission. However, the overall
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error-correcting code should be carefully designed in order to

guarantee full-diversity [8].

We focus on capacity achieving codes, more precisely, low-

density parity-check (LDPC) codes [9], because their word

error rate (WER) performance is quasi-independent of the

block length [10] when the block length is becoming very

large.

Considering two users, S1 and S2, and a common desti-

nation D, a double diversity order can be obtained by co-

operating. When no common relay R is used, the maximum

achievable coding rate that allows to achieve full-diversity is

Rc = 0.5 (according to the blockwise Singleton bound [7],

[11]). However, when one common relay R for two users

is used (a Multiple Access Relay Channel - MARC), it can

be proven that the maximum achievable coding rate yielding

full-diversity is Rc = 2/3 [12]. The increase of the maximum

coding rate yielding full-diversity from Rc = 0.5 to Rc = 2/3
is achieved through network coding [13] at the physical layer,

i.e., R sends a transformation of its incoming bit packets to D
(only linear transformations over GF(2) are considered here).

From a decoding point of view, this linear transformation can

be interpreted as additional parity bits of a linear block code.

Hence, the destination will decode a joint network-channel

code. Therefore, the problem formulation is how to design

a full-diversity joint network-channel code construction for a

rate Rc = 2/3.

Up till now, no family of full-diversity LDPC codes with

Rc = 2/3 for coded cooperation on the MARC has been

published. Chebli, Hausl and Dupraz obtained interesting re-

sults on joint network-channel coding for the MARC with

turbo codes [14] and LDPC codes [15], [16], but these authors

do not elaborate on a structure to guarantee full-diversity at

maximum rate, which is the most important criterion for a

good performance on fading channels. A full-diversity code

structure describes a family of LDPC codes or an ensemble

of LDPC codes, permitting to generate many specific instances

of LDPC codes.

In this paper, we present a strategy to produce excellent

LDPC codes for the MARC. First, we outline the physical

layer network coding framework. Then, we derive the con-

ditions on the MARC model and the coding rate necessary

to achieve a double diversity order. In the second part of

the paper, we elaborate on the code construction. A joint

network-channel code construction is derived that guarantees

full-diversity, irrespective of the parameters of the LDPC code

(the degree distributions). Finally, the coding gain can be
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Fig. 1. The Multiple Access Relay Channel model. The solid arrows
correspond to timeslot 1, the dotted arrows to timeslot 2 and the dashed
arrow to timeslot 3.

improved by selecting the appropriate degree distributions

of the LDPC code [17] or using the doping technique [18]

as shown in section VII-B. Simulation results for finite and

infinite length (through density evolution) are provided. To

the best of authors’knowledge, this is the first time that a

joint full-diversity network-channel LDPC code construction

for maximum rate is proposed.

Channel-State Information is assumed to be available only

at the decoder. In order to simplify the analysis, we consider

orthogonal half-duplex devices that transmit in separate time-

slots.

II. SYSTEM MODEL AND NOTATION

A. Multiple Access Relay Channel

We consider a Multiple Access Relay Channel (MARC)

with two users S1 and S2, a common relay R and a common

destination D. Each of the three transmitting devices transmits

in a different timeslot: S1 in timeslot 1, S2 in timeslot 2 and

R in timeslot 3 (Fig. 1). In this paper, we limit the scheme to

two sources, but any extension to a larger number of sources

is possible by applying the principles explained in the paper.

We consider a joint network-channel code over this network,

i.e., an overall codeword c = [c1, . . . , cN ]T is received at

the destination during timeslot 1, timeslot 2, and timeslot

3, which form together one coding block. The codeword

is partitioned into three parts: cT = [c(1)
T
c(2)

T
c(3)

T
],

where c(1) = [c1, . . . , cNs
]T , c(2) = [cNs+1, . . . , c2Ns

]T , and

c(3) = [c2Ns+1, . . . , cN ]T , and where S1 and S2 transmit Ns

bits (note that each user is given an equal slot length because

of fairness) and R transmits Nr bits, so that N = 2Ns + Nr.

We define the level of cooperation, β, as the ratio Nr/N .

Because the users do not communicate between each other,

the bits c(1), transmitted by S1, and the bits c(2), transmitted

by S2, are independent.

Since the focus in this paper is on coding, BPSK signaling

is used for simplicity, so that the transmitters send symbols

x(b)n ∈ {±1}, where b stands for the timeslot number,

and n is the symbol time index in timeslot b. The channel

is memoryless with real additive white Gaussian noise and

multiplicative real fading. The fading coefficients are only

known at the decoder side where the received signal vector

at the destination D is

y(b) = αbx(b) + w(b), b = 1, . . . , 3, (1)

where y(1) = [y(1)1, . . . , y(1)Ns
]T , y(2) =

[y(2)1, . . . , y(2)Ns
]T , and y(3) = [y(3)1, . . . , y(3)Nr

]T

are the received complex signal vectors in timeslots 1, 2, and

3 respectively. The noise vector w(b) consists of independent

noise samples which are real Gaussian distributed, i.e.,

w(b)n ∼ N (0, σ2), where 1
2σ2 is the average signal-to-noise

ratio1 γ = Es

N0
. The Rayleigh distributed fading coefficients

α1, α2 and α3 are independent and identically distributed.

The channel model is illustrated in Fig. 2. In some parts of

the paper, a block binary erasure channel (block BEC) [19],

[20] will be assumed, which is a special case of block fading.

In a block BEC, the fading gains belong to the set {0,∞},

where α = 0 means the link is a complete erasure, while

α = ∞ means the link is perfect.

We assume that no errors occur on the S1-R and S2-R
channels. This simplifies the analysis and does not change the

criteria for the code to attain full-diversity, as will be shown

in section III-B.

B. LDPC coding

We focus on binary LDPC codes C[N, 2K]2 with block

length N and dimension2 2K , and coding rate Rc = 2K/N .

The code C is defined by a parity-check matrix H , or equiva-

lently, by the corresponding Tanner graph [7], [9]. Regular

(db, dc) LDPC codes have a parity-check matrix with db

ones in each column and dc ones in each row. For irregular

(λ(x), ρ(x)) LDPC codes, these numbers are replaced by the

so-called degree distributions [9]. These distributions are the

standard polynomials λ(x) and ρ(x) [21]:

λ(x) =

db∑

i=2

λix
i−1, ρ(x) =

dc∑

i=2

ρix
i−1,

where λi (resp. ρi) is the fraction of all edges in the Tanner

graph, connected to a bit node (resp. check node) of degree i.
Therefore, λ(x) and ρ(x) are sometimes referred to as left and

right degree distributions from an edge perspective. In section

VI the polynomials λ̊(x) and ρ̊(x), which are the left and right

distributions from a node perspective, will also be adopted:

λ̊(x) =

db∑

i=2

λ̊ix
i−1, ρ̊(x) =

dc∑

i=2

ρ̊ix
i−1,

where λ̊i (resp. ρ̊i) is the fraction of all bit nodes (resp. check

nodes) in the Tanner graph of degree i, hence λ̊i = λi/i∑
j

λj/j

and likewise with ρ̊i.

The goal of this research is to design a full-diversity ensem-

ble of LDPC codes for the MARC. An ensemble of LDPC

1The average signal-to-noise ratios on the S1-D, S2-D and R-D channels
are the same.

2We consider two sources each with K information bits and an overall
error-correcting code with N codebits
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Fig. 2. Codeword representation for a Multiple Access Relay Channel. The fading gains α1, α2 and α3 are independent.

codes is the set of all LDPC codes that satisfy the left degree

distribution λ(x) and right degree distribution ρ(x).
In this paper, not all bit nodes and check nodes in the Tanner

graph will be treated equally. To elucidate the different classes

of bit nodes and check nodes, a compact representation of the

Tanner graph, adopted from [22] and also known as protograph

representation [9], [23], [24] (and the references therein), will

be used. In this compact Tanner graph, bit nodes and check

nodes of the same class are merged into one node.

C. Physical layer network coding

The coded bits transmitted by R are a linear transformation

of the information bits3 from S1 and S2, denoted as i(1) and

i(2), where both vectors are of length K . Let ∗ stand for a

matrix multiplication in GF(2).

c(3) = T ∗

[
i(1)
i(2)

]
.

The matrix T represents the network code, which has to be

designed. Let us split T into two matrices HN and V such

that T = H−1
N ∗ V , where HN is an Nr × Nr matrix and V

is an Nr × 2K matrix. Now we have the following relation:

HN ∗ c(3) = V ∗

[
i(1)
i(2)

]
. (2)

Eq. (2) can be inserted into the parity-check matrix defining

the overall error-correcting code. Instead of designing T , we

can design HN and V using principles from coding theory.

III. DIVERSITY AND OUTAGE PROBABILITY OF MARC

A. Achievable diversity order

The formal definition of diversity order on a block fading

channel is well known [25].

Definition 1 The diversity order attained by a code C is

defined as

d = − lim
γ→∞

log Pe

log γ
,

where Pe is the word error rate after decoding.

However, in this document, as far as the diversity order is

concerned, we mostly use a block BEC. It has been proved that

a coding scheme is full-diversity on the block fading channel

if and only if it is full-diversity on a block BEC [22]. The

channel model is the same as for block fading, except that

3In some papers, the coded bits transmitted by R are a linear transformation
of the transmitted bits from S1 and S2, which boils down to the same as the
information bits, since the transmitted bits (parity bits and information bits)
are a linear transformation of the information bits.

the fading gains belong to the set {0,∞}. Suppose that on

the S1-D, S2-D and R-D links, the probability of a complete

erasure, i.e., α = 0, is ε.

Definition 2 A code C achieves a diversity order d on a block

BEC if and only if [26]

Pe ∝ εd,

where Pe is the word error rate after decoding and ∝ means

proportional to.

Therefore, it is sufficient to show that two erased channels

cause an error event to prove that d < 3, because the proba-

bility of this event is proportional to ε2. Consider for example

that the R-D channel has been erased, as well as the S1-D
channel. Then, the information from S1 can never reach D,

because S2 does not communicate with S1. Therefore, the

diversity order d < 3.

A diversity order of two is achieved if the destination is

capable of retrieving the information bits from S1 and S2,

when exactly one of the S1-D, S2-D, or R-D channels is

erased. The maximum coding rate allowing the destination to

do so will be derived in subsection III-D.

B. Perfect source-relay channels

Here, we will show that the achieved diversity at D does

not depend on the quality of the source-relay (S-R) channel.

Therefore, in the remainder of the paper, we will assume

errorless S-R channels to simplify the analysis.

Let us consider a simple block fading relay channel with one

source S, one relay R and one destination D. All considered

point-to-point channels (S-R, S-D, R-D) have an intrinsic

diversity order of one. In a cooperative protocol, where R has

to decode the transmission from S in the first slot, two cases

can be distinguished: (1) R is able to decode the transmission

from S and cooperates with S in the second slot, hence D
receives two messages carrying information from S; (2) R
is not able to decode the transmission from S and therefore

does not transmit in the second slot, hence D receives only

one message carrying information from S, namely on the S-

D channel. Now, the decoding error probability, i.e., the WER

Pe, at D can be written as follows:

Pe = P (case 1)P (e|case 1) + P (case 2)P (e|case 2).

The probability P (case 2) is equal to the probability of er-

roneous decoding at R. For large γ, we have P (case 2) ∝
1
γ and P (case 1) = (1 − c

γ ) [25], where c is a constant.

The probability P (e|case 2) is equal to the probability of

erroneous decoding on the S-D channel; hence for large γ,
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P (e|case 2) ∝ 1
γ . Now, the error probability Pe at large γ is

proportional to

Pe ∝ P (e|case 1) +
c′

γ2
,

where c′ is a positive constant. According to definition 1,

full-diversity requires that at large γ, Pe ∝ 1
γ2 . We see that

this only depends on the behavior of P (e|case 1) at large γ,

because the second case where the relay cannot decode the

transmission from the source in the first slot does automatically

give rise to a double diversity order without the need for any

code structure. This means that as far as the diversity order is

concerned, it is sufficient to assume errorless S-R channels

(yielding Pe = P (e|case 1)). Furthermore, techniques [8]

are known to extend the proposed code construction to non-

perfect source-relay channels, so that, for the clarity of the

presentation, perfect source-relay channels are assumed in the

remainder of the paper.

C. Outage probability of the MARC

We denote an outage event of the MARC by Eo. An outage

event is the event that the destination cannot retrieve the infor-

mation from S1 or S2, i.e., the transmitted rate is larger than or

equal to the instantaneous mutual information. The transmitted

rate ru is the average4 spectral efficiency of user u, whereas

r is the overall spectral efficiency, so that r = r1 +r2. We can

interprete r as the total spectral efficiency that is transmitted

over the network. The MARC block fading channel has a

Shannon capacity that is essentially zero since the fading gains

make the mutual information a random variable which does

not allow to achieve an arbitrarily small word error probability

under a certain spectral efficiency. This word error probability

is called information outage probability in the limit of large

block length, denoted by

Pout = P
(
Eo).

The outage probability is a lower bound on the average word

error rate of coded systems [27].

The mutual information from user 1 to the destination is the

weighted sum of the mutual informations from the channels

from S1-D and R-D 5. Hence the spectral efficiency r1 is

upper bounded as:

r1 <

(
1 − β

2

)
I(S1; D) + βI(R; D), (3)

where (1 − β)/2 and β are the fractions of the time during

which S1 and R are active [25, Section 5.4.4]. The same holds

for user 2:

r2 <

(
1 − β

2

)
I(S2; D) + βI(R; D). (4)

4The average spectral efficiency denotes the average number of bits per
overall channel uses, including the channel uses of the other devices, that is
transmitted over the MARC channel.

5The transmission of R corresponds to redundancy for S1 and S2 at the
same time. From the point of view of S1, the transmission of R contains
interference from S2. By using the observations from S2, the decoder at the
destination can at most cancel the interference from S2 in the transmission
from R.

Combining (3) and (4) yields

r <

(
1 − β

2

)
I(S2; D) +

(
1 − β

2

)
I(S1; D) + 2βI(R; D).

However, there is a tighter bound for r. Indeed, (3) and (4)

both rely on the fact that the destination can cancel the inter-

ference from the other user on the relay-to-destination channel,

but therefore, the destination must be able to decode one

of the users’information from their respective transmission.

Hence, there exist two scenarios: (1) in the first scenario, D
decodes the information of S2 from the transmission of S2

(r2 <
(

1−β
2

)
I(S2; D)), so that it can cancel the interference

from S2 in the transmission from R ((3) holds); (2) the second

scenario is the symmetric case (r1 <
(

1−β
2

)
I(S1; D) and (4)

holds). Both scenarios lead to a tighter bound for r:

r <

(
1 − β

2

)
I(S2; D) +

(
1 − β

2

)
I(S1; D) + βI(R; D).

(5)

Bound (5) can be verified when considering the instanta-

neous mutual information between the sources and the sinks in

the network. We denote the instantaneous mutual information

of the MARC as I(α, γ), which is a function of the set of

fading gains α = [α1, α2, α3] and average SNR γ. The overall

mutual information is

I(α, γ)=
(1 − β)

2
I(S1; D) +

(1 − β)

2
I(S2; D) + βI(R; D),

because the three timeslots behave as parallel Gaussian chan-

nels whose mutual informations add together. Of course, the

timeslots timeshare a time-interval, which gives a weight to

each mutual information term [25, Section 5.4.4]. The total

transmitted rate must be smaller than I(α, γ), which yields

(5).

From the above analysis, we can now write the expression

of an outage event:

Eo =

{[
r1 ≥

(
1 − β

2

)
I(S1; D) + βI(R; D)

]

∪

[
r2 ≥

(
1 − β

2

)
I(S2; D) + βI(R; D)

]

∪

[
r ≥

(
1 − β

2

)
(I(S2; D) + I(S1; D)) + βI(R; D)

] }
.

The three terms I(S1; D), I(S2; D) and I(R; D) are each the

average mutual information of a point-to-point channel with

input x ∈ {−1, 1}, received signal y = αx + w with w ∼
N (0, σ2), conditioned on the channel realization α, which is

determined by the following well-known formula [28]:

I(X ; Y |α) = 1 − EY |{x=1,α}

{
log2

(
1 + exp

[
−2yα

σ2

])}
,

where EY |{x=1,α} is the mathematical expectation over Y
given x = 1 and α. Therefore, three terms I(S1; D), I(S2; D)
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and I(R; D) are

I(S1; D) = EY (1)|{x(1)=1,α1}

{
log2

(
1 + e

−2y(1)α1
σ2

)}

I(S2; D) = EY (2)|{x(2)=1,α2}

{
log2

(
1 + e

−2y(2)α2
σ2

)}

I(R; D) = EY (3)|{x(3)=1,α3}

{
log2

(
1 + e

−2y(3)α3
σ2

)}
.

Now, the outage probability can be easily determined

through Monte-Carlo simulations to average over the fading

gains and to average over the noise6.

D. Maximum achievable coding rate for full-diversity

In section III-A we established that the maximum achievable

diversity order is two. Here, we will derive an upper bound

on the coding rate yielding full-diversity, valid for all discrete

constellations (assume a discrete constellation with M bits per

symbol).

It has been proved that a coding scheme is full-diversity

on the block fading channel if and only if it is full-diversity

on a block BEC [22]. So let us assume a block BEC, hence

αi ∈ {0,∞}, i = 1, 2, 3. The strategy to derive the maximum

achievable coding rate is as follows: erase one of the three

channels (see Fig. 3), and derive the maximum spectral effi-

ciency that allows successful decoding at the destination7. The

criteria for successful decoding at the destination are given in

the previous subsection: (3), (4), and (5). Because one of the

three channels has been erased (see Fig. 3), one of the mutual

informations is zero. The channels that are not erased have a

maximum mutual information M (discrete signaling). A user’s

spectral efficiency allows successful decoding if and only if

ri ≤ M min
β

((
1 − β

2

)
, β

)
, i = 1, 2; (6)

r ≤ M min
β

(
(1 − β) ,

1 + β

2

)
; (7)

It can be easily seen that (7) is a looser bound than (6) (r =
r1 + r2), so that finally

r ≤ 2M min
β

((
1 − β

2

)
, β

)
, (8)

which is maximized if β = 1/3, such that r < 2M/3. The

destination decodes all the information bits on one graph that

represents an overall code with coding rate Rc. Hence the

maximum achievable overall coding rate is Rc = r
M = 2/3.

It is clear that to maximize r = r1+r2, the spectral efficiencies

r1 and r2 should be equal, i.e., all users in the network transmit

at the same rate. In this case, (8) and (6) are equivalent and it

is sufficient to bound the sum-rate only. In our design, we will

take r1 = r2 = 1/3, so that the maximum achievable coding

rate can be achieved.

IV. FULL-DIVERSITY CODING FOR CHANNELS WITH

MULTIPLE FADING STATES

In the first part of the paper, we established the channel

model, the physical layer network coding framework, the max-

6Averaging over the noise can be done more efficiently using Gauss-
Hermite quadrature rules [29]

7Another approach from a coding point of view has been made in [30].

imum achievable diversity order and the maximum achievable

coding rate yielding full-diversity. In a nutshell, if the relay

transmits a linear transformation of the information bits from

both sources during 1
3 of the time, a double diversity order

can be achieved with one overall error-correcting code with a

maximum coding rate Rc = 2/3. Now, in the second part of

the paper, this overall LDPC code construction that achieves

full-diversity for maximum rate will be designed. First, in this

section, rootchecks will be introduced, a basic tool to achieve

diversity on fading channels under iterative decoding [22].

Then, in the following section, application of these rootchecks

to the MARC will define the network code, i.e., HN and V ,

such that a double diversity order is achieved. Finally, these

claims will be verified by means of simulations for finite length

and infinite length codes.

A. Diversity rule

In order to perform close to the outage probability, an error-

correcting code must fulfil two criteria:

1) full-diversity, i.e., the slope of the WER is the same as

the slope of the outage probability at γ → ∞;

2) coding gain, i.e., minimizing the gap between the outage

probability and the WER performance at high SNR.

The criteria are given in order of importance. The first criterion

is independent of the degree distributions of the code [22],

hence serves to construct the skeleton of the code. It guarantees

that the gap between the outage probability and the WER per-

formance is not increasing at high SNR. The second criterion

can be achieved selecting the appropriate degree distributions

or applying the doping techniques (see section VII-B). In this

paper, the most attention goes to the first criterion.

In the belief propagation (BP) algorithm, probabilistic mes-

sages (log-likelihood ratios) are propagating on the Tanner

graph. The behavior of the messages for γ → ∞ determines

whether the diversity order can be achieved [17]. However, the

BP algorithm is numerical and messages propagating on the

graph are analytically intractable. Fortunately, there is another

much simpler approach to prove full-diversity. Diversity is

defined at γ → ∞. In this region the fading can be modeled

by a block BEC, an extremal case of block-Rayleigh fading.

Full-diversity on the block BEC is a necessary and sufficient

condition for full-diversity on the block-Rayleigh fading chan-

nel [22]. The analysis on a block BEC channel is a very simple

(bits are erased or perfectly known) but very powerful means

to check the diversity order of a system.

Proposition 1 We obtain a diversity order d = 2 on the

MARC, provided that all information bits can be recovered,

when any single timeslot is erased.

This rule will be used in the remainder of the paper to derive

the skeleton of the code.

B. Rootcheck

Applying Proposition 1 to the MARC leads to three possi-

bilities (Fig. 3):
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Fig. 3. In these three cases, where each time one link is erased, a full-diversity code construction allows the destination to retrieve the information bits from
both S1 and S2.

• case 1: the S1-D channel is erased: α1 = 0, α2 =
∞, α3 = ∞

• case 2: the S2-D channel is erased: α1 = ∞, α2 =
0, α3 = ∞

• case 3: the R-D channel is erased: α1 = ∞, α2 =
∞, α3 = 0

Let us zoom on the decoding algorithm to see what is hap-

pening. We illustrate the decoding procedure on a decoding

tree, which represents the local neighborhood of a bit node

in the Tanner graph (the incoming messages are assumed

to be independent). When decoding, bit nodes called leaves

pass extrinsic information through a check node to another bit

node called root (Fig. 4). Because we consider a block BEC

channel, the check node operation becomes very simple. If

all leaf bits are known, the root bit becomes the modulo-2

sum of the leaf bits, otherwise, the rootbit is undetermined

(P(bit=1)=P(bit=0)=0.5). Dealing with case 3 is simple: let

every source send its information uncoded and R sends extra

parity bits. If D receives the transmissions of S1 and S2

perfectly, it has all the information bits. So the challenging

cases are the first two possibilities. Let us assume that the

nodes corresponding to the bits transmitted by S1, S2 and R
are filled red, blue and white, respectively. Assume that all red

(blue) bits are erased at D. A very simple way to guarantee

full-diversity is to connect a red (blue) information bit node

to a rootcheck (Fig. 4(a) (4(b))).

Definition 3 A rootcheck is a special type of check node,

where all the leaves have colors that are different from the

color of its root.

Assigning rootchecks to all the information bits is the key to

achieve full-diversity. This solution has already been applied in

some applications, for example the cooperative multiple access

channel (without external relay) [8]. Note that a check node

can be a rootcheck for more than one bit node, for example

the second rootcheck in Fig. 4.

C. An example for the MARC

The sources S1 and S2 transmit information bits and parity

bits that are related to their own information, and R transmits

information bits and parity bits related to the information

from S1 and S2. The previous description naturally leads to 8

different classes of bit nodes. Information bits of S1 are split

into two classes: one class of bits is transmitted on fading gain

α1 (red) and is denoted as 1i1, the other class is transmitted on

Root

Leaves

+

red

white white white blueblue

(a)

Root

Leaves

+

white white whitered

blue

white

(b)

Fig. 4. Two examples of a decoding tree, where we distinguish a root and
the leaves. While decoding, the leaves pass extrinsic information to the root.
Both examples are rootchecks: the root can be recovered if bits corresponding
to other colors are not erased. (a) recovers the red root bit if all red bits are
erased. (b) recovers the blue root bit if all blue bits are erased.

α3 (white) and denoted as 2i1; similarly, red and white parity

bits derived from the message of S1 are of the classes 1p1 and

2p1 respectively. Likewise, bits related to S2 are split into four

classes: blue bits 1i2 and 1p2 (transmitted on α2), and white

bits 2i2 and 2p2 (transmitted on α3). The subscripts of a class

refer to the associated user. In the remainder of the paper, the

vectors 1i1, 2i1, 1p1, and 2p1 collect the bits of the classes

1i1, 2i1, 1p1, and 2p1 respectively. A similar notation holds

for S2. This notation is illustrated in Fig. 5.

Above, we concluded that all information bits should be the

root of a rootcheck. The class of rootchecks for 1i1 is denoted

as 1c. Translating Fig. 4 to its matrix representation renders:

1i1 1p1 {1i2, 1p2, 2i1, 2p1, 2i2, 2p2}

[ I 0 Hrest ] 1c .

The identity8 matrix concatenated with a matrix of zeros,

8Note that the identity matrix can be replaced by a permutation matrix. For
the simplicity of the notation, in the rest of the paper I will be used.
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Fig. 5. The Multiple Access Relay Channel model with the 8 introduced
classes of bit nodes.

assures that bits of the class 1i1 are the only red bits connected

to check nodes of the class 1c. As the bits from S1 and S2 are

independent, the matrix representation can be further detailed:

1i1 1p1 1i2 1p2 {2i1, 2p1} 2i2 2p2

[ I 0 0 0 H′

rest 0 0 ] 1c .

Hence, a full-diversity code construction for the MARC9 can

be formed by assigning this type of rootchecks (introducing

new classes 2c, 3c, and 4c) to all information bits:

1i1 1p1 1i2 1p2 2i1 2p1 2i2 2p2[
I 0 0 0 H2i1 H2p1 0 0

H1i1 H1p1 0 0 I 0 0 0

0 0 I 0 0 0 H2i2 H2p2
0 0 H1i2 H1p2 0 0 I 0

]
1c

2c

3c

4c

.

(9)

S1 transmits 1i1 and 1p1, S2 transmits 1i2 and 1p2, and the

common relay first transmits 2i1 and 2p1 and then transmits

2i2 and 2p2, hence the level of cooperation is β = 0.5. The

reader can easily verify that if only one color is erased, all

information bits can be retrieved after one decoding iteration.

Note that both sources do not transmit all information bits,

but the relay transmits a part of the information bits. This is

possible because if R receives 1i1 and 1p1 perfectly10, it can

derive 2i1 (because of the rootchecks 2c) and consequently

2p1 (after re-encoding). The same holds for S2. It turns

out that splitting information bits in two parts and letting

one part to be transmitted on the first fading gain and the

other part on the second fading gain is the only way to

guarantee full-diversity for maximum coding rate [22]. This

code construction is semi-random, because only parts of the

parity-check matrix are randomly generated. However, every

set of rows and set of columns contain a randomly generated

matrix and, therefore, can conform to any degree distribution.

It has been shown that despite the semi-randomness (due to

the presence of deterministic blocks), these LDPC codes are

still very powerful in terms of decoding threshold [22]. No

network coding has been used to obtain the code construction

discussed above. The aim of this subsection was to show

that through rootchecks, it is easy to construct a full-diversity

9The reader can verify that this is a straightforward extension of full-
diversity codes for the block fading channel [22].

10This code construction can be easily extended to non-perfect relay
channels using techniques described in [8].

code construction. However, when applying network coding,

as will be discussed in section V, the spectral efficiency can

be increased.

D. Rootchecks for punctured bits

In the previous subsection, we have illustrated that, through

rootchecks, full-diversity can be achieved. Another feature of

rootchecks is to retrieve bits that have not been transmitted,

which are called punctured bits. Punctured bits are very similar

to erased bits, because both are not received by the destination.

However, the transmitter knows the exact position of the

punctured bits inside the codeword which is not the case

for erased bits. Formally we can state that from an algebraic

decoding or a probabilistic decoding point of view, puncturing

and erasing are identical, an erased/punctured bit is equivalent

to an error with known location but unknown amplitude. From

a transmitter point of view, punctured bits have always fixed

position in the codeword whereas channel erased bits have

random locations.

When punctured bits are information bits, the destination

must be able to retrieve them. There are two ways to protect

punctured bits.

• The punctured bit nodes are connected to one or more

rootchecks. If the leaves are erased or punctured, the

punctured root bit cannot be retrieved after the first

decoding iteration. The erased or punctured leaves on

their turn must be connected to rootchecks, such that

they can be retrieved after the first iteration. Then, in the

second iteration the punctured root bit can be retrieved.

These rootchecks are denoted as second order rootchecks

(see Fig. 6). Similarly, higher order rootchecks can be

used.

• The punctured bit nodes are connected to at least two

rootchecks where both rootchecks have leaves with dif-

ferent colors (see Fig. 6). If one color is erased, there will

always be a rootcheck without erased leaves to retrieve

the punctured bit node.

Combinations of both types of rootchecks are also possible.

V. FULL-DIVERSITY JOINT NETWORK-CHANNEL CODE

In this section, we join the principles of the previous section

with the physical layer network coding framework. We will use

the same bit node classes as in the previous section, hence S1

transmits 1i1 and 1p1, S2 transmits 1i2 and 1p2. The bits

transmitted by the relay are determined by Eq. (2) and are of

the class c(3). Adapting Eq. (2) to the classes of bit nodes

gives:

HN c(3) =
[

V1 V2 V3 V4

]
∗




1i1
1i2
2i1
2i2


 , (10)

where the dimensions of Vi are Nr×K/2. Please note that 2i1,

2p1, 2i2, and 2p2 are not transmitted anymore (these bits are

punctured). The number of transmitted bits c(3) by the relay

is determined by the coding rate. There are 2K information

bits. The sources S1 and S2 each transmit K bits, hence to
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Fig. 6. Two special rootchecks for punctured bits (shaded bit nodes). (a)
is a second order rootcheck. Imagine that all blue bits are erased, than the
shaded bit node will be retrieved in the second iteration. (b) represents two
rootchecks where both rootchecks have leaves with other colors. Imagine that
one color has been erased, than the shaded bit node will still be recovered
after the first iteration.

obtain a coding rate Rc = 2/3, the relay can transmit Nr = K
bits. We will include the punctured information bits 2i1 and

2i2 in the parity-check matrix11 for two reasons:

• without 2i1 and 2i2, we cannot insert Eq. (10) in the

parity-check matrix;

• the destination wants to recover all information bits, i.e.,

1i1, 1i2, 2i1, and 2i2, so 2i1 and 2i2 must be included

in the decoding graph.

The parity-check matrix now has the following form:

1i1 1p1 1i2 1p2 2i1 2i2 c(3)[
H1i1 H1p1 0 0 I 0 0

0 0 H1i2 H1p2 0 I 0

V1
0

V2
0

V3 V4 HN0 0

]
1c

2c

3c

4c

.

Because the nodes 2i1 and 2i2 have been added, we have now

4K columns and 2K rows. K rows are used to implement

Eq. (10), while the other K rows define 1p1 in terms of the

information bits 1i1 and 2i1 (used for encoding at S1), and

1p2 in terms of the information bits 1i2 and 2i2 (used for

encoding at S2). The first two set of rows 1c and 2c are

rootchecks for 2i1 and 2i2, see section IV. Now it boils down

to design the matrices V1, V2, V3, V4, and HN , such that the set

of rows 3c and 4c represent rootchecks of the first or second

order for all information bits. There exist 8 possible parity-

check matrices that conform to this requirement, see appendix

A. With the exception of matrix (35), all matrices have one or

both of the following disadvantages:

• There is no random matrix in each set of columns, such

that H cannot conform to any degree distribution.

11The matrices in the following of the paper correspond to codewords that
must be punctured to obtain the bits actually transmitted.

• There is an asymmetry wrt. 2i1 and 2i2 and/or wrt. 1i1
and 1i2 and/or 3c and 4c which results in a loss of coding

gain.

Therefore, we select the matrix (35). The parity-check matrix

(35) of the overall decoder at D shows that the bits transmitted

by R are a linear transformation of all the information bits

1i1, 2i1, 1i2, and 2i2. Furthermore, the checks [3c 4c]
represent rootchecks for all the information bits, guaranteeing

full-diversity. The checks [1c 2c] are necessary because the

bits [2i1 2i2] are not transmitted. Note that the punctured bits

[2i1 2i2] have two rootchecks that have leaves with different

colors. One of the rootchecks is a second order rootcheck.

For example, the punctured bits of the class 2i1 have two

rootchecks, one of the class 1c and one of the class 4c.

The rootcheck of the class 1c has only red leaves, while the

rootcheck of the class 4c has white and blue leaves. All but

one blue leaves are punctured such that the rootcheck of the

class 4c is a second order rootcheck.

VI. DENSITY EVOLUTION FOR THE MARC

In this section, we develop the density evolution (DE)

framework, to simulate the performance of infinite length

LDPC codes. In classical LDPC coding, density evolution [9],

[24], [31] is used to simulate the threshold of an ensemble of

LDPC codes12. The threshold of an ensemble of codes is the

minimum SNR at which the bit error rate converges to zero

[31].

This technique can also be used to predict the word error

rate of an ensemble of LDPC codes [22]. We refer to the

event where the bit error probability does not converge to

0 by Density Evolution Outage (DEO). By averaging over a

sufficient number of fading instances, we can determine the

probability of a Density Evolution Outage PDEO. Now, it is

possible to write the word error probability Pe of the ensemble

as

Pe = Pe|DEO × PDEO + Pe|CONV × (1 − PDEO), (11)

where Pe|DEO is the word error rate given a DEO event and

Pe|CONV is the word error rate when DE converges. If the bit

error rate does not converge to zero, then the word error rate

equals one, so that Pe|DEO = 1. On the other hand, Pe|CONV

depends on the speed of convergence of density evolution and

the population expansion of the ensemble with the number of

decoding iterations [32], [33], but in any case Pe ≥ PDEO,

so that the performance simulated via DE is a lower bound

on the word error rate. Finite length simulations confirm the

tightness of this lower bound.

In summary, a tight lower bound on the word error rate of

infinite length LDPC codes can be obtained by determining

the probability of a Density Evolution Outage PDEO. Given

a triplet (α1, α2, α3), one needs to track the evolution of

message13 densities under iterative decoding to check whether

12Richardson and Urbanke [9], [31] established that, if the block length is
large enough, (almost) all codes in an ensemble of codes behave alike, so the
determination of the average behavior is sufficient to characterize a particular
code behavior. This average behavior converges to the cycle-free case if the
block length augments and it can be found in a deterministic way through
density evolution (DE).

13Messages are under the form of log-likelihood ratios (LLRs).
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there is DEO. The evolution of message densities under

iterative decoding is described through the density evolution

equations, which are derived directly through the evolution

trees. The evolution trees represent the local neighborhood

of a bit node in an infinite length code whose graph has

no cycles, hence incoming messages to every node are

independent.

A. Tanner graph and notation

The proposed code construction has 7 variable node types

and 4 check node types. Consequently, the evolution of mes-

sage densities under iterative decoding has to be described

through multiple evolution trees, which can be derived from

the Tanner graph. A Tanner graph is a representation of

the parity-check matrices of an error-correcting code. In a

Tanner graph, the focus is more on its degree distributions.

In Fig. 7, the Tanner graph of matrix (35) is shown. The new

polynomials λ̃(x) and
˜̃λ(x) are derived in proposition 2.

1c

����
����
����
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����
����
����

����
����
����
����
����

����
����
����
����
����

1

1

1

1

1

1

3c

4c

2c

ρ(x)

2i1

λ(x)
N
8

N
8

N
8

N
8

λ(x)

λ̃(x)

˜̃
λ(x)

λ(x)

˜̃
λ(x)

λ̃(x)

ρ(x)

N
8

ρ(x)

N
8

ρ(x)

N
8

1p1

1i1

N
4

N
8

N
8

N
8

2i2

1p2

1i2

c(3)

Fig. 7. A compact representation of the Tanner graph of the proposed code
construction (matrix (35)), adopted from [22] and also known as protograph
representation [23]. Nodes of the same class are merged into one node for
the purpose of presentation. Punctured bits are represented by a shaded node.

Proposition 2 In a Tanner graph with a left degree distribu-

tion λ(x), isolating one edge per bit node yields a new left

degree distribution described by the polynomial λ̃(x):

λ̃ (x) =
∑

i

λ̃i xi−1, λ̃i−1 =
λi(i − 1)/i∑
j λj(j − 1)/j

.

Proof: Let us define Tbit,i as the number of edges con-

nected to a bit node of degree i. Similarly, the number of

all edges is denoted Tbit. From section II, we know that

λ(x) =
∑dbmax

i=2 λix
i−1 expresses the left degree distribution,

where λi is the fraction of all edges in the Tanner graph,

connected to a bit node of degree i. So finally λi = Tbit,i

Tbit
. A

similar reasoning can be followed to determine λ̃i:

λ̃i−1
a)
=

Tbit,i −
λi

i Tbit

Tbit −
∑

j
λj

j Tbit

b)
=

λiTbit −
λi

i Tbit

Tbit −
∑

j
λj

j Tbit

=
λi −

λi

i∑
j

λj

j j −
∑

j
λj

j

=
λi

i (i − 1)
∑

j
λj

j (j − 1)
.

a)
∑

j
λj

j Tbit is equal to the number of edges that are

removed which is equal to the number of bits.

b) λiTbit is equal to the number of edges connected to

a bit of degree i.

Similarly, we can determine
˜̃
λ(x) =

∑
i
˜̃
λi xi−1, where

˜̃
λi−2 = λi(i−2)/i∑

j
λj(j−2)/j . It can be shown that

˜̃
λ(x) is the same as

applying the transformation (̃) two times consecutively, hence

first on λ(x), and then on λ̃(x).

B. DE trees and DE equations

The proposed code construction has 7 variable node types

and 4 check node types. But not all variable node types are

connected to all check node types. Therefore there are 14

evolution trees. But it is sufficient to draw only 7 of them

because of symmetry. To write down the equations we adopt

the following notation.

Let X1 ∼ p1(x) and X2 ∼ p2(x) be two independent real

random variables. The density function of X1+X2 is obtained

by convolving the two original densities, written as p1(x) ⊗
p2(x). The notation p(x)⊗n denotes the convolution of p(x)
with itself n times.

The density function p(y) of the variable Y =
2 th−1

(
th

(
X1

2

)
th

(
X2

2

))
, obtained through a check node with

X1 and X2 at the input, is obtained through the R-convolution

[9], written as p1(x) � p2(x). The notation th(.) denotes

the tangent hyperbolic function and p(x)�n denotes the

R-convolution of p(x) with itself n times.

To simplify the notations, we use the following definitions:

λ (p (x)) =
∑

i

λi p(x)⊗i−1, ρ (p (x)) =
∑

i

ρi p(x)�i−1.

Next, we will use the following definitions:

ρ (p (x) , t (x)) =
∑

i

(
ρi p(x)�i−1 � t(x)

)
,

λ∗ (p (x)) =
∑

i

λi p(x)⊗i−2,

ρ∗ (p (x)) =
∑

i

ρi p(x)�i−2.



10

The first definition is necessary because of the non-linearity

of the R-convolution. Therefore, the first equation is not equal

to t(x) � ρ (p (x)).

The following message densities at the mth iteration are dis-

tinguished:

am
1 (x)(x) = density of message from 1i1 to 1c,

fm
1 (x) = density of message from 1i1 to 3c,

km
1 (x) = density of message from 1p1 to 1c,

lm1 (x) = density of message from 2i1 to 1c,

qm
1 (x) = density of message from 2i1 to 3c,

gm
2 (x) = density of message from 2i2 to 3c,

bm
1 (x) = density of message from c(3) to 3c,

µ1(x) = density of the likelihood of the channel

in the 1st timeslot.

Proposition 3 The DE equations in the neighborhood of 1i1,

1p1, 2i1 and c(3) for all m are listed in Eqs. (12)-(18), where

f1i1c =

∑
i λ̊i(i − 1)∑
i ρ̊i(i − 1)

, (19)

f1p1c = 1 − f1i1c =

∑
i λ̊ii∑

i ρ̊i(i − 1)
, (20)

f2i3c =

∑
i λ̊i(i − 2)∑
i ρ̊i(i − 2)

, (21)

fc(3)3c = 1 − f2i3c =

∑
i λ̊ii∑

i ρ̊i(i − 2)
, (22)

f2i4c = f2i3c, (23)

fc(3)4c = fc(3)3c, (24)

f3cc(3) = 1 − f4cc(3), (25)

f3cc(3) = 0.5 ∗
fc(3)3c

∑
i ρ̊i(i − 2)

∑
i λ̊i(i)

, (26)

f4cc(3) = 0.5 ∗
fc(3)4c

∑
i ρ̊i(i − 2)

∑
i λ̊i(i)

, (27)

Note that the message densities propagating from bits of the

class 2i1 do not contain a channel observation µ1(x) because

these information bits are punctured.

Proof: See appendix B.

VII. NUMERICAL RESULTS

A. Full-diversity LDPC ensembles

We evaluated the finite length performance of full-diversity

LDPC codes and the asymptotic performance by applying DE

on the proposed code construction. The parity-check matrix

(35) is used by the destination to decode the information bits.

This paper focuses on full-diversity, rather than coding gain.

Therefore, one of the codes is a simple regular (3, 6) LDPC

code. This means that all the random matrices in (35) are

randomly generated satisfying an overall row weight of 6 and

an overall column weight of 3. This matrix corresponds to

a coding rate of 0.5, but because [2i1 2i2] are punctured,

10
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Finite length (3,6) LDPC code with N = 2000
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Fig. 8. Density evolution of full-diversity LDPC ensembles with maximum
coding rate Rc = 2

3
with iterative decoding on a MARC. Eb/N0 is the

average information bit energy-to-noise ratio on the S1-D, S2-D and R-D
links.

the actual coding rate is Rc = 2/3. The other code that is

simulated and is denoted as code 2 is an irregular (λ(x), ρ(x))
LDPC ensemble [22] with left and right degree distributions

given by the polynomials

λ(x) = 0.285486x + 0.31385x2 + 0.199606x7 + 0.201058x14,

ρ(x) = x8.

We studied the following scenario:

• The S1-D, S2-D and R-D links have the same average

SNR.

• The S1-R and S2-R links are perfect.

• The coding rate is Rc = 2
3 and the cooperation level is

β = 2
3 .

Fig. 8 shows the main results: the word error rate (WER)

of a regular (3,6) LDPC ensemble and of an irregular

(λ(x), ρ(x)) LDPC ensemble, which are both full-diversity.

It is clear that the DE results are a lower bound on the actual

word error rates (a tight lower bound for the regular code and

a less tight lower bound for the irregular code). The word

error rate of a regular (3, 6) LDPC code is only about 1.5dB
worse than the outage probability. The irregular LDPC code

is only slightly better than the regular (3,6) LDPC code in

terms of word error rate.

B. Full-diversity RA codes with improved coding gain

Another technique, suggested in [17] and investigated in

[18], that improves the coding gain is called doping. For

all the Rootcheck based LDPC codes the reliability of the

messages exchanged by the belief propagation algorithm can

be improved by increasing the reliability of parity bits (which

are not protected by rootchecks). In fact the LLR values of

the messages exchanged by the belief propagation algorithm

are in the form [17]:

Λm
l ∝

B∑

i=1

aiα
2
i + η
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am+1
1 (x) = µ1(x) ⊗ λ̃

(
ρ̃
(
f1i1c am

1 (x) + f1p1c km
1 (x), lm1 (x)

))
⊗ ρ̊∗

(
f2i3c qm

1 (x) + fc(3)3c bm
1 (x), gm

2 (x)
)
, (12)

fm+1
1 (x) = µ1(x) ⊗ λ̊

(
ρ̃
(
f1i1c am

1 (x) + f1p1c km
1 (x), lm1 (x)

))
, (13)

km+1
1 (x) = µ1(x) ⊗ λ

(
ρ̃
(
f1i1c am

1 (x) + f1p1c km
1 (x), lm1 (x)

))
, (14)

lm+1
1 (x) = λ̊∗

(
˜̃ρ
(
f2i3c qm

1 (x) + fc(3)3c bm
1 (x), fm

1 (x), gm
2 (x)

))
⊗ ρ̊∗

(
f2i4c qm

2 (x) + fc(3)4c bm
2 (x), fm

2 (x)
)
, (15)

qm+1
1 (x) =

˜̃
λ

(
˜̃ρ
(
f2i3c qm

1 (x) + fc(3)3c bm
1 (x), fm

1 (x), gm
2 (x)

))
⊗ ρ̊

(
f1i1c am

1 (x) + f1p1c km
1 (x)

)

⊗ρ̊∗
(
f2i4c qm

2 (x) + fc(3)4c bm
2 (x), fm

2 (x)
)
, (16)

gm+1
1 (x) = λ̊∗

(
˜̃ρ
(
f2i3c qm

1 (x) + fc(3)3c bm
1 (x), fm

1 (x), gm
2 (x)

))
⊗ ρ̊

(
f1i1c am

1 (x) + f1p1c km
1 (x)

)
, (17)

bm+1
1 (x) = µ3(x) ⊗ λ

(
f3cc(3) · ˜̃ρ

(
f2i3c qm

1 (x) + fc(3)3c · bm
1 (x), fm

1 (x), gm
2 (x)

)

+f4cc(3)
˜̃ρ
(
f2i4c qm

2 (x) + fc(3)4c bm
2 (x), fm

2 (x), gm
1 (x)

))
, (18)

where αi are the fading coefficients, ai are positive constants

and η represents the noise. The higher the coefficients ai,

the more reliable are the LLR messages. Since the output

messages of the check node are limited by the lowest LLR

values of the incoming messages, i.e., the messages coming

from parity bits, the doping technique aims to increase those

values. The least reliable variable nodes are the parity bits sent

on a channel in a deep fade.

In case of block-BEC, consider the parity bits sent on a

channel with fading coefficient α1 = 0 and suppose that all

the other fading coefficients are αi = ∞ with i 6= 1. Consider

the parity-check matrix (35). The doping technique consists

in fixing the random matrix H1p1 such that, under BP, all

the variable nodes can be recovered after a certain number of

iterations. This is equivalent of having reliable parity bits, i.e.,

connected to rootchecks of a certain order, and it guarantees

to increase the coefficients ai.

As proposed in [18], regardless the degree distribution,

we test the repeat-accumulate (RA) doping implementation

substituting the matrices H1p1 , H1p2 and HN with staircase

matrices (28). Moreover this particular structure offers the

possibility of encoding in linear time.



1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

. . .
. . .

...

0 0 . . . 1 1




(28)

Eq. (28) illustrates that the first parity bit of each class of parity

bits is connected to a second order rootcheck, the second parity

bit of each class of parity bits is connected to a third order

rootcheck, and so on.

Fig 9 reports the simulation results for a regular RA code

that show a 0.5dB improvement compared to the proposed

regular (3,6) code. Together with the fact that this simple
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Finite length (3,6) LDPC code with N = 2000

Finite length RA-Code with N = 2000

Finite length WiMax LDPC code with N = 2000

Outage Probability Rate-2/3, beta=1/3

Fig. 9. Comparison of proposed code construction with results from
literature. Eb/N0 is the average information bit energy-to-noise ratio on the
S1-D, S2-D and R-D links.

code is now linear-time encoding, this result is impressive

because we have lowered the complexity and improved the

performance at the same time. As a benchmark the outage

probability has been plotted. We have also included the best

known LDPC code for the MARC in literature: the rate 2/3
network code proposed in [16]; it reports a loss of almost

2.5dB wrt. the proposed full-diversity RA code.

VIII. CONCLUSIONS AND REMARKS

We have studied LDPC codes for the multiple access relay

channel in a slowly varying fading environment under iterative

decoding. LDPC codes must be carefully designed to achieve

full-diversity on this channel and network coding must be ap-

plied to increase the achievable coding rate to a maximum rate

Rcmax = 2/3. Combining network coding with full-diversity

channel coding gave rise to a new family of semi-random full-

diversity joint network-channel LDPC codes for all rates not
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exceeding Rcmax = 2/3. A code that is only 1.5dB away

from the outage probability limit has been presented.

For a block fading channel with several fading states per

codeword, it has been pointed out that the poor reliability of

the parity bits in full-diversity LDPC codes (where especially

the information bits are well protected) causes the actual gap

with the outage probability limit. We increased the reliability

of the parity bits by using a Repeat-Accumulate structure

and have improved the coding gain of the presented code

construction for the MARC.
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APPENDIX

A. Full-diversity parity-check matrices

The reader can find here a list of full-diversity parity-

check matrices H , i.e., matrices where all information bits

are assigned to a rootcheck in the last two set of rows 3c and

4c. Matrix (35) performs the best for reasons of symmetry

and randomness.

1i1 1p1 1i2 1p2 2i1 2i2 c(3)[
H1i1 H1p1 0 0 I 0 0

0 0 H1i2 H1p2 0 I 0

I 0 I 0 H2i1 0
HN0 0 H2i2 0 I I

]
1c

2c

3c

4c

(29)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)[
H1i1 H1p1 0 0 I 0 0

0 0 H1i2 H1p2 0 I 0

I 0 I 0 H2i1 H2i2 HN0 0 0 0 I I

]
1c

2c

3c

4c

(30)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)[
H1i1 H1p1 0 0 I 0 0

0 0 H1i2 H1p2 0 I 0

I 0 I 0 0 H2i1 HNH2i2 0 0 0 I I

]
1c

2c

3c

4c

(31)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)[
H1i1 H1p1 0 0 I 0 0

0 0 H1i2 H1p2 0 I 0

I 0 I 0 0 0
HNH2i1 0 H2i2 0 I I

]
1c

2c

3c

4c

(32)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)[
H1i1 H1p1 0 0 I 0 0

0 0 H1i2 H1p2 0 I 0

I 0 H2i1 0 0 I
HNH2i2 0 I 0 I 0

]
1c

2c

3c

4c

(33)

2i

����
����
����
����
����

����
����
����
����
����

1c

1

N
8

T1p

T1i

T
1p1

1i1

2i1

N
8

N
8

N
8

ρ(x)

Fig. 10. Part of the compact graph representation of the Tanner graph of
proposed code construction. The number of edges connecting (1i1 − 1p1)
to 1c is T . The number of edges connecting 1p1 to 1c is T1p . The number
of edges connecting 1i1 to 1c is T1i.

1i1 1p1 1i2 1p2 2i1 2i2 c(3)[
H1i1 H1p1 0 0 I 0 0

0 0 H1i2 H1p2 0 I 0

I 0 H2i1 0 H2i2 I
HN0 0 I 0 I 0

]
1c

2c

3c

4c

(34)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)[
H1i1 H1p1 0 0 I 0 0

0 0 H1i2 H1p2 0 I 0

I 0 0 0 H2i1 I
HN0 0 I 0 I H2i2

]
1c

2c

3c

4c

(35)

1i1 1p1 1i2 1p2 2i1 2i2 c(3)[
H1i1 H1p1 0 0 I 0 0

0 0 H1i2 H1p2 0 I 0

I 0 0 0 0 I
HNH2i1 0 I 0 I H2i2

]
1c

2c

3c

4c

(36)

B. Proof of proposition 3

Equations (12)-(24) are directly derived from the local

neighborhood trees (see for example Figs. 11 and 12). The

proportionality factors (19)-(24) can easily be determined by

analyzing the Tanner graph. Let T denote the total number of

edges between the variable nodes (1i1 − 1p1) and the check

nodes 1c. Fig. 10 illustrates how f1p1c and f1i1c are obtained:

T
a)
= N/8

∑

i

ρ̊i(i − 1) (37)

T1p
a)
= N/8

∑

i

λ̊ii (38)

T1i
a)
= N/8

∑

i

λ̊i(i − 1) (39)

f1p1c
b)
=

T1p

T
(40)

f1i1c
b)
=

T1i

T
. (41)

a) The fraction of check nodes connected to (i − 1)
edges of T is ρ̊i

N
8 . A similar reasoning proves
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Fig. 11. Local neighborhood of a bit node of the class 1i1. This tree is used

to determine am+1

1
(x).
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1

λ̊(x)
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ρ̃(x)
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1c

ρ̃(x)

1i1

1i1 1p1 2i1 1i1 1p1 2i1

Fig. 12. Local neighborhood of a bit node of the class 1i1. This tree is used

to determine fm+1

1
(x).

equations (38) and (39).

b) The fraction of edges T connecting 1p1 to 1c is

f1p1c. The fraction of edges T connecting 1i1 to 1c

is f1i4c.

Note that in the first iteration, a1
1(x), f1

1 (x), k1
1(x), b1

1(x)
are equal to µ1(x), because the received messages come

from check nodes where one of the leaves corresponds to a

punctured information bit (so that their message density is a

Dirac function on LLR = 0). Therefore the message densities

coming from the check nodes are also Dirac functions14 on

LLR = 0. But q1(x) and g1(x) are different from a Dirac

function on LLR = 0 after the first iteration, so that the next

iteration also l1(x) becomes different from a Dirac function

on LLR = 0.

The factor 0.5 in the equations (26) and (27) takes into

account that c(3) counts N/4 variable nodes while 3c and

14The output of a check node y is determined through its inputs xi, i =
1..dc − 1 via the following formula: th(y/2) =

∏dc−1

i=1
th(xi/2). If one of

the inputs xi is always zero because its distribution is a Dirac function on
LLR = 0, than the output y will always be zero, so that its distribution will
also be a Dirac function on LLR = 0.

4c count only N/8 parity check equations. Solving together

equations (24)-(27) it is possible to prove that for any degree

distribution

f3cc(3) = f4cc(3) = 1/2 (42)
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