194 research outputs found

    NP domino logic gates for Ultra Low Voltage and High Speed applications

    Get PDF
    In this thesis we present different configurations of digital circuits exploiting Ultra Low Voltage (ULV) NP domino logic style. The proposed logic style is utilized with the help of Floating gate transistors. The proposed NP domino logic gates are aimed to perform high speed operations in Ultra Low Voltage applications. The presented circuits may operate near the sub-threshold regime where the supply voltage is near the threshold voltage of the transistors. In terms of frequency, speed, robustness, Power Delay Product (PDP) and Energy Delay Product (EDP), the proposed ULV NP domino logic gates may offer significant improvement compared to the conventional CMOS logic gates. Different implementations of NOT, NAND and NOR gates are presented using both conventional and Pass Transistor Logic styles. Further, NAND and NOR gates are used to employ different configurations of Carry gates which is a speed limited factor in many arithmetic operations. These ULV NP domino Carry gates are simulated at different supply voltages in the range of 100mV to 400mV, and the performance results are presented with respect to delay, power, PDP and EDP. The proposed ULV NP domino Carry gates are cascaded together to perform addition in a 32-bit chain. The circuits are operated with respect to worst case scenario where the carry signal propagates through the whole chain. Multi-threshold (MTCMOS) and Variable-threshold (VTCMOS) techniques are employed in the ULV domino 32-bit carry chain in order to reduce the power consumption, meanwhile offering superb speed performance. Although the 32-bit carry chain offers a great advantage of speed improvement in the worst case scenario, the chain also introduces the drawback of enormous power consumption in the idle mode. The work in this thesis has resulted in three papers. Two of these papers represent various configurations of 1-bit ULV NP domino Carry gates, while the third paper examines the performance of one of the proposed ULV NP domino Carry gates in a 32-bit chain. The simulation results presented in this thesis are obtained using a 90nm TSMC CMOS process

    A Low-Voltage, Low-Power 4-bit BCD Adder, designed using the Clock Gated Power Gating, and the DVT Scheme

    Full text link
    This paper proposes a Low-Power, Energy Efficient 4-bit Binary Coded Decimal (BCD) adder design where the conventional 4-bit BCD adder has been modified with the Clock Gated Power Gating Technique. Moreover, the concept of DVT (Dual-vth) scheme has been introduced while designing the full adder blocks to reduce the Leakage Power, as well as, to maintain the overall performance of the entire circuit. The reported architecture of 4-bit BCD adder is designed using 45 nm technology and it consumes 1.384 {\mu}Watt of Average Power while operating with a frequency of 200 MHz, and a Supply Voltage (Vdd) of 1 Volt. The results obtained from different simulation runs on SPICE, indicate the superiority of the proposed design compared to the conventional 4-bit BCD adder. Considering the product of Average Power and Delay, for the operating frequency of 200 MHz, a fair 47.41 % reduction compared to the conventional design has been achieved with this proposed scheme.Comment: To appear in the proceedings of 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC,13

    Subthreshold Source-Coupled Logic Circuits for Ultra Low Power Applications

    Get PDF
    This article presents a novel approach for implementing ultra-low power digital components and systems using source-coupled logic (SCL) circuit topology, operating in weak inversion (sub-threshold) regime. PMOS transistors with shorted drain-substrate contacts are used as gate- controlled, very high resistivity load devices. Based on the proposed approach, the power consumption and the operation frequency of logic circuits can be scaled down linearly by changing the tail bias current of SCL gates over a very wide range spanning several orders of magnitude, which is not achievable in sub-threshold CMOS circuits. Measurements in conventional 0.18um CMOS technology show that the tail bias current of each gate can be set as low as 10pA, with a supply voltage of 300mV. Fundamental circuits such as ring oscillators and frequency dividers, as well as more complex digital blocks such as parallel multipliers designed by using the STSCL topology have been experimentally characterized

    Ultra Low Power Digital Circuit Design for Wireless Sensor Network Applications

    Get PDF
    Ny forskning innenfor feltet trĂ„dlĂžse sensornettverk Ă„pner for nye og innovative produkter og lĂžsninger. Biomedisinske anvendelser er blant omrĂ„dene med stĂžrst potensial og det investeres i dag betydelige belĂžp for Ă„ bruke denne teknologien for Ă„ gjĂžre medisinsk diagnostikk mer effektiv samtidig som man Ă„pner for fjerndiagnostikk basert pĂ„ trĂ„dlĂžse sensornoder integrert i et ”helsenett”. MĂ„let er Ă„ forbedre tjenestekvalitet og redusere kostnader samtidig som brukerne skal oppleve forbedret livskvalitet som fĂžlge av Ăžkt trygghet og mulighet for Ă„ tilbringe mest mulig tid i eget hjem og unngĂ„ unĂždvendige sykehusbesĂžk og innleggelser. For Ă„ gjĂžre dette til en realitet er man avhengige av sensorelektronikk som bruker minst mulig energi slik at man oppnĂ„r tilstrekkelig batterilevetid selv med veldig smĂ„ batterier. I sin avhandling ” Ultra Low power Digital Circuit Design for Wireless Sensor Network Applications” har PhD-kandidat Farshad Moradi fokusert pĂ„ nye lĂžsninger innenfor konstruksjon av energigjerrig digital kretselektronikk. Avhandlingen presenterer nye lĂžsninger bĂ„de innenfor aritmetiske og kombinatoriske kretser, samtidig som den studerer nye statiske minneelementer (SRAM) og alternative minnearkitekturer. Den ser ogsĂ„ pĂ„ utfordringene som oppstĂ„r nĂ„r silisiumteknologien nedskaleres i takt med mikroprosessorutviklingen og foreslĂ„r lĂžsninger som bidrar til Ă„ gjĂžre kretslĂžsninger mer robuste og skalerbare i forhold til denne utviklingen. De viktigste konklusjonene av arbeidet er at man ved Ă„ introdusere nye konstruksjonsteknikker bĂ„de er i stand til Ă„ redusere energiforbruket samtidig som robusthet og teknologiskalerbarhet Ăžker. Forskningen har vĂŠrt utfĂžrt i samarbeid med Purdue University og vĂŠrt finansiert av Norges ForskningsrĂ„d gjennom FRINATprosjektet ”Micropower Sensor Interface in Nanometer CMOS Technology”

    An Ultra-Low-Power 75mV 64-Bit Current-Mode Majority-Function Adder

    Get PDF
    Ultra-low-power circuits are becoming more desirable due to growing portable device markets and they are also becoming more interesting and applicable today in biomedical, pharmacy and sensor networking applications because of the nano-metric scaling and CMOS reliability improvements. In this thesis, three main achievements are presented in ultra-low-power adders. First, a new majority function algorithm for carry and the sum generation is presented. Then with this algorithm and implied new architecture, we achieved a circuit with 75mV supply voltage operation. Last but not least, a 64 bit current-mode majority-function adder based on the new architecture and algorithm is successfully tested at 75mV supply voltage. The circuit consumed 4.5nW or 3.8pJ in one of the worst conditions

    Harnessing resilience: biased voltage overscaling for probabilistic signal processing

    Get PDF
    A central component of modern computing is the idea that computation requires determinism. Contrary to this belief, the primary contribution of this work shows that useful computation can be accomplished in an error-prone fashion. Focusing on low-power computing and the increasing push toward energy conservation, the work seeks to sacrifice accuracy in exchange for energy savings. Probabilistic computing forms the basis for this error-prone computation by diverging from the requirement of determinism and allowing for randomness within computing. Implemented as probabilistic CMOS (PCMOS), the approach realizes enormous energy sav- ings in applications that require probability at an algorithmic level. Extending probabilistic computing to applications that are inherently deterministic, the biased voltage overscaling (BIVOS) technique presented here constrains the randomness introduced through PCMOS. Doing so, BIVOS is able to limit the magnitude of any resulting deviations and realizes energy savings with minimal impact to application quality. Implemented for a ripple-carry adder, array multiplier, and finite-impulse-response (FIR) filter; a BIVOS solution substantially reduces energy consumption and does so with im- proved error rates compared to an energy equivalent reduced-precision solution. When applied to H.264 video decoding, a BIVOS solution is able to achieve a 33.9% reduction in energy consumption while maintaining a peak-signal-to-noise ratio of 35.0dB (compared to 14.3dB for a comparable reduced-precision solution). While the work presented here focuses on a specific technology, the technique realized through BIVOS has far broader implications. It is the departure from the conventional mindset that useful computation requires determinism that represents the primary innovation of this work. With applicability to emerging and yet to be discovered technologies, BIVOS has the potential to contribute to computing in a variety of fashions.PhDCommittee Chair: Anderson, David; Committee Member: Conte, Thomas; Committee Member: Ferri, Bonnie; Committee Member: Hasler, Paul; Committee Member: Mooney, Vincen

    Design of variability compensation architectures of digital circuits with adaptive body bias

    Get PDF
    The most critical concern in circuit is to achieve high level of performance with very tight power constraint. As the high performance circuits moved beyond 45nm technology one of the major issues is the parameter variation i.e. deviation in process, temperature and voltage (PVT) values from nominal specifications. A key process parameter subject to variation is the transistor threshold voltage (Vth) which impacts two important parameters: frequency and leakage power. Although the degradation can be compensated by the worstcase scenario based over-design approach, it induces remarkable power and performance overhead which is undesirable in tightly constrained designs. Dynamic voltage scaling (DVS) is a more power efficient approach, however its coarse granularity implies difficulty in handling fine grained variations. These factors have contributed to the growing interest in power aware robust circuit design. We propose a variability compensation architecture with adaptive body bias, for low power applications using 28nm FDSOI technology. The basic approach is based on a dynamic prediction and prevention of possible circuit timing errors. In our proposal we are using a Canary logic technique that enables the typical-case design. The body bias generation is based on a DLL type method which uses an external reference generator and voltage controlled delay line (VCDL) to generate the forward body bias (FBB) control signals. The adaptive technique is used for dynamic detection and correction of path failures in digital designs due to PVT variations. Instead of tuning the supply voltage, the key idea of the design approach is to tune the body bias voltage bymonitoring the error rate during operation. The FBB increases operating speed with an overhead in leakage power

    25 Years Ago: The First Asynchronous Microprocessor

    Get PDF
    Twenty-five years ago, in December 1988, my research group at Caltech submitted the world’s first asynchronous (“clockless”) microprocessor design for fabrication to MOSIS. We received the chips in early 1989; testing started in February 1989. The chips were found fully functional on first silicon. The results were presented at the Decennial Caltech VLSI Conference in March of the same year. The first entirely asynchronous microprocessor had been designed and successfully fabricated. As the technology finally reaches industry, and with the benefit of a quarter-century hindsight, here is a recollection of this landmark project

    A Constant Delay Logic Style - An Alternative Way of Logic Design

    Get PDF
    High performance, energy efficient logic style has always been a popular research topic in the field of very large scale integrated (VLSI) circuits because of the continuous demands of ever increasing circuit operating frequency. The invention of the dynamic logic in the 80s is one of the answers to this request as it allows designers to implement high performance circuit block, i.e., arithmetic logic unit (ALU), at an operating frequency that traditional static and pass transistor CMOS logic styles are difficult to achieve. However, the performance enhancement comes with several costs, including reduced noise margin,charge-sharing noise, and higher power dissipation due to higher data activity. Furthermore, dynamic logic has gradually lost its performance advantage over static logic due to the increased self-loading ratio in deep-submicron technology (65nm and below) because of the additional NMOS CLK footer transistor. Because of dynamic logic's limitations and diminished speed reward, a slowly rising need has emerged in the past decade to explore new logic style that goes beyond dynamic logic. In this thesis a constant delay (CD) logic style is proposed. The constant delay characteristic of this logic style regardless of the logic expression makes it suitable in implementing complicated logic expression such as addition. Moreover, CD logic exhibits a unique characteristic where the output is pre-evaluated before the inputs from the preceding stage is ready. This feature enables performance advantage over static and dynamic logic styles in a single cycle, multi-stage circuit block. Several design considerations including appropriate timing window width adjustment to reduce power consumption and maintain sufficient noise margin to ensure robust operations are discussed and analyzed. Using 65nm general purpose CMOS technology, the proposed logic demonstrates an average speed up of 94% and 56% over static and dynamic logic respectively in five different logic expressions. Post layout simulation results of 8-bit ripple carry adders conclude that CD-based design is 39% and 23% faster than the static and dynamic-based adders respectively. For ultra-high speed applications, CD-based design exhibits improved energy, power-delay product, and energy-delay product efficiency compared to static and dynamic counterparts

    Spin-Based Neuron Model with Domain Wall Magnets as Synapse

    Full text link
    We present artificial neural network design using spin devices that achieves ultra low voltage operation, low power consumption, high speed, and high integration density. We employ spin torque switched nano-magnets for modelling neuron and domain wall magnets for compact, programmable synapses. The spin based neuron-synapse units operate locally at ultra low supply voltage of 30mV resulting in low computation power. CMOS based inter-neuron communication is employed to realize network-level functionality. We corroborate circuit operation with physics based models developed for the spin devices. Simulation results for character recognition as a benchmark application shows 95% lower power consumption as compared to 45nm CMOS design
    • 

    corecore