5,514 research outputs found

    A Concurrency Control Method Based on Commitment Ordering in Mobile Databases

    Full text link
    Disconnection of mobile clients from server, in an unclear time and for an unknown duration, due to mobility of mobile clients, is the most important challenges for concurrency control in mobile database with client-server model. Applying pessimistic common classic methods of concurrency control (like 2pl) in mobile database leads to long duration blocking and increasing waiting time of transactions. Because of high rate of aborting transactions, optimistic methods aren`t appropriate in mobile database. In this article, OPCOT concurrency control algorithm is introduced based on optimistic concurrency control method. Reducing communications between mobile client and server, decreasing blocking rate and deadlock of transactions, and increasing concurrency degree are the most important motivation of using optimistic method as the basis method of OPCOT algorithm. To reduce abortion rate of transactions, in execution time of transactions` operators a timestamp is assigned to them. In other to checking commitment ordering property of scheduler, the assigned timestamp is used in server on time of commitment. In this article, serializability of OPCOT algorithm scheduler has been proved by using serializability graph. Results of evaluating simulation show that OPCOT algorithm decreases abortion rate and waiting time of transactions in compare to 2pl and optimistic algorithms.Comment: 15 pages, 13 figures, Journal: International Journal of Database Management Systems (IJDMS

    A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging Tools

    Get PDF
    Today's complex software systems combine high-level concurrency models. Each model is used to solve a specific set of problems. Unfortunately, debuggers support only the low-level notions of threads and shared memory, forcing developers to reason about these notions instead of the high-level concurrency models they chose. This paper proposes a concurrency-agnostic debugger protocol that decouples the debugger from the concurrency models employed by the target application. As a result, the underlying language runtime can define custom breakpoints, stepping operations, and execution events for each concurrency model it supports, and a debugger can expose them without having to be specifically adapted. We evaluated the generality of the protocol by applying it to SOMns, a Newspeak implementation, which supports a diversity of concurrency models including communicating sequential processes, communicating event loops, threads and locks, fork/join parallelism, and software transactional memory. We implemented 21 breakpoints and 20 stepping operations for these concurrency models. For none of these, the debugger needed to be changed. Furthermore, we visualize all concurrent interactions independently of a specific concurrency model. To show that tooling for a specific concurrency model is possible, we visualize actor turns and message sends separately.Comment: International Symposium on Dynamic Language

    Introduction to the special section on dependable network computing

    Get PDF
    Dependable network computing is becoming a key part of our daily economic and social life. Every day, millions of users and businesses are utilizing the Internet infrastructure for real-time electronic commerce transactions, scheduling important events, and building relationships. While network traffic and the number of users are rapidly growing, the mean-time between failures (MTTF) is surprisingly short; according to recent studies, in the majority of Internet backbone paths, the MTTF is 28 days. This leads to a strong requirement for highly dependable networks, servers, and software systems. The challenge is to build interconnected systems, based on available technology, that are inexpensive, accessible, scalable, and dependable. This special section provides insights into a number of these exciting challenges

    Single Phase Reliable Timeout Based Commit Protocol

    Get PDF
    The enormous progress in applications of distributeddatabase systems necessitates formulation of an efficient atomiccommitment protocol. The efficiency of these protocols is vitalwhen higher transaction throughput is to be supported. Theexisting blocking commit protocols affect over the capacity ofsystem resources, which worsens in distributed database system.This paper proposes the Non Blocking Single Phase ReliableTimeout Based Commit Protocol (SPRTBCP), an extension to theModified Reliable Timeout Based Commit Protocol (MRTBCP ),maintains the atomicity and supports off -line executions anddisconnections during commitment; it decreases the cost ofwireless communication by reducing it to a single phasecommitment operation and does not maintain log agent. Hence itreduces message complexity and average commit time . It alsosupports disconnections and handoff in mobile environment

    Efficient middleware for database replication

    Get PDF
    Dissertação de Mestrado em Engenharia InformáticaDatabase systems are used to store data on the most varied applications, like Web applications, enterprise applications, scientific research, or even personal applications. Given the large use of database in fundamental systems for the users, it is necessary that database systems are efficient e reliable. Additionally, in order for these systems to serve a large number of users, databases must be scalable, to be able to process large numbers of transactions. To achieve this, it is necessary to resort to data replication. In a replicated system, all nodes contain a copy of the database. Then, to guarantee that replicas converge, write operations must be executed on all replicas. The way updates are propagated leads to two different replication strategies. The first is known as asynchronous or optimistic replication, and the updates are propagated asynchronously after the conclusion of an update transaction. The second is known as synchronous or pessimistic replication, where the updates are broadcasted synchronously during the transaction. In pessimistic replication, contrary to the optimistic replication, the replicas remain consistent. This approach simplifies the programming of the applications, since the replication of the data is transparent to the applications. However, this approach presents scalability issues, caused by the number of exchanged messages during synchronization, which forces a delay to the termination of the transaction. This leads the user to experience a much higher latency in the pessimistic approach. On this work is presented the design and implementation of a database replication system, with snapshot isolation semantics, using a synchronous replication approach. The system is composed by a primary replica and a set of secondary replicas that fully replicate the database- The primary replica executes the read-write transactions, while the remaining replicas execute the read-only transactions. After the conclusion of a read-write transaction on the primary replica the updates are propagated to the remaining replicas. This approach is proper to a model where the fraction of read operations is considerably higher than the write operations, allowing the reads load to be distributed over the multiple replicas. To improve the performance of the system, the clients execute some operations speculatively, in order to avoid waiting during the execution of a database operation. Thus, the client may continue its execution while the operation is executed on the database. If the result replied to the client if found to be incorrect, the transaction will be aborted, ensuring the correctness of the execution of the transactions

    Cache Serializability: Reducing Inconsistency in Edge Transactions

    Full text link
    Read-only caches are widely used in cloud infrastructures to reduce access latency and load on backend databases. Operators view coherent caches as impractical at genuinely large scale and many client-facing caches are updated in an asynchronous manner with best-effort pipelines. Existing solutions that support cache consistency are inapplicable to this scenario since they require a round trip to the database on every cache transaction. Existing incoherent cache technologies are oblivious to transactional data access, even if the backend database supports transactions. We propose T-Cache, a novel caching policy for read-only transactions in which inconsistency is tolerable (won't cause safety violations) but undesirable (has a cost). T-Cache improves cache consistency despite asynchronous and unreliable communication between the cache and the database. We define cache-serializability, a variant of serializability that is suitable for incoherent caches, and prove that with unbounded resources T-Cache implements this new specification. With limited resources, T-Cache allows the system manager to choose a trade-off between performance and consistency. Our evaluation shows that T-Cache detects many inconsistencies with only nominal overhead. We use synthetic workloads to demonstrate the efficacy of T-Cache when data accesses are clustered and its adaptive reaction to workload changes. With workloads based on the real-world topologies, T-Cache detects 43-70% of the inconsistencies and increases the rate of consistent transactions by 33-58%.Comment: Ittay Eyal, Ken Birman, Robbert van Renesse, "Cache Serializability: Reducing Inconsistency in Edge Transactions," Distributed Computing Systems (ICDCS), IEEE 35th International Conference on, June~29 2015--July~2 201
    corecore