We present artificial neural network design using spin devices that achieves
ultra low voltage operation, low power consumption, high speed, and high
integration density. We employ spin torque switched nano-magnets for modelling
neuron and domain wall magnets for compact, programmable synapses. The spin
based neuron-synapse units operate locally at ultra low supply voltage of 30mV
resulting in low computation power. CMOS based inter-neuron communication is
employed to realize network-level functionality. We corroborate circuit
operation with physics based models developed for the spin devices. Simulation
results for character recognition as a benchmark application shows 95% lower
power consumption as compared to 45nm CMOS design