2,653 research outputs found

    List of requirements on formalisms and selection of appropriate tools

    Get PDF
    This deliverable reports on the activities for the set-up of the modelling environments for the evaluation activities of WP5. To this objective, it reports on the identified modelling peculiarities of the electric power infrastructure and the information infrastructures and of their interdependencies, recalls the tools that have been considered and concentrates on the tools that are, and will be, used in the project: DrawNET, DEEM and EPSys which have been developed before and during the project by the partners, and M\uf6bius and PRISM, developed respectively at the University of Illinois at Urbana Champaign and at the University of Birmingham (and recently at the University of Oxford)

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Transient analysis of manufacturing system performance

    Get PDF
    Includes bibliographical references (p. 28-34).Supported by the INDO-US Science and Technology Fellowship Program.Y. Narahari, N. Viswanadham

    Reliability assessment of manufacturing systems: A comprehensive overview, challenges and opportunities

    Get PDF
    Reliability assessment refers to the process of evaluating reliability of components or systems during their lifespan or prior to their implementation. In the manufacturing industry, the reliability of systems is directly linked to production efficiency, product quality, energy consumption, and other crucial performance indicators. Therefore, reliability plays a critical role in every aspect of manufacturing. In this review, we provide a comprehensive overview of the most significant advancements and trends in the assessment of manufacturing system reliability. For this, we also consider the three main facets of reliability analysis of cyber–physical systems, i.e., hardware, software, and human-related reliability. Beyond the overview of literature, we derive challenges and opportunities for reliability assessment of manufacturing systems based on the reviewed literature. Identified challenges encompass aspects like failure data availability and quality, fast-paced technological advancements, and the increasing complexity of manufacturing systems. In turn, the opportunities include the potential for integrating various assessment methods, and leveraging data to automate the assessment process and to increase accuracy of derived reliability models

    Approximation methods for stochastic petri nets

    Get PDF
    Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay equivalence often fails to converge, while flow equivalent aggregation can lead to potentially bad results if a strong dependence of the mean completion time on the interarrival process exists

    Enhancing the performance of automated guided vehicles through reliability, operation and maintenance assessment

    Get PDF
    Automated guided vehicles (AGVs), a type of unmanned moving robots that move along fixed routes or are directed by laser navigation systems, are increasingly used in modern society to improve efficiency and lower the cost of production. A fleet of AGVs operate together to form a fully automatic transport system, which is known as an AGV system. To date, their added value in efficiency improvement and cost reduction has been sufficiently explored via conducting in-depth research on route optimisation, system layout configuration, and traffic control. However, their safe application has not received sufficient attention although the failure of AGVs may significantly impact the operation and efficiency of the entire system. This issue becomes more markable today particularly in the light of the fact that the size of AGV systems is becoming much larger and their operating environment is becoming more complex than ever before. This motivates the research into AGV reliability, availability and maintenance issues in this thesis, which aims to answer the following four fundamental questions: (1) How could AGVs fail? (2) How is the reliability of individual AGVs in the system assessed? (3) How does a failed AGV affect the operation of the other AGVs and the performance of the whole system? (4) How can an optimal maintenance strategy for AGV systems be achieved? In order to answer these questions, the method for identifying the critical subsystems and actions of AGVs is studied first in this thesis. Then based on the research results, mathematical models are developed in Python to simulate AGV systems and assess their performance in different scenarios. In the research of this thesis, Failure Mode, Effects and Criticality Analysis (FMECA) was adopted first to analyse the failure modes and effects of individual AGV subsystems. The interactions of these subsystems were studied via performing Fault Tree Analysis (FTA). Then, a mathematical model was developed to simulate the operation of a single AGV with the aid of Petri Nets (PNs). Since most existing AGV systems in modern industries and warehouses consist of multiple AGVs that operate synchronously to perform specific tasks, it is necessary to investigate the interactions between different AGVs in the same system. To facilitate the research of multi-AGV systems, the model of a three-AGV system with unidirectional paths was considered. In the model, an advanced concept PN, namely Coloured Petri Net (CPN), was creatively used to describe the movements of the AGVs. Attributing to the application of CPN, not only the movements of the AGVs but also the various operation and maintenance activities of the AGV systems (for example, item delivery, corrective maintenance, periodic maintenance, etc.) can be readily simulated. Such a unique technique provides us with an effective tool to investigate larger-scale AGV systems. To investigate the reliability, efficiency and maintenance of dynamic AGV systems which consist of multiple single-load and multi-load AGVs traveling along different bidirectional routes in different missions, an AGV system consisting of 9 stations was simulated using the CPN methods. Moreover, the automatic recycling of failed AGVs is studied as well in order to further reduce human participation in the operation of AGV systems. Finally, the simulation results were used to optimise the design, operation and maintenance of multi-AGV systems with the consideration of the throughputs and corresponding costs of them.The research reported in this thesis contributes to the design, reliability, operation, and maintenance of large-scale AGV systems in the modern and rapidly changing world.</div

    Computer-aided HAZOP of batch processes

    Get PDF
    The modern batch chemical processing plants have a tendency of increasing technological complexity and flexibility which make it difficult to control the occurrence of accidents. Social and legal pressures have increased the demands for verifying the safety of chemical plants during their design and operation. Complete identification and accurate assessment of the hazard potential in the early design stages is therefore very important so that preventative or protective measures can be integrated into future design without adversely affecting processing and control complexity or capital and operational costs. Hazard and Operability Study (HAZOP) is a method of systematically identifying every conceivable process deviation, its abnormal causes and adverse hazardous consequences in the chemical plants. [Continues.
    • …
    corecore