1,355 research outputs found

    A general framework of multi-population methods with clustering in undetectable dynamic environments

    Get PDF
    Copyright @ 2011 IEEETo solve dynamic optimization problems, multiple population methods are used to enhance the population diversity for an algorithm with the aim of maintaining multiple populations in different sub-areas in the fitness landscape. Many experimental studies have shown that locating and tracking multiple relatively good optima rather than a single global optimum is an effective idea in dynamic environments. However, several challenges need to be addressed when multi-population methods are applied, e.g., how to create multiple populations, how to maintain them in different sub-areas, and how to deal with the situation where changes can not be detected or predicted. To address these issues, this paper investigates a hierarchical clustering method to locate and track multiple optima for dynamic optimization problems. To deal with undetectable dynamic environments, this paper applies the random immigrants method without change detection based on a mechanism that can automatically reduce redundant individuals in the search space throughout the run. These methods are implemented into several research areas, including particle swarm optimization, genetic algorithm, and differential evolution. An experimental study is conducted based on the moving peaks benchmark to test the performance with several other algorithms from the literature. The experimental results show the efficiency of the clustering method for locating and tracking multiple optima in comparison with other algorithms based on multi-population methods on the moving peaks benchmark

    Comparison of Three Different Curves Used in Path Planning Problems Based on Particle Swarm Optimizer

    Get PDF
    In path planning problems, the most important task is to find a suitable collision-free path which satisfies some certain criteria (the shortest path length, security, feasibility, smoothness, and so on), so defining a suitable curve to describe path is essential. Three different commonly used curves are compared and discussed based on their performance on solving a set of path planning problems. Dynamic multiswarm particle swarm optimizer is employed to optimize the necessary parameters for these curves. The results show that Bezier curve is the most suitable curve for producing path for the certain path planning problems discussed in this paper. Safety criterion is considered as a constrained condition. A new constraint handling method is proposed and compared with other two constraint handling methods. The results show that the new method has a better characteristic to improve the performance of algorithm

    Optimal control problems solved via swarm intelligence

    Get PDF
    Questa tesi descrive come risolvere problemi di controllo ottimo tramite swarm in telligence. Grande enfasi viene posta circa la formulazione del problema di controllo ottimo, in particolare riguardo a punti fondamentali come l’identificazione delle incognite, la trascrizione numerica e la scelta del risolutore per la programmazione non lineare. L’algoritmo Particle Swarm Optimization viene preso in considerazione e la maggior parte dei problemi proposti sono risolti utilizzando una formulazione differential flatness. Quando viene usato l’approccio di dinamica inversa, il problema di ottimo relativo ai parametri di trascrizione è risolto assumendo che le traiettorie da identificare siano approssimate con curve B-splines. La tecnica Inverse-dynamics Particle Swarm Optimization, che viene impiegata nella maggior parte delle applicazioni numeriche di questa tesi, è una combinazione del Particle Swarm e della formulazione differential flatness. La tesi investiga anche altre opportunità di risolvere problemi di controllo ottimo tramite swarm intelligence, per esempio usando un approccio di dinamica diretta e imponendo a priori le condizioni necessarie di ottimalitá alla legge di controllo. Per tutti i problemi proposti, i risultati sono analizzati e confrontati con altri lavori in letteratura. Questa tesi mostra quindi the algoritmi metaeuristici possono essere usati per risolvere problemi di controllo ottimo, ma soluzioni ottime o quasi-ottime possono essere ottenute al variare della formulazione del problema.This thesis deals with solving optimal control problems via swarm intelligence. Great emphasis is given to the formulation of the optimal control problem regarding fundamental issues such as unknowns identification, numerical transcription and choice of the nonlinear programming solver. The Particle Swarm Optimization is taken into account, and most of the proposed problems are solved using a differential flatness formulation. When the inverse-dynamics approach is used, the transcribed parameter optimization problem is solved assuming that the unknown trajectories are approximated with B-spline curves. The Inverse-dynamics Particle Swarm Optimization technique, which is employed in the majority of the numerical applications in this work, is a combination of Particle Swarm and differential flatness formulation. This thesis also investigates other opportunities to solve optimal control problems with swarm intelligence, for instance using a direct dynamics approach and imposing a-priori the necessary optimality conditions to the control policy. For all the proposed problems, results are analyzed and compared with other works in the literature. This thesis shows that metaheuristic algorithms can be used to solve optimal control problems, but near-optimal or optimal solutions can be attained depending on the problem formulation

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    A hybrid multi objective cellular spotted hyena optimizer for wellbore trajectory optimization

    Get PDF
    Cost and safety are critical factors in the oil and gas industry for optimizing wellbore trajectory, which is a constrained and nonlinear optimization problem. In this work, the wellbore trajectory is optimized using the true measured depth, well profile energy, and torque. Numerous metaheuristic algorithms were employed to optimize these objectives by tuning 17 constrained variables, with notable drawbacks including decreased exploitation/exploration capability, local optima trapping, non-uniform distribution of non-dominated solutions, and inability to track isolated minima. The purpose of this work is to propose a modified multi-objective cellular spotted hyena algorithm (MOCSHOPSO) for optimizing true measured depth, well profile energy, and torque. To overcome the aforementioned difficulties, the modification incorporates cellular automata (CA) and particle swarm optimization (PSO). By adding CA, the SHO\u27s exploration phase is enhanced, and the SHO\u27s hunting mechanisms are modified with PSO\u27s velocity update property. Several geophysical and operational constraints have been utilized during trajectory optimization and data has been collected from the Gulf of Suez oil field. The proposed algorithm was compared with the standard methods (MOCPSO, MOSHO, MOCGWO) and observed significant improvements in terms of better distribution of non-dominated solutions, better-searching capability, a minimum number of isolated minima, and better Pareto optimal front. These significant improvements were validated by analysing the algorithms in terms of some statistical analysis, such as IGD, MS, SP, and ER. The proposed algorithm has obtained the lowest values in IGD, SP and ER, on the other side highest values in MS. Finally, an adaptive neighbourhood mechanism has been proposed which showed better performance than the fixed neighbourhood topology such as L5, L9, C9, C13, C21, and C25. Hopefully, this newly proposed modified algorithm will pave the way for better wellbore trajectory optimization

    AFIT UAV Swarm Mission Planning and Simulation System

    Get PDF
    The purpose of this research is to design and implement a comprehensive mission planning system for swarms of autonomous aerial vehicles. The system integrates several problem domains including path planning, vehicle routing, and swarm behavior. The developed system consists of a parallel, multi-objective evolutionary algorithm-based path planner, a genetic algorithm-based vehicle router, and a parallel UAV swarm simulator. Each of the system\u27s three primary components are developed on AFIT\u27s Beowulf parallel computer clusters. Novel aspects of this research include: integrating terrain following technology into a swarm model as a means of detection avoidance, combining practical problems of path planning and routing into a comprehensive mission planning strategy, and the development of a swarm behavior model with path following capabilities

    A review of optimization techniques in spacecraft flight trajectory design

    Get PDF
    For most atmospheric or exo-atmospheric spacecraft flight scenarios, a well-designed trajectory is usually a key for stable flight and for improved guidance and control of the vehicle. Although extensive research work has been carried out on the design of spacecraft trajectories for different mission profiles and many effective tools were successfully developed for optimizing the flight path, it is only in the recent five years that there has been a growing interest in planning the flight trajectories with the consideration of multiple mission objectives and various model errors/uncertainties. It is worth noting that in many practical spacecraft guidance, navigation and control systems, multiple performance indices and different types of uncertainties must frequently be considered during the path planning phase. As a result, these requirements bring the development of multi-objective spacecraft trajectory optimization methods as well as stochastic spacecraft trajectory optimization algorithms. This paper aims to broadly review the state-of-the-art development in numerical multi-objective trajectory optimization algorithms and stochastic trajectory planning techniques for spacecraft flight operations. A brief description of the mathematical formulation of the problem is firstly introduced. Following that, various optimization methods that can be effective for solving spacecraft trajectory planning problems are reviewed, including the gradient-based methods, the convexification-based methods, and the evolutionary/metaheuristic methods. The multi-objective spacecraft trajectory optimization formulation, together with different class of multi-objective optimization algorithms, is then overviewed. The key features such as the advantages and disadvantages of these recently-developed multi-objective techniques are summarised. Moreover, attentions are given to extend the original deterministic problem to a stochastic version. Some robust optimization strategies are also outlined to deal with the stochastic trajectory planning formulation. In addition, a special focus will be given on the recent applications of the optimized trajectory. Finally, some conclusions are drawn and future research on the development of multi-objective and stochastic trajectory optimization techniques is discussed
    corecore