165,767 research outputs found

    Evaluating certification protocols in the partial database state machine

    Get PDF
    Partial replication is an alluring technique to ensure the reliability of very large and geographically distributed databases while, at the same time, offering good performance. By correctly exploiting access locality most transactions become confined to a small subset of the database replicas thus reducing processing, storage access and communication overhead associated with replication. The advantages of partial replication have however to be weighted against the added complexity that is required to manage it. In fact, if the chosen replica configuration prevents the local execution of transactions or if the overhead of consistency protocols offsets the savings of locality, potential gains cannot be realized. These issues are heavily dependent on the application used for evaluation and render simplistic benchmarks useless. In this paper, we present a detailed analysis of Partial Database State Machine (PDBSM) replication by comparing alternative partial replication protocols with full replication. This is done using a realistic scenario based on a detailed network simulator and access patterns from an industry standard database benchmark. The results obtained allow us to identify the best configuration for typical on-line transaction processing applications.União Europeia - GORDA Project (FP6-IST/004758)

    A Configurable Transport Layer for CAF

    Full text link
    The message-driven nature of actors lays a foundation for developing scalable and distributed software. While the actor itself has been thoroughly modeled, the message passing layer lacks a common definition. Properties and guarantees of message exchange often shift with implementations and contexts. This adds complexity to the development process, limits portability, and removes transparency from distributed actor systems. In this work, we examine actor communication, focusing on the implementation and runtime costs of reliable and ordered delivery. Both guarantees are often based on TCP for remote messaging, which mixes network transport with the semantics of messaging. However, the choice of transport may follow different constraints and is often governed by deployment. As a first step towards re-architecting actor-to-actor communication, we decouple the messaging guarantees from the transport protocol. We validate our approach by redesigning the network stack of the C++ Actor Framework (CAF) so that it allows to combine an arbitrary transport protocol with additional functions for remote messaging. An evaluation quantifies the cost of composability and the impact of individual layers on the entire stack

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    When Should I Use Network Emulation?

    Get PDF
    The design and development of a complex system requires an adequate methodology and efficient instrumental support in order to early detect and correct anomalies in the functional and non-functional properties of the tested protocols. Among the various tools used to provide experimental support for such developments, network emulation relies on real-time production of impairments on real traffic according to a communication model, either realistically or not. This paper aims at simply presenting to newcomers in network emulation (students, engineers, ...) basic principles and practices illustrated with a few commonly used tools. The motivation behind is to fill a gap in terms of introductory and pragmatic papers in this domain. The study particularly considers centralized approaches, allowing cheap and easy implementation in the context of research labs or industrial developments. In addition, an architectural model for emulation systems is proposed, defining three complementary levels, namely hardware, impairment and model levels. With the help of this architectural framework, various existing tools are situated and described. Various approaches for modeling the emulation actions are studied, such as impairment-based scenarios and virtual architectures, real-time discrete simulation and trace-based systems. Those modeling approaches are described and compared in terms of services and we study their ability to respond to various designer needs to assess when emulation is needed
    corecore