3,865 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Video streaming

    Get PDF
    B

    Video compression dataset and benchmark of learning-based video-quality metrics

    Full text link
    Video-quality measurement is a critical task in video processing. Nowadays, many implementations of new encoding standards - such as AV1, VVC, and LCEVC - use deep-learning-based decoding algorithms with perceptual metrics that serve as optimization objectives. But investigations of the performance of modern video- and image-quality metrics commonly employ videos compressed using older standards, such as AVC. In this paper, we present a new benchmark for video-quality metrics that evaluates video compression. It is based on a new dataset consisting of about 2,500 streams encoded using different standards, including AVC, HEVC, AV1, VP9, and VVC. Subjective scores were collected using crowdsourced pairwise comparisons. The list of evaluated metrics includes recent ones based on machine learning and neural networks. The results demonstrate that new no-reference metrics exhibit a high correlation with subjective quality and approach the capability of top full-reference metrics.Comment: 10 pages, 4 figures, 6 tables, 1 supplementary materia

    Video Compression and Optimization Technologies - Review

    Get PDF
    The use of video streaming is constantly increasing. High-resolution video requires resources on both the sender and the receiver side. There are many compression techniques that can be utilized to compress the video and simultaneously maintain quality. The main goal of this paper is to provide an overview of video streaming and QoE. This paper describes the basic concepts and discusses existing methodologies to measure QoE. Subjective, objective, and video compression technologies are discussed. This review paper gathers the codec implementation developed by MPEG, Google, and Apple. This paper outlines the challenges and future research directions that should be considered in the measurement and assessment of quality of experience for video services
    corecore