
Single Phase Reliable Timeout Based Commit
Protocol

Bharati Harsoor1 Dr. S.Ramachandram2

1Dept of CSE, 2 Professor, Dept of CSE,
University College of Engg, University College of Engg,

Osmania University, Hyderabad, India Osmania University, Hyderabad, India
bharsoor09@gmail.com schandram@gmail.com

Abstract - The enormous progress in applications of distributed
database systems necessitates formulation of an efficient atomic
commitment protocol. The efficiency of these protocols is vital
when higher transaction throughput is to be supported. The
existing blocking commit protocols affect over the capacity of
system resources, which worsens in distributed database system.
This paper proposes the Non Blocking Single Phase Reliable
Timeout Based Commit Protocol (SPRTBCP), an extension to the
Modified Reliable Timeout Based Commit Protocol (MRTBCP),
maintains the atomicity and supports off -line executions and
disconnections during commitment; it decreases the cost of
wireless communication by reducing it to a single phase
commitment operation and does not maintain log agent. Hence it
reduces message complexity and average commit time . It also
supports disconnections and handoff in mobile environment.

Keywords: Mobile Transactions, Disconnections, Handoff, Log
Recovery, Atomic commitment protocols.

I. INTRODUCTION
The usage of portable devices equipped with wireless
networks, is constantly increasing due to rapid progress in
wireless technologies. These mobile devices also interact with
fixed devices in realizing traditional applications like mobile
commerce (m-commerce), mobile inventory etc.
A transaction is a set of operations that are performed
completely or none of them, which is visible to other
operations. This all-or-nothing feature is known as atomicity
property where the commit protocols need to ensure atomicity
and thus comprises a major issue in the execution of
transactions. A distributed transaction forms a logical unit of
job distributed over various mobile and fixed devices, such as
money transfer from one bank account to another. Obviously,
the transactions required for many mobile applications needs
to maintain data consistency distributed over various sites .
Transactions may also involve multiple mobile devices,
besides fixed ones, as full participants such as i n mobile
commerce and mobile inventory.
Mobile environments are characterized by constraints such as,
low power battery, disconnection, lower bandwidth,
intermittent connection, low processing capacity of mobile
devices. There are existing commit protocols that are designed
for fixed networks, such as the traditional two-phase commit
(2PC) protocol [7], unsuitable for mobile environments.
Therefore, a number of commit protocols, such as UCM [1],
TCOT [4] and M-2PC [4] have been developed to address
these constraints. Unfortunately, existing approaches either
only consider mobile hosts as initiators and not as full

participants [3], or work only under strong assumptions, such
as the uniformity of database systems [2] or the simultaneous
connectivity of all mobile participants at the initiation of the
transaction [4]. In addition, the existing protocols typically
consider only a small subset of failures in the mobile
environment. These weaknesses limit the applicability of
existing approaches and cause new challenges for the design
of efficient and reliable single phase commit protocols for
diverged mobile environments. This paper proposes one
phase, reliable, efficient and non blocking atomic transaction
commit protocol called “Single Phase Reliable Timeout Bas ed
Commit protocol (SPRTBCP)”.
The paper is organized as follows. In Section 2, we present the
detailed architecture of proposed SPRTBC Protocol, including
the notations and sequence of steps used in the protocol.
Section 3 illustrates the transaction ex ecution and recovery
algorithm. Section 4 describes the performance evaluation and
comparison carried out with the related protocols. Section 5
concludes the paper and outlines our future work.

II SINGLE PHASE RELIABLE TIMEOUT BASED
COMMIT PROTOCOL (SPRTBCP)

The Single phase reliable timeout based commit protocol is a
non-blocking protocol and it preserves site autonomy. During
normal execution the transaction is committed using single
phase (eliminates voting phase of 2PC) . The protocol employs
timeouts to eliminate the blocking. The protocol assumes the
participating data bases are ruled by a precise concurrency
control mechanism and recovery algorithm. Non-blocking is
achieved by using a broadcast primitive to deliver the decision
messages. The protocol preserves site autonomy by enabling
the participants to recover from failures independently. Fig. 1
illustrates the typical architecture of Single Phase Reliable
Timeout Based Commit Protocol (SPRTBCP).

A. Protocol description
The basic idea of SPRTBCP is to eliminate the voting phase of
the 2PC by introducing the properties of the local databases. In
this context, a transaction is initiated by the TM -MH
(Transaction Manager at MH) and this transaction is assured
to be committed in a failure free environ ment by distributing
the fragments at various participants (Part -FH’s & MH’s).
When the acknowledgments for all fragments of a transaction
Ti are received by the TM-MH, it means that the transaction
fragments i.e. e i0, ei1, ei2,…, ein have been successfully executed
till completion, TM-MH submits its positive commit message
to the CO which can directly ask each participant host

DOI: 10.5176_2010-2283_1.4.101

bharsoor09@gmail.com
schandram@gmail.com

accessed by the transaction T i to commit, with no
synchronization between the sites.

Figure 1. Typical Architecture of Single Phase Reliable
Timeout Based Commit Protocol

If a transaction fragment, say eik is aborted by participantk

during its execution for any problem, the CO simply asks each
accessed participant to abort that transaction. Assume that
Participantk crashes during the one-phase commit of
transaction T i during which Ti may have been committed at
other hosts. To guarantee T i atomicity, the effects of the
transaction branch eik have to be forward recovered in
Participantk.
The participants executing their respective fragments launch
Pack and also update their local logs that contain physical redo
log records generated during the execution of this operation
along with the respective log sequence number (LSN). The
CO registers the commit decision in its own log. Once
Participantk recovers from its crash, it redoes set of operations
using local log records with highest LSN and reinstalls them
in the database.
To enforce transaction atomicity with site autonomy,
SPRTBCP utilizes logging schemes introduced in their
respective participants’ database systems. On each participant
site, local logs keep up each operation sent to it before its
execution. During the decision phase, when a participant
receives the commit decision, it updates the local database. If
the local database crashes before completing the commit, it
will abort the transaction. After the database recovery, the
Participant re-executes all operations found in its log and
belonging to the globally committed transaction. This
approach guarantees global atomicity while preserving site
autonomy. To achieve high performance and throughput,
transactions are to be interleaved and executed concurrently.
We assume that the concurrent executions of transactions are
coordinated such that there is no interference among them.
In order to recover from failures, SPRTBCP maintains logs
locally with each of the participants . Indeed, maintaining the
logs locally, the CO must guaranty that the decision must be
force written in stable storage before broadcasting its decision.
In case of a participant crash during the one -phase commit, the
failed transaction branches will be re -executed due to the
operations registered in their respective redo logs. Following
are the notations used in our algorithm.

1. Ti : Transaction to be initiated by the TM-MH that
includes ei0,ei1,ei2,ei3,…..,ein set of fragments

2. exec(ei0), exec(ei1),………., exec(e in) : fragment
executions on their respective hosts

3. Pack (eik): Acknowledgement for successful execution
of fragment eik at participant’s host k

4. Nack(eik): Acknowledgement for unsuccessful
execution of fragment e ik at participant’s host k

5. Commiti : Decision for commit of transaction T i sent
from the TM-MH to the CO and broadcast it by the
CO to all the participant hosts

6. Aborti : Decision for an abort transaction T i sent from
TM-MH and broadcast it by the CO to all the
participant hosts

7. Cacki: Acknowledgment for execution with commit of
Ti at participants’ hosts

8. Aacki: Acknowledgment for execution with ab ort of
Ti at participants’ hosts

9. MH1, MH2,….,MHn: Participating Mobile hosts at
wireless network; Part-FH1, Part-FH2,….., Part-
FHn: Participant Fixed Hosts at wired network.

10. Etk : CPU time required to execute kth fragment at
Participantk

11. Et: Maximum CPU time required to execute among
all the fragments

12. m: Message to send and receive from their
respective hosts.

13. send(m): Primitive to send message m to all the
participant hosts

14. receive(m): primitive to receive a given message m
from all the participant hosts

15. Ti → Tj represents any dependency between T i and Tj.
Fig. 2 gives the sequence of executions carried out du ring the
transaction processing and shows the series of operations
scenario introduced by the SPARTBC protocol. At Step 1, the
transaction manager (TM-MH) initiates and fragments
transaction T i into set of sub-transactions (ei0, ei1….ein) and
distributes these among various participants including MH.
The participants upon receipt of their respective fragments,
before they start the execution , all force write into their
individual log area. They compute and send the time stamp
required for executing their respective fragments (Et0,……, Etn)
to the TM-MH. Once the execution of their respective
fragment is completed successfully, the Pack message is sent
to TM-MH otherwise Nack is sent.
The Transaction manager at MH, upon receipt of Et’s from all
the participants, it calculates maximum time Et= Max
(Et0,,,,,,,,,Etn) and waits up to the maximum time (Et) for
acknowledgement. If the transaction manager does no t receive
the acknowledgement from any one of the participant before
time expiry, then it decides to abort the transaction and sends
the same message to the CO.
If the TM-MH receives Pack from all the participants before
time expiry, this means that all the fragments of T i have been
successfully executed. Thus TM-MH decides to commit and
force writes this commit message into its local log and also
issues a commit request to the CO.
Step 2 represents the message (commit/abort) received from
the TM-MH is registered in CO’s log. Note that this
registration is done by a force writes and are buffered in local
log (main memory) area and do not generate blocking I/O. If
the TM-MH issues a commit request to the CO, it can thus
take the commit decision. First, the CO Non-force writes its

Wireless
Network

FH

CO: Coordinator, BS: Base Station, FH: Fixed Host, MH: M obile Host

Log

Wireless
Network

Fixed
Network

BS

FH

MH

MH

CO

Database

BS

commit decision on stable storage in the same step, and CO
asks each participant to commit T i by broadcasting the commit
decision to all. When the participant hosts receives the commit
decision by the CO, they update local database s for the
execution. Each operation is acknowledged up to the MH.

In order to be able to know whether or not a failed database
has effectively committed a transaction and without violating
its site autonomy, each participant maintains the local log
containing the commit decision for T i. This operation will be
treated by the database as the other operations belonging to Ti,
which is either all committed or all aborted atomically. Once
the force written commit decision has been acknowledged by
the participantk it asks the local database to commit transaction
of eik fragment, as a local representative of T i.
In a failure free environment, this commit always succeeds
and is acknowledged up to the MH. For every transaction T i,
the TM-MH non-force writes each Packi in its log. When the
acknowledgment is received from all the participants in the
transaction, the TM-MH non-force writes an end i record. At
this point, the TM-MH can forget transaction T i. If transaction
Ti is to be aborted, the TM-MH discards all Ti log records and
broadcasts the abort message to the local databases, through
its participants. SPRTBCP is a presumed abort protocol. Thus,
abort messages are not acknowledged and the abort decision
and transaction initiations are not recorded in the TM-MH log.

III. SINGLE PHASE RTBCP ALGORITHM
A. Transaction Execution Algorithm:

1) Transaction Manager at MH Algorithm
do forever {

wait for (Initialization of transaction T i by the User)
case(Ti) of:

beginTrans (Ti(ei0,…..ein)) at TM-MH // implements Step 1
send Ti (ei0,ei1,,… ein) to MH and Part-FH’s respectively ;
wait for (receipt of E t0,……Etn from their respective
Participants)
Compute Et = (MAX (Et0, Et1,……Etn)
set time-out to Et;
wait for receipt of (Pack) from all or (Nack) from any
participant or time-out (Et)

// any Ti's operation after exec(ei0,….., ein)
if (Pack) from all then{
force write Ti’s commit decision in local log; // implements
Step 1 decides to Commiti

send Commiti to CO;}
else if((timeout) or receipt of an (Nack) from any of
participant)
{ send Aborti to CO;} // implements Step 1}

Wait for (receipt of ack for Decision message from CO)
Case1: Aack: call recovery procedure; // implements Step 2
Case2:Cack: Force write Ti log records and T i commit
decision in local log and update local DBMS; //

implements Step 2 }

2) MH Algorithm (Mobile host –Initiation of Ti)
do forever {
wait for (receipt of message m for fragment e i0 from TM-MH)

case (m) of
{ compute Et0 and send Et0 to TM-MH
set time-out to Et0;
ei0 is sent to local log;
exec(ei0) : execution of (e i0) at MH;
if (MH decides to (Pack)) then
{ force write ei0 log records and Pack decision in lo cal log;
send Pack to TM-MH;
wait for(the reciept of a decision by CO)
goto 111}
else if (MH decides to (Nack) or (timeouts)
{send Nack to TM-MH;
send Nack decision to local log and forget ei0 ;}

111: // for any Ti's operation ,
Case1: If (decision message from CO is (Aborti))
{ if ((Pack) sent by the MH){ call recovery algorithm }
// implements Step 2
send Aack to CO and forget Ti. }
Case2 : if (decision message from CO is (Commiti))
{ force write ei0 log records and Ti commit decision in local
log and update local DBMS;
send Cack to CO; // implements Step 2 }

3) Coordinator Algorithm
do forever {
wait for (receipt of a decision for T i (Aborti or Commiti) from

the TM-MH)
Case1 : {Aborti: broadcast Aborti to all the participants ; //

implements Step 2}
Case2: {Commiti: Force write Ti’s commit decision in local

log; broadcast commit i to all ; // implements Step 2}
wait for (receipt of an (Aack or Cack) from all)
Case1 : {Aacki: send(Aacki) to TM-MH; // implements Step 2}
Case2 : {Cacki: send(Cacki) to TM-MH ; // implements

Step2}}

4) Participantk algorithm
do forever {
wait for (receipt of message m for fragment e ik from TM-MH)

case (m) of:
{compute Etk: send it to TM-MH
set time-out to Etk;

: Force writeLog

Non-force
writes Ti

Step 2

eik

Cack

Commiti

Cack

Coordinator
(BS)

Etk

Commiti

Part- FH (Pk)

Pack or Nack

Log

Figure 2. Single Phase Reliable Timeout Based Commit
Protocol (SPRTBCP)

MRTBCP)

Log

Step
1

Mobile Host (MH) &
Transaction Manager (TM-MH)

Log

Log

send (eik) to local log ; // implements S tep 1
exec(eik); execution of (e ik) at their participantk;
// implements Step 1
if (participantk decides to (Pack)) then
{ force write eik log records and Pack decision in local log;
send Pack to TM-MH;
wait for(the reciept of a decision by CO)
goto 111}
else if ((timeouts) or (Nack) from any of the participant k)
{send Nack;
send Nack decision to local log and forget eik ;}
111 : // for any Ti's operation
Case1 :If (decision message from CO is (Aborti))
{ if (Pack sent by the Participantk) {call recovery algorithm;
// implements Step 2

send Aack to CO and forget Ti;}
Case2 :If(decision message from CO is(Commiti))
{force write eik log records and T i commit decision in local log
and update local DBMS;
send Cack to CO; // implements Step 2}

Figure 3. Algorithm for Single phase Reliable Timeout Based
Commit (SPRTBC) Protocol

The Fig. 3 shows an algorithm for implementing the SPRTBC
protocol. The Participants directly receives the decision of the
TM-MH for a transaction Ti (Commiti /Aborti) through CO i.e.
on receipt of decision from TM -MH the CO informs the
participants of a transaction of its decision through a simple
broadcast primitive presented in Fig. 3(e). Hence, a participant
hosts updates their local database and conforms to the decision
using Cack/Aack primitives. It also contains recovery
algorithm (Fig. 4), which is used to recover the database into
consistent state in case of failures.
Pack(eik)
{ upon receipt of any fragment (e ik) at Participantk

{ If (successful execution of (e ik)) then
{send Positive acknowledgement for e ik to TM-MH }}}
Figure 3 (a) Positive acknowledgement primitive

Nack(eik)
{ upon receipt of any fragment (e ik) at Participantk

{If (unsuccessful execution of (e ik) or (timeout) or
(disconnected)) then
{send Negative acknowledgement for e ik to TM-MH}}}
Figure 3(b) Negative Acknowledgement primitive

Fig. 3(a) shows Pack (Positive acknowledgement) primitive is
an acknowledgement for successful execution of fragment e ik

at Participantk. Every participant host sends the positive
acknowledgement to designate the fragment e ik is executed
successfully. This guarantees that all participant hosts will
eventually deliver Pack to TM-MH.
Fig. 3(b) shows Nack (Negative Acknowledgement) primitive

is an acknowledgement for unsu ccessful execution of
fragment eik at Participantk. If any participant host failed to
complete the transaction execution then it sends negate
acknowledgement message to indicate the fragment e ik is not

executed successfully. This guarantees that all correc t
participant hosts will finally deliver N ack to TM-MH.

Cack(eik)
{ upon (receipt of Commit i from CO) at Participantk:

If (Force write for e ik is successful)
{send an acknowledgement for commit: Cack (e ik) to

CO}}
Figure 3(c) Commit acknowledgement primitive

Aack(eik)
{ upon (receipt of Aborti from CO) at Participantk

{ If (Force write of eik is unsuccessful) then
{ Send an acknowledgement for abort: Aack(e ik) to CO}}}

Figure 3(d) Abort acknowledgement primitive

Fig. 3(c) shows Commit acknowledgement primitive is an
acknowledgment by the Participantk on the receipt of Commit i

from the CO. Fig. 3(d) shows Abort acknowledgement
primitive is an acknowledgment by the Participantk on the
receipt of Abort i from CO.

Broadcast Primitive (broadcast a message to all the
participants)
Broadcast (m) to all
{// the CO executes:

send(m) to all participants }
Figure 3(e) A Broadcast primitive

Fig. 3(e) shows the broadcast pri mitive, that sends the
messages to all the participants.

B. Recovery algorithm
1) Participant’s Algorithm – in case if participant crashes

Participant algorithm
Case 1: If (Participantk crashes before sending (Pack(e ik)) to
TM-MH {
if (Participantk recovered before (time expires) AND force

written Pack(eik) into its local log)
{Send Pack(eik)}
else if (Participantk not recovered before (time expires) OR
force written Nack(e ik) into its local log)
{backward recover the transactions that reached their commit
state before the crash
Send Nack(eik)}}

Case 2: If (Participantk crashes after sending (Pack(e ik)) to
TM-MH and before getting Commiti from CO)
{ Once participantk recovered

{ Wait for CO’s Decision
While waiting for CO’s decision
{ If (timeouts) {resend Pack (e ik) to TM-MH}

else { (upon receipt of Commit i from CO before time
expires : send Cack to CO }}}}

else If (Participantk crashes after sending (Nack(e ik)) to
TM-MH and before getting Aborti from CO)

{ forget the eik}

Case 3: If(Participantk crashes before sending Cack(e ik)) to

CO{ If commiti local log { send Cack(eik)}}
Else If (Participantk crashes before sending (Aack(e ik)) to CO

If {Abortilocal log {send Aack(eik)
Forget Ti}}

Case 4: If (Participantk crashes after sending Cack(e ik) or
Aack(eik)) to CO {Forget the transaction of e ik}

Coordinator’s algorithm
For CASE 2:
for each transaction T i in which Participantk participates

{ if CO receives duplicated Pack(eik)

{ if ((Commiti) coordinator’s log), then
{ send (Aborti) to the requested participants and forget T i}

else if((Commiti) coordinator’s log) then
{ send (Commiti) to the requested participants }}}

2) Coordinator’s algorithm (in case if coordinator crashes)
CASE 1: If CO crashes (after receiving (Commiti / Aborti) from
TM-MH or before broadcasting (Commiti / Aborti) to all
For each transaction T i

{ if ((Commiti)coordinator log) then
{Decision =Commiti} Broadcast Commiti to all}

else if((Aborti) coordinator log) then
{Decision =Aborti} Broadcast Aborti to all}}

CASE 2: If CO crashes (after broadcasting (Commiti / Aborti)
to all) { Wait for acknowledgement from all
While waiting

{if ((timeouts) and (Commiti)coordinator log) then
{Broadcast Commiti to all}}
Expect for new transaction}
Figure 4. Recovery Algorithm for Single phase RTBCP
Protocol

IV. PERFORMANCE EVALUATION
In this section, the performance of SPRTBCP is compared
with 2PC, UCM, TCOT respectively. 2PC is the most well -
known blocking commit protocol, while UCM is one phase
commit protocol that has been proposed for light weight
processing, and TCOT is timeout based non-blocking commit
protocol hence we compare SPRTBCP with the above
protocols.
Let n denote the number of participants in the transaction. The
other parameters we have considered to analyze the
performance are the time delay, number of force writes and
message complexity that needs to broadcast the decision
message.
In SPRTBCP, the CO broadcasts the decision using the
broadcast primitive presented in Fig. 3(e), where the message
complexity is (n+1) and the time delay is ∂+e (e is no of
timeout extensions). In 2PC, we need to add the complexity of
the vote request and vote collection message rounds.
The results illustrated in Table 1 gives comparison of
SPRTBCP with 2PC, UCM, TCOT in terms of time delay,
number of force writes and message complexity. The

SPRTBCP is a presumed abort protocol , thus the MH uses the
broadcast primitive to broadcast an Abort decision when the
MH does not receive the acknowledgement of transaction
execution before time expires, hence we can prove that it is
non blocking protocol.

Table I Performance Metrics
Commit
Protocol

No. of
phases

Message
Complexity

Latency No. of
force writes

2PC 2 4n 3∂ 2n+1
UCM 1 2n ∂ n+1
TCOT 1 (2n-1) +e ∂ +e n+1

MRTBCP 1 (2n-1) + e ∂ + e n+1

SPRTBCP 1 (2n-1) + e ∂ +e n+1

A. Simulation Model
We present the simulation model and results of experiments to
evaluate the performance of the SPRTBCP protocol. With the
simulation model, the transactions are generated and
fragmented by the Transaction Manager (TM-MH) at MH, at
each simulation run; at least 5 transactions are generated
according to the parameters of the transaction model to
simulate the features of mobile computing such as frequent
disconnection and long-lived transaction operations. They are
submitted to the execution model for further processing.
Deadline of each transaction is also performed by the T M-
MH. The transactions generated at T M-MH are fragmented
into set of sub transactions and part of each transaction is
processed by Mobile Execution Unit (MEU) available at MH.
The remaining fragments are sent to the Fixed Execution Unit
(FEU) at fixed host. The FEU executes and sends resultant
message to the TM-MH. Based on the results from each
participant the TM-MH decides to commit / abort the whole
transaction. Hence the decision is forwarded to the CO. The
CO broadcast the same decision message to all the Participants
and waits for their acknowledgement s. MS is responsible for
the transmission of messages between hosts. Table 2
summarizes our simulation parameters that are used to state
the system resources and other overheads.

B. Results and Discussions
For the evaluation of the SPRTBCP , the main performance
metric considered is Average Commit Time; that gives the
number of committed transactions per second and the other
metric is effect on throughput with increase in number of
transactions and with an extended time requests. Fig. 5 shows
the effect of Average Commit Time on TCOT, MRTBCP and
SPRTBCP. It can be observed that, as the number of
transactions increases the commit time taken is also increased.
The commit time is the time taken to complete the execution
of a transaction per unit time.
Fig.6 illustrates the effect of Et change on Throughput. The
throughput is defined as the number of successfully committed
Mobile Transactions per unit time (in msec). With each
handoff, fixed amount of delay was added to the execution
time as Et of a fragment. Et =10 means 10% of workload ask
for the extension of Et.
For some fragments the extension were denied and some did
not ask for any extension [8]. We can observe that the effect of
Et is not that severe on the throughput. This could be further

improved by reducing the amount of extension requests by
carefully evaluating the initial value of Et for each fragment

TABLE II SIMULATION PARAMETERS

Fig.7 illustrates the message complexity, the message
complexity is defined as the number of messages sent and
received in average by each mobile host during the execution
of the Mobile Transaction. the results shows that the number
of message rounds with 2PC, TCOT, MRTBCP & SPTBCP is
almost same, they use one phase to commit the transactions,
but with TCOT it may need to have more number of messages
and due to Two Phase Commit operation of 2PC it needs to
have huge round of messages.

Figure5. Average Commit Time V/S No. of transactions

V. CONCLUSION
Non-blocking ACPs normally achieves a higher latency.
Mobility and portability pose new challenges to the
management of mobile database and distributed computing.
Existing ACPs need to be upgraded to adapt the m to the new
environment. This paper proposes an atomic commitment
protocol, called as SPRTBCP offers the non -blocking property
with one phase commit operation having lesser message
complexity and also preserves site autonomy making it
compatible with inherent databases. Our protocol is aimed at
handling new challenges including site failures and message
loss blocking-free manner. Compared to MRTBCP, it is single

phase commit protocol without the log agent, due to which the
it reduces average commit time an d message complexity
leading to an overall cost reduction of wireless
communication. Hence with the use of SPRTBCP it can be
proved that, we can achieve better performance and reliable
execution of transactions in case of disconnections, failures
and also during mobility as compared to the existing ACPs
like TCOT, UCM, M-2PC etc.

Figure 6. Effect of Et on throughput

Figure7. Message Complexity

REFERENCES
[1] C. Bobineau, P. Pucheral, and M. Abdallah. “A Unilateral Commit
Protocol for Mobile and Disconnected Computing”, In PDCS, USA, 2000.
[2] B. Bose, S. Sane, “Distributed Timeout Based Transaction Commit

Protocol for Mobile Database Systems,” in Proceedings of International
Conference and Workshop on Emerging trends in Technology (ICWET -
2010),2010, pp. 518-523.
[3] Christophe Bobineau, Cyril Labb’e, Claudia Roncancio, Patricia Serrano -
Alvarado, “Comparing Transaction Commit Protocols for Mobile
Environments,” in Proceedings of the 15th International Workshop on
Database and Expert Systems Applications (DEXA’04) 1529-4188/04 IEEE.
[4] V. Kumar, N. Prabhu, M. H. Dunham, and A. Y. Seydim, “TCOT – A
Timeout-Based Mobile Transaction Commitment Protocol,” IEEE
Transactions on Computers , 51(10), 2002.
[5] P. Serrano, C. Roncancico, M. Adiba, “A Survey o f Mobile Transactions,”
DAPD Jnl., 16(2), 2004.
[6] M. M. Goreyand , R. K. Ghosh, “The Recovery of Mobile Transactions,”
in Proceedings of the 11 th International Workshop on Database and Expert
Systems Applications (DEXA’00) 2000 pp. 23, IEEE.
[7] N. Nouali, A. Doucet, and H. Drias. A two -phase commit protocol for
mobile wireless environment. In H. E.Williams and G. Dobbie, editors,
Sixteenth Australasian Database Conference (ADC2005) , volume 39 of
CRPIT, pages 135–144, Newcastle, Australia, 2005. ACS.
[8] B. Harsoor, S.Ramachandram, “Reliable Timeout Based Commit
Protocol,” Proceedings of 2nd International Workshop on Trust Management
in P2P Systems (IWTMP2PS-2010) CNSA-2010, Springer Verlag 2010, pp.
417-423.
[9]B. Harsoor,S. Ramachandram, “ Modified Reliable Timeout Based

Commit protocol “ proceedings of Eighth International conference on wireless
and optical communications networks (WOCN -2011) IEEE

Parameter Value
FHosts Fixed hosts 03
Mhosts Mobile host 02

DBSize No. of tuples in database 30 Tuples
Read/Write Ratio No. of Read & Write operations 70:30

TrgnTm Time in seconds to generate the
transactions.

0 sec

DissconProb Probability of getting
disconnected MH

0.001 msec

Failurprob Probability of having weak
wireless link

0.001 msec

MCPUTime Avg CPU time to process a
Fragment at MH

50 msec

FCPUTime Avg CPU time to process a
fragment at FH

50 msec

MsgCPUTime Avg CPU time to process a
Message at FH

02 msec

NumfragMT Number of fragments /
transactions

05

TransdelayFH Transmission Delay over Wired
network

10 msec

TransdelayMH Transmission Delay over Wired
network

5 msec

Authors

Mrs. Bharati Harsoor, received her bachelor’s degree in CSE (1995),
Masters in Computer Science (2001). She is a Research Scholar
at Osmania University, Hyderabad. She is presently working as
Asst Professor, Department of Information Science and
Engineering, Gulbarga, Karnataka State, India and published m any
papers in various national and international conferences and
journals. Her areas of interest are Mobile Computing, Databases,
and Software Engineering. She is member of Institution of
Engineers and Telecommunication Engineering (IETE)

Dr. S. Ramachandram (1959) received his bachelor’s degree
in Electronics and Communication (1983), Masters in Computer
Science (1985) and a Ph.D. in Computer Science (2005).
He is presently working as a Professor and Head, Department
of Computer Science, University College of Engineering,
Osmania University, Hyderabad, India. His research areas
include Mobile Computing, Grid Computing, Server Virtualization and
Software Engineering. He has authored several books on Software
Engineering, handled several national & international projects
and published several research papers at international and
national level. He also held several positions in the
university as a Chairman Board of Studies, Nodal officer for
World Bank Projects and chair of Tu to r i a l s Commit t ee . He is
a member of Institute of Electrical and Electronic Engineers
(IEEE), Computer Society of India (CSI) and Institute of
Electronics and Telecommunication Engineers (IETE).

,

