41 research outputs found

    Interference mitigation using group decoding in multiantenna systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Outage probability formulas for cellular networks (contributions for MIMO, CoMP and time reversal features)

    Get PDF
    L étude de dimensionnement d un réseau cellulaire est une phase de conception qui doit permettre de déterminer les performances d un système dans une configuration donnée. Elle inclut l étude de couverture et l analyse de trafic. De complexes simulations sont possibles pour connaître les paramètres de performances d un réseau mais seules les études analytiques fournissent des résultats rapides. Par ailleurs, pour faire face à la demande de hauts débits, à la rareté du spectre fréquentiel et à l impossibilité d émettre à de plus fortes puissances, de nouvelles techniques de transmissions sont apparues. Nous sommes ainsi passés d un système classique à une seule antenne à des systèmes à multiple antennes et même à des scénarios de coopération entre stations de base. Dans cette thèse, nous proposons des modèles analytiques pour l étude des performances, notamment en termes de probabilités de coupure, de ces évolutions des réseaux cellulaires. Dans une première phase, nous considérons des systèmes multicellulaires à une antenne émettrice et une antenne réceptrice (SISO). Nous proposons deux méthodes d étude de l impact conjoint de l affaiblissement de parcours, de l effet de masque et des évanouissements rapides. Nous étudions, par la suite, un système à large bande utilisant le retournement temporel comme technique de transmission. Dans une deuxième phase, nous considérons des systèmes multicellulaires à antennes multiple à l émission ou à la réception (MISO/MIMO) implémentant les schémas de diversité Alamouti et de combinaison par rapport maximal (MRC). Ensuite, nous considérons un système multicellulaire multi-utilisateurs à précodage de forçage à zéro (ZFBF).The implementation of cellular systems have aroused issues related to the design of cellular networks termed to as network dimensioning. It includes the coverage estimation and thetraffic analysis. Simple models and methods are required to reduce the time consumption of these two analysis. At the same time, the growing demand for higher data rates constrained by the scarcity of frequency spectrum, and the requirements in terms of power consumption reduction make the telecommunication community think about new transmission techniques moving from the classical single antenna systems to multiple antenna systems and even the newly envisaged cooperative systems. In this thesis, we provide analytical models to assess the performance of these different cellular network evolutions in terms of outage probabilities. In a first study, we consider multicellular single input single output (SISO) systems. First, we propose two accurate methods to study the joint impact of path-loss, shadowing and fast fading. This system has so far been studied either considering the only impact of path-loss and Rayleigh fading, or considering the same channel model as in our case but providing very complex outage probability expressions. Then, we provide an outage probability expression in a wideband communication context implementing the Time Reversal (TR) transmission technique considering the impact of fast fading. In a second study, we focus on multiple antenna systems. We study the performance of a Multiple Input Multiple Output (MIMO) system implementing a transmit and a receivediversity schemes namely the Alamouti code and the Maximum Ratio Combining (MRC).PARIS-Télécom ParisTech (751132302) / SudocSudocFranceF

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Técnicas de equalização e pré-codificação para sistemas MC-CDMA

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesO número de dispositivos com ligações e aplicações sem fios está a aumentar exponencialmente, causando problemas de interferência e diminuindo a capacidade do sistema. Isto desencadeou uma procura por uma eficiência espectral superior e, consequentemente, tornou-se necessário desenvolver novas arquitecturas celulares que suportem estas novas exigências. Coordenação ou cooperação multicelular é uma arquitectura promissora para sistemas celulares sem fios. Esta ajuda a mitigar a interferência entre células, melhorando a equidade e a capacidade do sistema. É, portanto, uma arquitectura já em estudo ao abrigo da tecnologia LTE-Advanced sob o conceito de coordenação multiponto (CoMP). Nesta dissertação, considerámos um sistema coordenado MC-CDMA com pré-codificação e equalização iterativas. Uma das técnicas mais eficientes de pré-codificação é o alinhamento de interferências (IA). Este é um conceito relativamente novo que permite aumentar a capacidade do sistema em canais de elevada interferência. Sabe-se que, para os sistemas MC-CDMA, os equalizadores lineares convencionais não são os mais eficientes, devido à interferência residual entre portadoras (ICI). No entanto, a equalização iterativa no domínio da frequência (FDE) foi identificada como sendo uma das técnicas mais eficientes para lidar com ICI e explorar a diversidade oferecida pelos sistemas MIMO MC-CDMA. Esta técnica é baseada no conceito Iterative Block Decision Feedback Equalization (IB-DFE). Nesta dissertação, é proposto um sistema MC-CDMA que une a pré-codificação iterativa do alinhamento de interferências no transmissor ao equalizador baseado no IB-DFE, com cancelamento sucessivo de interferências (SIC) no receptor. Este é construído por dois blocos: um filtro linear, que mitiga a interferência inter-utilizador, seguido por um bloco iterativo no domínio da frequência, que separa eficientemente os fluxos de dados espaciais na presença de interferência residual inter-utilizador alinhada. Este esquema permite atingir o número máximo de graus de liberdade e permite simultaneamente um ganho óptimo de diversidade espacial. O desempenho deste esquema está perto do filtro adaptado- Matched Filter Bound (MFB).The number of devices with wireless connections and applications is increasing exponentially, causing interference problems and reducing the system’s capacity gain. This initiated a search for a higher spectral efficiency and therefore it became necessary to develop new cellular architectures that support these new requirements. Multicell cooperation or coordination is a promising architecture for cellular wireless systems to mitigate intercell interference, improving system fairness and increasing capacity, and thus is already under study in LTE-Advanced under the coordinated multipoint (CoMP) concept. In this thesis, efficient iterative precoding and equalization is considered for coordinated MC-CDMA based systems. One of the most efficient precoding techniques is interference alignment (IA), which is a relatively new concept that allows high capacity gains in interfering channels. It is well known that for MC-CDMA systems standard linear equalizers are not the most efficient due to residual inter carrier interference (ICI). However, iterative frequency-domain equalization (FDE) has been identified as one of the most efficient technique to deal with ICI and exploit the inherent space-frequency diversity of the MIMO MC-CDMA systems, namely the one based on Iterative Block Decision Feedback Equalization (IB-DFE) concept. In this thesis, it is proposed a MC-CDMA system that joins iterative IA precoding at the transmitter with IB-DFE successive interference cancellation (SIC) based receiver structure. The receiver is implemented in two steps: a linear filter, which mitigates the inter-user aligned interference, followed by an iterative frequency-domain receiver, which efficiently separates the spatial streams in the presence of residual inter-user aligned interference. This scheme provides the maximum degrees of freedom (DoF) and allows almost the optimum space-diversity gain. The scheme performance is close to the matched filter bound (MFB)

    Evaluation of Beamforming Algorithms for Massive MIMO

    Get PDF
    Massive MIMO relay system is an expansion of the Multiple-Input-Multiple-Output (MIMO) which enabled multiple users and antennas to communicate with each other for data sharing. A relay system with multiple antenna system has an advantage over simple MIMO system as it interconnects base station and users with each other for sharing of information and both BS and users are independent of many antennas. High data rate applications such as Machine-to-Machine communication and wireless sensor networks are experiencing transmit power loss, channel capacity and mismanagement of data. The demand for the Massive MIMO relay system is opening a door for ultra-high latency wireless network applications in case of saving transmit power and transmission of accurate information over the wireless networks. Due to the loss in transmit power and mismanagement of information over wireless networks, it is difficult to get better performance. Different approaches were made to optimize the overall transmit power of communication systems. One of the approaches was explained in this thesis work. The focus of the thesis is the use of beamforming algorithms named as Maximum Ratio Combining (MRC) and Zero-Forcing (ZF) to maximize the overall capacity of the MIMO system. These algorithms were evaluated on different scenarios to handle the performance and behavior with different network conditions. Various use cases were used for analyzing the beamforming algorithms. The performance of both algorithms was observed by considering the scenarios such as varying the transmit and receive antenna’s size and modulation schemes. Singular Value Decomposition (SVD) Method was used at the main MIMO channel to optimize the channel capacity. SVD divides the MIMO channel into different subchannels and optimizes the channel capacity of individual channels. The summary of results showed that MRC and ZF in the CP-OFDM environment when the number of RX antennas increased then they gave better BER performance as compared to the single antenna system. On the other hand, with higher modulation schemes efficiency was not good but with lower modulation scheme performance was satisfactory

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Coverage Analysis for Millimeter Wave Cellular Networks with Imperfect Beam Alignment

    Get PDF
    OAPA Millimeter wave (mmWave) communications is a promising approach to satisfy the increasing high data rate requirement of next generation mobile communications. This paper studies the downlink coverage performance of mmWave cellular networks with imperfect beam alignment. An enhanced antenna model is adopted to model the directional antenna beamforming pattern, in which the mainlobe beamwidth and directivity gain can be expressed as functions of the number of elements in the antenna array. After deriving the probability density function of the distance between mobile station (MS) and its serving base station (BS), the directivity gain with imperfect beam alignment is obtained as a discrete random variable. Then, a computationally tractable expression is obtained for the coverage probability of mmWave cellular networks.This generalized expression can be applied in different blockage regimes, e.g. general blockage regime (GBR), full-blockage regime (FBR) and non-blockage regime (NBR) with or without beam alignment errors. Numerical results show that small beam alignment errors will not deteriorate the coverage performance significantly, and the antenna array with the less number of elements provides higher robustness against the beam alignment errors. Moreover, when the beam alignment error is small enough, the coverage performance can be improved by increasing the BS intensity and the number of elements in the antenna array

    Multibeam Joint Processing in Satellite Communications

    Get PDF
    Cooperative Satellite Communications (SatComs) involve multi-antenna satellites enabled for the joint transmission and reception of signals. This joint processing of baseband signals is realized amongst the distinct but interconnected antennas. Advanced signal processing techniques –namely precoding and Multiuser Detection (MUD)– are herein examined in the multibeam satellite context. The aim of this thesis is to establish the prominence of such methods in the next generation of broadband satellite networks. To this end, two approaches are followed. On one hand, the performance of the well established and theoretically concrete MUD is analysed over the satellite environments. On the other, optimal signal processing designs are developed and evaluated for the forward link. In more detail, the present dissertation begins by introducing the topic of multibeam joint processing. Thus, the most significant practical constraints that hinder the application of advanced interference mitigation techniques in satellite networks are identified and discussed. Prior to presenting the contributions of this work, the multi-antenna joint processing problem is formulated using the generic Multiuser (MU) Multiple InputMultiple Output (MIMO) baseband signal model. This model is also extended to apply in the SatComs context. A detailed presentation of the related work, starting from a generic signal processing perspective and then focusing on the SatComs field, is then given. With this review, the main open research topics are identified. Following the comprehensive literature review, the first contribution of this work, is presented. This involves the performance evaluation of MUD in the Return Link (RL) of multiuser multibeam SatComs systems. Novel, analytical expressions are derived to describe the information theoretic channel capacity as well as the performance of practical receivers over realistic satellite channels. Based on the derived formulas, significant insights for the design of the RL of next generation cooperative satellite systems are provided. In the remaining of this thesis, the focus is set on the Forward Link (FL) of multibeam SatComs, where precoding, combined with aggressive frequency reuse configurations, are proposed to enhance the offered throughput. In this context, the alleviation of practical constraints imposed by the satellite channel is the main research challenge. Focusing on the rigid framing structure of the legacy SatCom standards, the fundamental frame-based precoding problem is examined. Based on the necessity to serve multiple users by a single transmission, the connection of the frame-based precoding and the fundamental signal processing problem of physical layer multigroup multicasting is established. In this framework and to account for the power limitations imposed by a dedicated High Power Amplifier (HPA) per transmit element, a novel solution for multigroup multicasting under Per Anntenna Constraints (PACs) is derived. Therefore, the gains offered by multigroup multicasting in frame-based systems are quantified over an accurate simulation setting. Finally, advanced multicast and interference aware scheduling algorithms are proposed to glean significant gains in the rich multiuser satellite environment. The thesis concludes with the main research findings and the identification of new research challenges, which will pave the way for the deployment of cooperative multibeam satellite systems
    corecore