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Resumo 

 
 

Os sistemas de bases de dados são usados para armazenar informação nas mais variadas 

aplicações, incluindo aplicações Web, empresariais, de investigação e pessoais.  

Dada a sua larga utilização em sistemas fundamentais para os utilizadores, é necessário 

que os sistemas de bases de dados sejam eficientes e fiáveis. Adicionalmente, para que 

estes sistemas possam servir um elevado número de utilizadores, é importante que as 

bases de dados sejam escaláveis, podendo processar grandes quantidades de dados. Para 

tal é necessário recorrer à replicação dos dados. Num sistema replicado, os vários nós 

contêm cópias da base de dados. Assim, para garantir a convergência das réplicas, as 

operações de escrita têm de ser efectuadas sobre todas as réplicas. O modo como esta 

propagação é efectuada dá origem a duas estratégias diferentes. A primeira, em que os 

dados são propagados assincronamente após a conclusão de uma transacção de escrita, 

conhecida como replicação assíncrona ou optimista. A segunda, em que os dados são 

propagados sincronamente durante a transacção, conhecida como replicação síncrona ou 

pessimista. 

Na replicação pessimista, ao contrário da replicação optimista, as réplicas mantêm-se 

consistentes. Assim, esta aproximação permite simplificar a programação das 

aplicações, porque a replicação dos dados é transparente para as mesmas. No entanto, 

este tipo de aproximação apresenta problemas de escalabilidade, devido ao número de 

mensagens trocadas na sincronização, que obriga a um atraso na conclusão da 

transacção. Assim, o utilizador tende a experimentar uma latência bastante superior na 

abordagem pessimista. 

Neste trabalho apresenta-se o desenho e implementação dum sistema de replicação de 

bases de dados, com semântica snapshot isolation, usando uma aproximação de 

replicação síncrona. O sistema é composto por uma réplica primária e um conjunto de 
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réplicas secundárias que replicam totalmente a base de dados. A réplica primária 

executa as transacções com operações de escrita, enquanto que as restantes executam as 

transacções que só têm operações de leitura. Após a conclusão de uma transacção de 

escrita na réplica primária as alterações são propagadas para as restantes réplicas. Esta 

aproximação adequa-se a um modelo de utilização em que a fracção de operações de 

leitura é bastante superior à de operações de escrita, podendo a carga das leituras ser 

dividia pelas várias réplicas. 

Para melhorar o desempenho do sistema, os clientes executam algumas operações de 

forma especulativa, de modo a evitar que fiquem em espera durante a execução de uma 

operação na base de dados. Deste modo, o cliente pode continuar a sua execução 

enquanto a operação é executada na base de dados. Caso o resultado devolvido ao 

cliente se verifique ser incorrecto, a transacção será abortada, garantindo a correcção da 

execução das transacções.  
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Abstract 
 

 

Database systems are used to store data on the most varied applications, like Web 

applications, enterprise applications, scientific research, or even personal applications. 

Given the large use of database in fundamental systems for the users, it is necessary that 

database systems are efficient e reliable. Additionally, in order for these systems to 

serve a large number of users, databases must be scalable, to be able to process large 

numbers of transactions. To achieve this, it is necessary to resort to data replication. In a 

replicated system, all nodes contain a copy of the database. Then, to guarantee that 

replicas converge, write operations must be executed on all replicas. The way updates 

are propagated leads to two different replication strategies. The first is known as 

asynchronous or optimistic replication, and the updates are propagated asynchronously 

after the conclusion of an update transaction. The second is known as synchronous or 

pessimistic replication, where the updates are broadcasted synchronously during the 

transaction. 

In pessimistic replication, contrary to the optimistic replication, the replicas remain 

consistent. This approach simplifies the programming of the applications, since the 

replication of the data is transparent to the applications. However, this approach 

presents scalability issues, caused by the number of exchanged messages during 

synchronization, which forces a delay to the termination of the transaction. This leads 

the user to experience a much higher latency in the pessimistic approach. 

On this work is presented the design and implementation of a database replication 

system, with snapshot isolation semantics, using a synchronous replication approach. 

The system is composed by a primary replica and a set of secondary replicas that fully 

replicate the database- The primary replica executes the read-write transactions, while 

the remaining replicas execute the read-only transactions. After the conclusion of a 
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read-write transaction on the primary replica the updates are propagated to the 

remaining replicas. This approach is proper to a model where the fraction of read 

operations is considerably higher than the write operations, allowing the reads load to be 

distributed over the multiple replicas. 

To improve the performance of the system, the clients execute some operations 

speculatively, in order to avoid waiting during the execution of a database operation. 

Thus, the client may continue its execution while the operation is executed on the 

database. If the result replied to the client if found to be incorrect, the transaction will be 

aborted, ensuring the correctness of the execution of the transactions.  
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1 Introduction 

1.1 Motivation and context of the problem 

A large number of different applications are built on top of database systems. These 

applications include most sites with dynamic contents, corporate applications (e.g. 

banking, airline reservations, etc.), scientific and even personal applications. Thus, 

database systems need to provide a service that is reliable and efficient, in order to be 

useful and practical to users. Additionally a database system must be scalable to process 

large amounts of operations and data.  

To guarantee reliable transaction execution, database systems implement the ACID 

properties (Atomicity, Consistency, Isolation and Durability). In a system that provides 

Atomicity, a transaction must be performed atomically, so that all of the transaction 

operations are performed and if one is not performed then none must be performed. The 

Consistency property allows the database to be inconsistent while the transaction is 

being processed, but before the transaction begins and after the transaction terminates 

the database must be consistent. To reach Isolation, the order for the execution of the 

transactions operations must be serializable, meaning that independently of the schedule 

of the transaction history, the outcome must be equal as if the transactions where 

executed sequentially with no overlapping. In most database systems, Isolation is 

relaxed to improve performance, thus allowing some limited concurrency. Finally, 

Durability guarantees that if the transaction commits, and the user has received its 

result, the modifications to the database are not lost, even if the system crashes.  

Replication is a mechanism used to improve availability and performance of database 

systems, as well as to allow the scalability of the database. When replication is used, 

several sites, or replicas, maintain copies of the database. Under full replication the 
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whole database is stored at every replica. Under partial replication, only a subset of the 

data is stored at each replica. Although, partial replication is very attractive, since a 

smaller amount of resorts is necessary, it is harder to implement automatically, as the 

data needed for each operation may be distributed over several sites. 

When using replication, when an update transaction is executed, all replicas must be 

updated to maintain consistency. The propagation of updates may be postponed to the 

end of the transaction or it may be executed immediately for each write operation. 

Deferred update replication techniques offer advantages over immediate update 

techniques, such as better performance, simplified server recovery and a lower deadlock 

rate. However, there is a drawback to this approach: the lack of synchronization during 

transaction execution that may increase greatly the transaction abort rates. 

There are two major replication approaches, synchronous or eager replication, and 

asynchronous or lazy replication. When a transaction is executed in a replica the 

changes must be applied to all other replicas. In eager replication, the updates are 

propagated inside the transaction, i.e., before finishing the transaction. On commit, all 

replicas must be updated synchronously using an atomic commit protocol. In lazy 

replication the updates are propagated asynchronously only after the commit of the 

transaction, i.e., after the transaction has committed locally, therefore allowing the 

replicas to diverge. Each approach has its own advantages and drawbacks. 

Eager replication provides serializable execution since there are no concurrency 

anomalies, but there is a decrease in the global performance since extra messages are 

exchanged as a consequence of the synchronization to achieve consistency between the 

replicas. The synchronization itself is a problem for efficiency since before returning the 

result of the transaction to the client, all replicas must be updated. Therefore clients 

experience a large latency using eager replication systems. This approach provides 

single-copy consistency, meaning that clients observe the system as if it has only one 

copy of the data, allowing the programmer to use a familiar model.  

Lazy replication allows more efficient implementations as replicas do not need to be 

synchronously updated inside a transaction. However, as this approach allows a 
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transaction to see old values, the replicas can diverge. To solve the divergence, a 

reconciliation mechanism is necessary. If the number of nodes scales up, the number of 

reconciliations tends to scale up, which may lead to system delusion (the database 

replicas will be inconsistent) [9]. In lazy replication the principle of single-copy 

consistency is not observed. In fact, the programmers must be aware of this drawback 

and adapt their applications accordingly. 

Synchronous replication with good performance is still an area of research, as recent 

work show [4, 5, 6, 7, 8]. Commercial databases often use asynchronous replication that 

tolerates inconsistencies among replicas. 

1.2 Solution proposed 

In this work, we have tried to develop an efficient middleware for database replication. 

Since a lazy replication requires reconciliation because it allows replicas to diverge, we 

have chosen to implement a synchronous approach. Our approach provides single-copy 

consistency, making it much easier to implement new applications because the 

programmer observes one (logical) copy of the data. 

The architecture of the system is loosely based on the Ganymed [5] system, as it is a 

replication system based on primary-copy. In this approach, updates are first committed 

on a primary copy of the data, and then applied to the other copies, thus guaranteeing 

that replicas evolve to the same state. A read operation may execute in any of the 

system copies, thus allowing distributing the load among system replicas.  

The proposed middleware system is composed by clients and a set of replica servers.  

Users’ applications run in clients and access the replicated database system using a 

custom JDBC driver. Thus, applications can use our replication middleware without any 

modification.  

At each replica server, the middleware component uses a JDBC driver to communicate 

with the local database copy. The local database fully replicates the data managed by 
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the system. The database itself was not modified. At any moment, there is a designated 

master/primary replica.  

The system provides Snapshot Isolation, an isolation level that relaxes serializability. 

When a transaction is started, the system creates a (logical) snapshot of the database 

with the currently committed values. The snapshot is used to read values and write new 

values, inside the transaction. Transactions do not observe updated values from 

transactions that commit after the snapshot. Snapshot Isolation can be implemented 

using a lock-based approach or the first-committer-wins rule to prevent lost-updates. In 

this case, when a transaction tries to commit, if it has updated data that was also updated 

by a transaction that committed after the start of this transaction, this transaction must 

be aborted. In the former case, the locking subsystem prevents concurrent updates from 

being executed. 

Unlike Ganymed, we avoid requiring applications to declare transactions as read-only, 

while using a similar strategy for load balancing read-only and update transactions. For 

this end, the following approach is used. When a client starts a transaction, a transaction 

is started both on a replica and on the master, guaranteeing that the same database 

snapshot is used. After this, the operations of the transaction are sent only to the replica. 

If the transaction ends without any write operations, the transaction is committed in the 

replica and it is discarded in the master. If one of the transaction operations happens to 

be a write operation, then the transaction is discarded in the slave replica and the 

transaction in the master continues the execution from the write operation and 

thereafter. In practice, this is similar to the Ganymed functionality, which implements a 

Primary-Copy approach, where read-only transactions execute on slave replicas and 

update transactions execute on the master replica. The difference is that read-only 

transactions do not need to be declared a-priori.  

One disadvantage of a Primary-Copy is that it can become a bottleneck of the system, 

particularly with a large number of replicas, since all update transactions are executed 

on the primary, as well as being a single point of failure. For addressing failures, we 

have implemented a failure recovery mechanism that replaces the primary in case of 

failures. Regarding load, as it is usual that the fraction of update transactions be small, 
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we expect that this primary-copy approach does not limit the system’s performance, in 

practice.  

When an update transaction is committed, the updates must be propagated to the slave 

replicas. The master bundles the updates in a write set which it propagates to the slave 

replicas. 

In our approach, as read-only transactions are executed in slaves, it is necessary to 

balance the load among the replicas. Additionally, it is necessary to guarantee that an 

update transaction from a client does not observe a snapshot that does not include 

updates observed/executed by previous transactions from the same client. Unlike 

Ganymed, we implement our approach without a central scheduler to provide these 

properties. For balancing the load, transactions are executed on randomly chosen 

replicas. The system guarantees that a client does not observe snapshots of the database 

older than the previously seen snapshot. 

Our system resorts on speculative execution to improve the global performance. It also 

decreases the number of messages exchanged by grouping specific messages and 

propagating them in a set. 

Regarding speculative execution, it is used on the clients, along with the regular 

execution. When a client requests an operation prone to be speculative, a speculative 

execution is started. Without waiting for the database server reply, the client assumes 

the most plausible reply and continues executing (speculatively). When the reply finally 

arrives at the client, the reply is compared with the result assumed before. If both are 

equal, then the client continues the execution. On the other hand, if the server result 

differs from the result returned to the application, the speculative execution is invalid. 

To signal this to the application, the transaction will fail and the application code must 

re-execute the transaction, as usual.  

In summary, the goal of this dissertation was to design and implement an efficient 

middleware for database replication that provides good performance with strong 

consistency. To attain this goal, speculative execution was used on the clients, along 

with some optimizations that are later explained on the implementation chapter. 
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1.3 Main contributions 

This project contributes with the design and implementation of a middleware database 

replication system. As already discussed, a replication system aims to improve 

availability and performance of the database system. 

Speculative execution is also applied to the replicated system, in order to explore the 

advantages of this type of execution, namely to improve the efficiency of the system by 

using it in the clients. The clients are allowed to carry on with the execution, instead of 

blocking in remote operations to the database.  

The overall performance of the developed system was evaluated with a standard 

realistic benchmark, the TPC-C. TPC-C is an on-line transaction processing (OLPT) 

benchmark. It is composed by a set of five different concurrent transactions that 

simulate a computing environment, where users execute transactions on a database. 

TPC-C reflects the transactions executed at warehouses, like entering and delivering 

orders, checking the status of these orders, recording payments, and monitoring the 

stocks.  

1.4 Outline 

This dissertation is organized as follows: Chapter 2 describes the related work and it is 

divided in three sections. Section 2.1 introduces the speculative execution and related 

works. Section 2.2 presents the different database isolation levels. Section 2.3 discusses 

database replication and various works related, ending with a comparison between 

specific properties of the systems. Chapter 3 presents the design of the system and 

Chapter 4 discusses the implementation of this design. Chapter 5 presents the evaluation 

of the system. Finally Chapter 6 presents the conclusions of the thesis. 
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2 Related work 

In this chapter, we will present works related to ours, organized in three sections. The 

first section addresses speculative execution. The second section briefly presents 

isolation levels used in database systems. The third section addresses database 

replication, focusing on synchronous replication approaches. 

2.1   Speculative Execution 

Speculative execution is the execution of some operations that might not be necessary. 

In general, speculative execution is used as a performance optimization. For example, 

modern pipelined processors resort to speculative execution to optimize conditional 

branches instructions by assuming the most probable branch decision and executing 

from there immediately, instead of waiting for the decision. Later, if the correct value is 

different, the execution past the branch decision is discarded (i.e. the pipeline is 

emptied). 

Speculator [1] allows clients to execute operations at the application level speculatively, 

performing client level rollback if needed. Speculator extends the Linux kernel to 

support speculative execution, preventing processes from exteriorizing output until their 

depending speculations are verified as correct and assuring no speculative state is 

directly seen by non-speculative processes. In [1] the system was used to improve the 

performance of distributed file systems. 

Speculator was used to explore speculative execution in a client-server database system 

[2]. In a database system, a client waits on a remote call to the database for the results of 

submitted operations. In this system, when a client submits operations to the database 

server the client speculatively assumes a result and continues executing. Later, the 
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assumed result is compared with the one from the server. If they are equal, the 

speculative execution is made definite. On the contrary, if they are different, the 

speculative execution is rolled back and the program is re-executed with the correct 

result. 

Zyzzyva uses speculation in a state machine replication system that tolerates byzantine 

failures. This system serves replicas speculatively, executing operations before they can 

definitely establish the final execution order. If the order turns out to be incorrect, the 

system restores a previous version. 

2.1.1 “Speculative Execution in a Distributed File S ystem” [1] 

Motivation and objectives 

Distributed file systems performance is worse than that of local file systems because 

clients must contact remote servers to obtain data or, at least, to verify that local copies 

are up-to-date. Even distributed systems with loose consistency and safety, where the 

number of synchronous messages exchanged is greatly reduced, are outperformed by 

local file systems. 

This work adds support for speculative execution to the Linux operative system. Then it 

uses the mechanism to increase the performance of distributed file systems with no loss 

in consistency, by allowing clients to speculatively execute using the cached values 

before their consistency is confirmed. 

Architecture and functionality 

To implement the Speculator the authors were forced to do some changes to the Linux 

kernel. The system forbids a speculative process to externalize output, since a non-

speculative process cannot see the state of a speculative process. This lead to a set of 

modifications to prevent a process from externalizing output, like altering operative 

system mechanisms like fork, exit, signals, pipes, fifos, sockets, etc. The output is 

buffered to be later externalized when the speculative execution becomes definitive. 
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The checkpoint of the speculation is performed doing a fork of the process, but the child 

process is not put on the run queue, it is just used to store the process state. Later if the 

speculation execution is to be definitive this child process is discarded, if the 

speculation is to be rolled back then the child process assumes the identity of the current 

process. 

A distributed file system using Speculator maintains basically the same architecture of a 

distributed file system without Speculator, that is, a set of clients sends requests to the 

distributed file system server(s). But using Speculator involves modifications to the 

client, the server and the network protocol. The clients do caching of the file system. In 

the event of a read operation from the client application, the cached values are used 

immediately, initiating a speculation, without waiting for the server reply. When the 

reply arrives at the client, the speculation is committed if the value is the same as the 

value used in the speculation, or rolled back if the value is different. In the case of 

speculative write operations the file server checks if the speculation hypothesis is true or 

false since it knows the true state of the file system. If it is false the write operation fails 

and the speculation fails. 

2.1.2 “Execução especulativa em bases de dados” [2] 

Motivation and objectives 

This project was developed with the future idea of using the information obtain with its 

execution to build an efficient middleware replicated system recurring to speculation, 

since replicated database systems have a substantial overhead caused by the data 

replication, which diminishes its efficiency. Usually that is the trade-off for choosing 

replication, a higher security of the data but lower efficiency. 

The objective of the project was to test the application of speculative execution to a 

database system in order to test the improvement in its efficiency. 

Architecture and functionality 

The system is composed by any number of clients and proxies. The clients submit 

operations to the database using a special JDBC driver to communicate with the proxy. 
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The proxy receives operations submitted by the client and uses a JDBC driver to 

forward them to the database server. 

The Speculator [1] library is used to allow clients to continue execution speculatively 

instead of waiting for remote operations to the database server. In this process, the client 

checkpoints the current state and continues execution with the most probable reply from 

the database server. If the guessed reply proves to be correct, the client saves precious 

execution time avoiding blocking during remote operations. If the server reply is 

different from the guessed reply then the client rollbacks to the checkpoint and re-

executes with the correct reply this time. 

While executing, the JDBC driver starts a new speculation when an operation prone to 

be speculative is executed (if not already in speculative mode). Operations for which the 

result cannot be guessed are not prone to speculation obviously. 

For implementing out system, some changes were introduced to the speculator. First, as 

the Speculator interface was built to be used in supervisor mode, new system calls had 

to be added to the kernel to execute the Speculator functionalities in user mode. Second, 

since the output is postponed in speculative mode, some changes were made to allow 

communication between proxies and clients. The reason for this is because a non-

speculative process (e.g. the proxy) cannot see the state of a speculative process (e.g. the 

client). 

Kaffe, an open-source Java Virtual Machine with user level threads, was used because 

Speculator only supports single-threaded programs. The database system used was the 

open-source system PostgreSQL.  

2.1.3  “Zyzzyva: Speculative Byzantine Fault Tolerance” [3] 

Motivation and objectives 

Byzantine fault tolerance pretends to provide support against byzantine failures in a 

distributed system, which are caused by erroneously components that lead to arbitrary 

faults. In a byzantine fault tolerant system the correctly functioning components reach 

consensus regardless of the byzantine faulty components. 



 23 

Byzantine fault tolerant (BFT) replication is increasingly attractive for practical 

deployment because the hardware is becoming inexpensive, therefore lowering the costs 

of implementing BFT. Additionally, several improvements have been proposed to BFT 

replication techniques, thus diminishing the overhead involved. Nevertheless, the BFT 

replication algorithm still imposes a considerable overhead. 

This work proposes the use of speculation to improve a Byzantine fault tolerant state 

machine replication using tentative speculative execution on the server to reduce the 

latency experienced by clients. 

Architecture and functionality 

The system is composed by a finite number of clients and 3f + 1 replicas. Up to f nodes 

can experience byzantine failures. 

The Zyzzyva protocol proceeds in a sequence of view runs. In each view, there is a 

designated primary replica. 

The protocol has three sub-protocols: 1- agreement, which orders requests for the 

replicas to execute; 2- view change, which coordinates the election of a new primary 

replica; 3- checkpoint, to limit the state that is stored by replicas, reducing also the cost 

of view changes. 

In the agreement protocol, the client sends its requests to the primary, which forwards 

the requests to the replicas that speculatively process the request and reply to the client. 

The client assumes a request is completed when it receives 3f + 1 mutually-consistent 

replies. When the client receives between 2f + 1 and 3f replies, it gathers 2f + 1 replies 

in a commit certificate that it sends to the replicas, waiting for 2f + 1 replies to consider 

the request complete. If less than 2f + 1 replies are received, the client resends the 

request to all replicas which may need to contact the primary. The client detects a faulty 

primary if the ordering of the messages is inconsistent, and warns the replicas, leading 

to a view change to elect a new primary. 

The view change protocol is used to elect a new primary.  A new primary is to be 

elected when a replica takes knowledge of its faulty state, or because f +1 replicas 
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agreed to a new primary. This protocol has a phase called “I hate the primary”, which 

serves to prevent a replica to abandon a view unless it is guaranteed that all replicas will 

do the same, leading to the election of a new primary. When a replica suspects the 

primary is faulty, the replica sends a message to all replicas warning them of the 

suspicion. If the replica receives f + 1 answers confirming the suspicion then it sends 

another message to every replica asking for a view change, containing the information 

that f + 1 replicas confirmed this suspicion, and stops sending messages in this view. A 

replica that receives this last message automatically commits to the view exchange, so 

eventually all replicas will commit to the view change. 

For every fixed number of requests received by a replica, a checkpoint is made. Each 

checkpoint is associated with a snapshot of the database. The replica maintains a stable 

checkpoint and can store a tentative checkpoint. When a tentative checkpoint is 

generated is one replica, a message is sent to every other replica. When f + 1 replicas 

answer to the message the checkpoint is committed and the history before the 

committed checkpoint is garbage collected. 

The protocol has speculative execution because replicas execute requests before the 

total order is established. In each replica there’s a committed history and a speculative 

history. The committed history is the history from the last committed checkpoint till the 

last request of the max commit certificate, which is the certificate that covers the largest 

stored history. The speculative history is the history thereafter, i.e. it includes the 

operations for which the server has not established that the execution order is correct. If 

the execution order is determined to be incorrect, e.g. due to a malicious primary node, 

the speculative history is discarded and the replica restarts executing operations 

immediately after the committed history. 

2.2   Database Isolation Levels 

Database systems isolate the transactions from each other to prevent the inconsistency 

of the data in a multi-user environment. As full serializability restricts concurrency, 

weaker isolation levels have been defined. The ANSI SQL-92 [13] standard defines 
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isolation levels relying on the following phenomena (or anomalies) that can occur 

during concurrent transaction execution:  

1- Dirty Read – occurs when a transaction reads uncommitted data that is later rolled 

back;  

2- Non-Repeatable Read – occurs when a transaction executes the same query multiple 

times and the results are different because they were modified by an interleaving 

transaction.  

3- Phantom – occurs when transaction T1 executes a query that returns a set of data 

from the database and another transaction creates data that satisfy the previous 

transaction query. If the transaction T1 then executes the same query the set 

obtained will be different. 

The standard SQL [13] defines the following four isolation levels that partially avoid 

these phenomena:  

1- Read Uncommitted – This is the lower isolation level and does not prevent any of 

the phenomena.  

2- Read committed – Prevents only the Dirty Read phenomenon.  

3- Repeatable Read – Prevents both the Dirty Read and the Non-Repeatable Read 

phenomena.  

4- Serializable – The highest isolation level. The Serializable isolation level prevents 

all the above phenomena. 

The transactional system used in our middleware (PostgreSQL) provides the four ANSI 

SQL isolation levels but internally only two distinct isolation levels exist, which 

correspond to the ANSI SQL levels Read Committed and Serializable. Read 

Uncommitted is Read Committed internally and Repeatable Read is Serializable. This is 

possible by the standard SQL since the isolation levels translate internally to equal or 

higher isolation levels, therefore preventing the same phenomena as the isolation level 

requested by the user, or more. 
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Snapshot Isolation is a level of isolation not defined by the standard SQL that avoids the 

same phenomena as defined in the ANSI SQL Serializable isolation level, but does not 

provide full serializability. The advantage of snapshot isolation is that it is more 

efficient since the read-only transactions never block nor abort. In this isolation level, a 

transaction executes in a snapshot of the database, which is taken before the transaction 

begins and that contains all the committed values this far. This snapshot is used by the 

transaction to read and update values and is only committed to the database when the 

transaction commits. Two concurrent transactions conflict with each other if they both 

write the same data items. In this case, one of the transaction must abort.  

The PostgreSQL system Serializable isolation level corresponds to the Snapshot 

Isolation. This may seem awkward but in practice it is possible to obtain an execution 

with Snapshot Isolation equivalent to an execution with the ANSI SQL Serializable 

isolation level. 

2.3 Database Replication 

Replication is used to improve reliability, fault-tolerance and availability. In database 

systems, when using replication, database copies are stored in multiple nodes (replicas). 

If a master replica exists, it processes all the requests: we call this approach a primary-

backup scheme. In contrast in a multi-master scheme any replica can process a new 

request and distribute the new updates to the other replicas. This later approach requires 

a distributed concurrency control and a solution for handling conflicting transactions. 

Eager replication solves the conflicts between transactions by preventing the conflicts. 

The conflict is detected before the committing of the transaction and one of the 

conflicting transactions is aborted. Lazy replication allows transactions to commit and 

resolves the conflicts after the commit. Eager solutions promote consistency by 

propagating changes to replicas within the transaction boundaries. Lazy solutions 

promote efficiency over consistency by only propagating changes to replicas after the 

transaction commits (with a possible considerable delay). We start by presenting an 
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example of a system that uses lazy replication [9], and continue with systems that use 

eager replication, as this late approach is the focus of our work 

2.3.1 "The dangers of replication and a solution" [ 9] 

Motivation and objectives 

Scalability is an important issue for database systems. This work studies the scalability 

problems associated with update anywhere-anytime-anyway transactional replication 

system on mobile environments. The results show that the deadlocks and reconciliation 

rates raise greatly, leading to unstable behavior. 

In this study it is also shown that the use of primary copy approaches reduce the 

aforementioned problems and it is proposed a novel algorithm that relies on the primary 

copy approach, while providing disconnected operations and serializable transaction 

execution. 

An analysis of different replication strategies (for mobile computing) 

Eager replication reduces update performance and increases transaction response times 

because it adds extra updates and messages to the transaction, since all replicas are 

updated inside the transaction. Additionally, it does not support mobile applications, 

since most nodes are usually disconnected. 

Lazy replication is a solution for mobile applications since the updates can be 

propagated to other nodes asynchronously, outside transactions. However, in this 

approach, data on replicas can become stale, allowing a transaction to observe old 

committed values, increasing the probability of conflicting transactions. With a lazy 

strategy, when some replica updates have already been committed when a conflicting 

transaction is detected, it is necessary to rely on a reconciliation mechanism. 

Simple lazy replication only works well with low loads and few nodes. If the 

application scales up to a larger number of nodes, if the nodes are disconnected more 

often, or if the delays of messages are longer, then it is necessary to reconcile 
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conflicting transactions more often. As reconciliation fails, the nodes begin to diverge to 

the point where the database becomes inconsistent with no obvious way to repair. 

In eager replication, locking detects possible conflicts before they occur converting 

them to waits or deadlocks. The waits cause delays while the deadlocks create 

application faults. In lazy replication the transactions that would wait using an eager 

strategy face reconciliation, which frequency is determined by the much more frequent 

waits using a lazy strategy. 

Due to the need of contacting the master, lazy-master replication is not an option for 

mobile applications. In this type of replication, objects have owners that store their 

current “official” value. Updates are executed in the master first, and then they are 

propagated to the other replicas. Lazy-master replication is slightly less deadlock prone 

than eager replication but it requires contact with object masters, which store the 

object’s current value.  

Architecture and functionality 

The solution proposed is based on a two-tier replication approach, which is a modified 

mastered replication scheme. Each object is mastered by a node, to avoid reconciliation. 

This scheme assumes two kinds of nodes: mobile nodes and base nodes. The mobile 

nodes are disconnected most of the time. They store a replica of the database and may 

originate tentative transactions. They may also master some of the data items. Base 

nodes are always connected and also store a replica of the database. This nodes master 

most of the items. The items have two versions at mobile nodes: a master version, 

which is the most recent value received from the master; and a tentative version, which 

is an updated version of the local objects modified by a tentative transaction. Following 

the same idea there are two kinds of transactions: base transactions that work only on 

master data and produce new master data; and tentative transactions that work on local 

tentative data and produce new tentative versions and a base transaction to be run on the 

base nodes. 

Mobile nodes accumulate tentative transactions that run against the tentative database 

stored at the node. These tentative transactions are reprocessed as base transactions 
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when the mobile node reconnects to the base nodes, but may fail when being 

reprocessed. 

2.3.2 “A suite of database replication protocols ba sed on group 

communication primitives” [4] 

Motivation and Objectives 

Replication in most commercial database systems is based on optimistic replication. 

This approach allows inconsistencies and relies in centralized algorithms. The reason 

for this is the strong belief of database designers that synchronous and update-

everywhere approaches, based on 1-copy-serializability, have performance and 

scalability problems. 

The goal of this work was to design synchronous, update everywhere protocols, based 

on group communication, that do not suffer from performance and scalability problems. 

 

Architecture and Functionality 

The system is a distributed database consisting in a fixed number of nodes. The 

database is fully replicated, so each node has a full copy of the database. The nodes 

themselves, communicate via message passing. The group communication subsystem 

provides two different services, a basic service, with no ordering guarantees; and a total 

order service, where all the sites deliver the messages by the same total order. 

Regarding message delivery, there is an atomic delivery and a non-atomic delivery. A 

node that fails is excluded from the group by group maintenance services. The members 

of the new group coordinate the delivery of the failing node pending messages. 

The system uses a version of the all available copies approach. Reads operations are 

executed locally. Write operations are deferred until all read operations have been 

executed and are broadcasted in a write set. Since it is an all available copies approach, 

an update request must be performed by all available replicas. The ordering of 
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conflicting transactions is established by the total order service from the communication 

model. 

There are four levels of isolation supported by the system: Serializability, Cursor 

Stability, Snapshot Isolation and a Hybrid Protocol. Snapshot Isolation (SI) is 

implemented using the protocol presented in figure 1. 

 

 

Figure 1: Replication protocol guaranteeing snapshot isolation (from [4]) 

   

For implementation of Snapshot Isolation each object in the system has various 

versions. An older version can be reconstructed applying undo operations to the object 

until the required version is generated. Each one of these versions is labeled with the 

transaction that created the version. The first writer wins strategy is used, so when a 

transaction T wants to write to an object that was updated by other transaction after the 

transaction T started, the transaction T is aborted. 

The beginning (BOT) and the ending (EOT) of a transaction are identified by 

timestamps. Since the system is distributed, the timestamps (TS) need to be 
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synchronized. The system uses the write sets sequence numbers as a global virtual time, 

to synchronize the timestamps.  

The decision of the abort or commit of a transaction is local to each node, so no 

messages are sent between the nodes. 

The protocol, illustrated in figure 1, is composed by five phases. The first phase is the 

reading phase, where the read operations are executed in a snapshot of the database. 

Phase two is the send phase, where the write sets are sent to every replica using a total 

order service unless the transaction is read-only and therefore is immediately 

committed. The next phase, executed on the delivery of the write sets, is the lock phase 

which includes a version check. If a write operation from transaction T (bundled in the 

write set), updates an object that was updated by another transaction that committed 

after the start of T, T is aborted. The same happens for conflicts with transactions that 

are in the process of committing, but are ordered before T (in the timestamp order). To 

avoid the overhead in the case of frequent aborts a preliminary check can be done 

locally, before sending the write set, and the transaction is aborted and restarted if a 

conflict is detected. This does not avoid the need for the remote check. Finally, the 

protocol ends with the write phase and the commit phase respectively. The write phase 

performs the write operations when the write lock is granted and the commit phase 

commits the transaction when all operations from the write set have been executed and 

releases all the locks for this transaction on the replica. 

The system also supports three other protocols, for which that we now briefly 

summarize: Serializability is implemented using strict 2-phase locking (2PL); Cursor 

Stability, is implemented using short read locks, and may lead to non-repeatable reads 

because a lock is placed on an item as long as an SQL cursor is positioned on the item, 

but is released when the cursor moves on; and the Hybrid Protocol, which is a mixture 

of the 2PL protocol, used for update transactions, and the SI protocol, for read-only 

transactions, which must be pre-declared. 

The broadcast primitives are relaxed to minimize message and logging overhead, which 

leads to three versions of the Serializability, Cursor Stability and Snapshot Isolation 
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protocols. The versions of the protocols are non-blocking, blocking and reconciliation 

based. 

In the non-blocking versions of the protocols, the delivery of the write set and the 

commit message is atomic, and the abort message does not need to be sent atomically. 

This way, each node can decide to abort in-doubt transactions of a failed node, without 

contacting other nodes. A transaction is seen as in-doubt by a node N, when it is 

invoked at a node N’ and the write set is delivered to node N, but the abort or commit 

message has not. With this approach, a group change that excludes a failing node is not 

announced to the application of a node N, until all messages the failing node might have 

delivered are delivered at node N. 

In a blocking version of the protocol, some of the overhead of the non-blocking 

approach is avoided by allowing not reaching a decision about the transactions of the 

failed node. The delivery of the write set in this approach is atomic, but the commit 

message is not. In this version of the protocols, a node can no longer decide 

independently on an in-doubt transaction, because the delivery of the commit and abort 

messages are non-atomic, which allows other nodes, including the failed one, to deliver 

the commit or abort and terminate the transaction. So, a coordination protocol is needed 

in this version. When a transaction is in-doubt at all nodes, it must be blocked until the 

recovery of the failing node. If there is a node where the transaction is not in-doubt, that 

node must inform the nodes where the transaction is in doubt. 

Finally, the reconciliation based version that does not broadcast any message atomically 

and is an alternative when performance needs to be improved. In this case, a failing 

node may have committed a transaction but the other nodes may have not received the 

write set or may have decided to abort the transaction. When the failing node recovers, 

it must conciliate its database with the databases of the working nodes and compensate 

the changes done by the transaction. 

The best protocol and version depends on the workload and the system configuration. 
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2.3.3 “Ganymed: Scalable Replication for Transaction al Web 

Applications” [5] 

Motivation and objectives 

Replication is a common solution for the scalability requirements of database services 

like data grids and large scale web application. However to implement replication it is 

necessary to balance trade-offs between consistency and scalability. Commercial 

systems usually choose scalability, giving up on consistency. Other common solutions 

offer limited scalability in exchange for consistency. 

Ganymed is a database middleware that intends to provide scalability in a replicated 

database system without sacrificing consistency. The system targets the needs of typical 

dynamic content generation with a large amount of complex reads and a small number 

of short update transactions. 
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Architecture and functionality 

 

Figure 2: Ganymed Prototype Architecture (from [5]) 

 

The Ganymed architecture, depicted in figure 2, is composed by four components: the 

clients, the replicas, the scheduler and a manager component. 

The clients are application servers that connect to the scheduler through a custom JDBC 

driver, for submitting operations. For the clients the scheduler abstracts a single 

database with Snapshot Isolation. The scheduler communicates with the replicas using a 

PostgreSQL JDBC driver. The set of replicas contains a Master replica and several 

Slave replicas. Each replica must be a database providing Snapshot Isolation. The 

replicas can be added and removed from the system at runtime and the Master role can 

be assigned dynamically. There is also a manager component which runs in a dedicated 

machine and monitors the system. This manager component is used to allow the user to 

configure the system, adding and removing replicas, and to substitute a failing 

scheduler. 
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The main component is the middleware scheduler that controls the execution of client 

transactions over the set of replicas. There is a backup scheduler to substitute a failing 

one. 

The scheduler implements the RSI-PC (Replicated Snapshot Isolation with Primary 

Copy) algorithm. The algorithm separates update and read-only transactions. Updates 

go directly to the master replica without delay and queries go to the slave replicas.  

After committing a transaction in the master, the updates are bundled into a write set, 

which is broadcasted to all replicas. For the extraction of the write sets, the JDBC 

interface was extended with the necessary logic to collect changes to the database. The 

write sets are table row based. 

Read-only transactions need to call Connection.setReadonly(), so they are known in 

advance. Read-only transactions that are known in advance are assigned to a slave 

replica according to the least pending requests first rule, even if the master has capacity 

to process them. If the read-only transactions are not known in advance, or there are no 

slave replicas present, the transactions have to be processed by the master replica. 

Read-only transactions will always see the latest snapshot of the database. If the replica 

does not have the latest version of the database the execution of the transaction is 

suspended until all needed write sets have been applied to the replica, which is verified 

by the scheduler. To avoid this delay the client may specify the allowed staleness of the 

transaction, or send the read-only transactions to the master replica. 

If a replica fails, the system uses the remaining replicas. If the master fails, a slave 

replica becomes the master. The reaction to failing replicas can be done by the 

scheduler without intervention from the manager console. 

Ganymed can be used of-the-shell for any application, as it does not impose any special 

data organization, structuring of the load, or particular arrangement of the schema. The 

only requirement for achieving good performance is for read-only transactions to be 

known in advance. 
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2.3.4 “Database Replication Using Generalized Snapsh ot 

Isolation” [6] 

Motivation and objectives 

Conventional snapshot isolation requires transactions to observe the latest snapshot of 

the database, which is not suitable for replicated databases, because, unlike centralized 

databases, the latest snapshot is not available in every replica – in fact, to determine 

which is the latest snapshot, it might be necessary to contact all replicas. 

This work extends snapshot isolation to suite replicated databases, by defining 

Generalized Snapshot Isolation, which allows the transactions to observe older 

snapshots of the database, instead of just the latest. A particular case of the Generalized 

Snapshot Isolation is the Prefix-Consistent Snapshot Isolation, where the snapshot 

contains, at least, the writes of previously committed transactions. 

 

Generalized Snapshot Isolation 

Generalized snapshot isolation (GSI) is an extension of the conventional snapshot 

isolation, maintaining many of its properties. This approach allows a transaction to 

execute in a snapshot older than the latest, instead of just the latest like the conventional 

snapshot isolation. This increases the probability of aborts for update transactions in 

consequence of the increase in the number of “concurrent” transactions. 

Replicas can process read-only transactions locally as no conflicts may arise. An update 

transaction may be executed locally, except the commit, which requires certification to 

detect write-write conflicts. A transaction reads only committed data and does not 

commit if updates conflict with another committed update transaction ("first-committer-

wins"). If there is any intersection of the write set of the transaction, with the write sets 

of the update transactions that have committed after the snapshot used by the 

transaction, the transaction aborts; otherwise it commits. 
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Prefix-Consistent Snapshot Isolation (PCSI) is an instance of the GSI that uses the most 

recent snapshot available, by including the updates of all transactions that are in the 

transaction's workflow and have committed before the transaction started. 

 

Architecture and functionality 

The system architecture is composed by any number of clients, any number of replicas 

running Snapshot Isolation and a certifier. Transactions are executed on the replicas. If 

the transaction is read-only then it executes locally in the replica and does not involve 

the certifier, but the commits of update transactions must be certified. 

The authors propose two algorithms to implement PCSI. The algorithms vary regarding 

the certifier implementation. 

The first algorithm has a centralized certifier which also stores the write sets of the 

transactions and is implemented on a master replica. The remaining replicas work as 

slaves that communicate only with the master. Read and write operations are locally 

executed on the slave replicas and read-only transactions do not communicate with the 

master, while update transactions must be certified, therefore must communicate with 

the master.  

The other algorithm has a distributed certification: all replicas execute transactions and 

certify update transactions. For the delivery of the write sets for certification, for all 

replicas, an atomic broadcast is used. Thus the ordering of transactions is established 

and all replicas may reach the same decision on which replicas commit/abort.  

In both algorithms the only operation that requires remote communication is the 

certification of an update transaction. Upon the commit of the update transaction, the 

write set is applied at the other replicas, according to the algorithm. 

Regarding failures, a recovering site must apply the effects of all messages which it has 

not delivered or that it has not processed. In the first algorithm, when a site recovers it 

reads the last committed snapshot locally and asks for the most recent updates from the 

master. In the second algorithm, the recovering site also reads the last committed 
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snapshot locally but then broadcasts a recovery message to ask for the missing updates, 

which may be sent by any replica. 

2.3.5 “Tashkent+: Memory-Aware Load Balancing and Up date 

Filtering in Replicated Databases” [7] 

Motivation and objectives 

In replicated databases, an important feature to achieve good performance is the load-

balancing of the requests among running replicas. Conventional load-balancing 

strategies, like round robin and least active connections, have a good load balance but 

introduce memory contention (as transactions are placed without any knowledge on 

which data they will access). LARD (Locally-Aware Request Distribution) reduces 

memory contention using a content aware load-balancing technique, and it is very 

effective for read-only static content Web workloads – small files – but it can work 

poorly for workloads where requests with large working sets are frequent, like database 

transaction workloads, besides handling updates inefficiently. 

This work introduces a memory-ware load balancing (MALB) technique, which uses 

knowledge about the size and the contents of the working set of transactions to assign 

them, so that they can execute in main memory, reducing disk I/O. 
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Architecture and functionality 

 

Figure 3: Tashkent replicated database design (from [7]) 

Tashkent+ is composed by the database replicas, a certifier and a load balancer to accept 

requests from clients and dispatch them to the set of replicas. As the previous system, 

Tashkent+ uses generalized snapshot isolation (GSI). Replicas communicate only with 

the certifier. The certifier is used to verify which concurrently executed update 

transaction can commit, by deciding the commit order and checking for conflicts. Each 

replica has a proxy attached that intercepts the requests transparently. The proxies use 

an algorithm to prevent bursts from overloading the database. When a commit is 

attempted by an update transaction, the proxy sends a request to the certifier, to certify 

the write set, so this one can detect write-write conflicts. The successfully certified write 

sets are recorded in a persistent log. Data consistency is maintained propagating the 

write sets to all replicas. 

For handling failures, a primary-backup scheme is used. There is a backup load 

balancer. When the primary fails, clients use the backup and all active transactions are 

aborted and retried. The certifier is also replicated for availability, with one leader 

certifier and two backups. 
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The main innovation of Tashkent is the MALB algorithm that intends to dispatch 

transactions to replicas avoiding memory contention. To this end, the state of each 

database replicas is monitored by taking estimates of the working sets. This is achieved 

exploring information in the transactions execution plans, which contain the tables and 

indices used and how they are accessed. The estimates are used by the MALB algorithm 

to create transaction groups so that each one fits in the main memory of a replica and to 

dynamically allocate replicas for the transaction groups.  

The load balancer receives replica load information on the CPU and the disk I/O 

channel utilization from lightweight daemons running in each replica. The loads of each 

transaction group are compared and additional replicas are allocated to the most loaded 

group.  

In a stable workload, the partitioning of the transaction groups across the replicas can be 

made permanent by the load balancer. Each replica receives a subset of the transaction 

types, so the tables not used at the replica can be dropped or allowed to become out-of-

date. So, updates to these unused tables can be filtered since they do not have to be 

processed by the replica. This technique is called update filtering, and can be enabled on 

the Load Balancer. Dynamic replica allocation is disabled when update filtering is 

enabled. 

2.3.6 “Don’t be lazy, be consistent: Postgres-R, A n ew way to 

implement Database Replication” [8] 

Motivation and objectives 

Update everywhere replication has several limitations, as high deadlock rates, message 

overhead and poor response times.  

The goal of this work is to circumvent these limitations by using shadow copies to first 

execute the transactions locally, thus postponing the propagation of the updates. The 

system relies on group communication to pre-order the transactions and to acquire all 

locks needed by a transaction in an atomic step. 

The proposed solution is integrated into the PostgreSQL database system. 
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Architecture and functionality 

 

 

Figure 4: Postgres-R Architecture (from [8]) 

 

Postgres-R was implemented as an extension to PostgreSQL, maintaining the same 

functionality but providing replication as an additional feature.  

The Postgres-R architecture consists of several nodes (servers), each running an 

instance of Postgres-R. The database is replicated at all sites. When clients want to 

access the database they send a request to a postmaster process running in a replica. The 

postmaster handles the transactions required by the client. 

Update transactions execute on shadow. The changes to the shadow copies are 

propagated to the other sites at commit time, thus reducing the message. A transaction 

can read its previous writes by reading the shadow copies. Constraints can be checked 

and triggers fired during the update on the shadow copy. 



 42 

Read transactions are executed locally. A read transaction is aborted when a conflicting 

write arrives. This approach avoids deadlocks and inconsistent executions. 

The replication protocol has an eager approach, and executes a transaction in four 

phases: I - Local Read Phase, II - Send Phase, III - Lock Phase, IV - Write Phase. In the 

first phase, all read operations are performed locally and the write operations are 

executed on the shadow copies. In the second phase, if the transaction is read-only, it 

commits locally. Otherwise, the write sets are broadcasted to all sites. The third phase is 

used to request all write locks needed by the transaction, thus guaranteeing that the 

transaction can be serialized in respect to concurrent transactions. Finally, on the fourth 

phase, the updates of the transaction are executed and after the commit all locks it 

required are released. 

To provide serializability, Postgres-R uses a reliable total order group communication 

primitive to multicast the write set and to determine the serialization order of the 

transactions. A local site commits a transaction whenever the global serialization order 

has been determined. It does not have to wait for the other sites to have executed the 

transaction because it relies on the fact that the other sites will serialize the transaction 

in the same way.  

Since PostgreSQL uses locking at the table level, which is not desirable for efficiency 

reasons, Postgres-R uses a simple (logical) tuple level locking scheme based on key 

values. This is implemented resorting to the shadow copies. Since during the Read 

Phase, the updates of a transaction are executed on the shadow copy, locally, the 

updated key values can be include on the write set that will be propagated to the other 

sites. This allows a logical tuple level locking during the Lock Phase. 

2.3.7 “The Database State Machine Approach” [10] 

Motivation and objectives 

As many of the previous works, the motivation for this work is the need for good 

performance in replicated databases that provide 1-copy serializability. 
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The Database State Machine approach for synchronous database replication proposes an 

approach to deal with replicated databases over a cluster of servers, which differs from 

traditional mechanisms by not using distributed transactional mechanisms. The 

approach relies on deferred updates, but is meant to reduce the transaction abort rate 

using a reordering certification test to look for possible serializable executions before 

deciding to abort. 

 

Architecture and functionality 

The system is composed by a set of replicas, each with a full copy of the database, and a 

set of clients. The sites communicate via message passing and fail independently by 

crash (Byzantine failures are not supported). Clients submit transactions that are 

executed by the database sites. The system provides 1-copy serializability for the 

transaction execution. 

The transactions are locally executed with no interaction with other sites and locally 

synchronized using strict two phase locking. The system has a termination protocol, 

which is executed when the client requests the commit of a transaction. In this protocol, 

the transaction’s write set and read set are atomically propagated to all replicas, where 

the transaction is certified and committed, if possible. The certification is used to ensure 

one-copy serializability, aborting a transaction if its commit leads the database to an 

inconsistent state.  

Each replica behaves like a state machine, so when processing the delivered 

transactions, all replicas should reach the same state. To achieve this, all certifiers must 

enforce that write-conflicting transactions are applied in the same order, by granting 

their locks by the same order as they are delivered. To certify the delivered transaction, 

the certifier checks if the write sets of committed transactions conflict with the read set 

of the committing transaction. 

Read-only transactions are locally executed and committed, and do not need 

certification, but may be aborted due to local deadlocks or during the certification of 

remote update transactions. To avoid aborting read-only transactions during certification 
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of remote update transactions, the transactions must be declared as read-only 

transactions. Then, remote update transactions wait for the conclusion of the read-only 

transaction, to obtain the locks needed. 

The system presents a modification to the certification test that lowers the abort rates. 

The idea is to reorder the transactions that are trying to commit, to increase the 

probability of committing them, by constructing a serial order that lowers the possible 

conflicts. 

On recovery from failure, a replica receives the updates of the missed transactions 

(while the replica was down) by communicating with a replica that has seen all 

transactions in the system.  

2.3.8 “Revisiting the Database State Machine Approac h” [11] 

Motivation and objectives 

The goal of this work is to extend the DSMA to avoid the extraction and propagation of 

read sets, while incurring in no communication overhead and guaranteeing the 

serializability of transactions. 

  

Architecture and functionality 

The base of DSMA* remains the same as the DSMA: a non centralized approach with 

deferred update replication, where read-only transactions are processed locally, and 

update transactions do not require synchronization between replicas until commit time. 

Each site has a full-copy of the database and transactions are locally executed according 

to strict two-phase locking (2PL). 

The DSMA* extends DSMA to avoid the need of read sets during certification. The 

extraction of read sets implies modifying the database internally, or to parse the SQL 

statements outside of the database. Instead of using the read set for certification, the 

write set is used. By using just the write sets to check for conflicts, only snapshot 

isolation is achieved. So to achieve serializability the authors divide the database in 
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logical sets. For each set, corresponding dummy rows are created. Each time a 

transaction reads or writes to an object of the set, a write operation is executed in the 

corresponding dummy rows. This strategy is used to detect serializability conflicts. For 

example, a transaction T1 reads from a record R from a set S, and a transaction T2 

writes to the record R and commits. When T1 tries to commit there will be a writing 

conflict, therefore T1 is aborted. But this approach has a drawback. The transaction T1 

may want to read a row from the record R that is different from the row written by T2. 

Nevertheless, it is still aborted. So to achieve serializability, the number of possible 

conflicts rises greatly.  

As in DSMA sites communicate with each other through atomic broadcast. Each site 

has the role of a replica manager and all replicas receive and process the same sequence 

of requests in the same order.  

2.3.9 “Gorda: An Open Architecture for Database Repl ication 

(extended)” [12] 

Motivation and objectives 

Database vendors provide no support for third party replication. Thus, to provide 

replication, two approaches are possible. The first one is to modify the database. This 

approach, that is only possible when the source code is available, is hard to maintain 

when new versions are released, and it restricts portability. The second approach is to 

implement a middleware layer that uses the database. This approach introduces a 

performance overhead due do additional communication. 

This work intends to address this problem, allowing the implementation of third party 

replication in existing database systems. 

The solution proposed is a novel architecture (GORDA) along with a programming 

interface (GAPI) for replication, allowing the implementation of different strategies on 

any compliant DBMS. This approach intends to be cost-effective and efficient, by 

enabling the reuse of replication protocols or components in multiple DBMSs and 

allowing close coupling with DBMS internals. 
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Architecture and functionality 

The base of the architecture is a reflective system that allows a computation to be 

inspected or manipulated. For example, in an object oriented system the invocations of 

methods on objects can be reflected as objects, which can be manipulated and inspected. 

These reflected objects are called the meta-objects, in opposition to the ordinary, or 

base, objects. 

 

Figure 5: Processing stages and contexts (from [12]) 

 

The transaction processing is abstracted as a pipeline, as depicted in figure 5. The 

pipeline is composed by the following stages: Parsing, Optimization, Execution, Logical 

Storage and Physical Storage. The idea is to issue notifications at the meta-level when 

proceeding from one stage to another. 

In the database system, the following meta-objects are used: the DBMS and Database, 

which expose metadata and allow notifications of lifecycle events; the Connection, 

which reflect existing client connections to the database; the Transaction, to notify 
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events related to a transaction; and the Request, to ease the manipulation of requests 

within a connection to a database and the corresponding transactions. 

These meta-objects and pipeline stages were chosen to obtain an adequate level of 

granularity. If a very fine granularity was used, the interface could not be easily mapped 

to different DBMSs and the performance overhead would be very high. With a very 

large granularity, like the one obtained when wrapping the server and intercepting the 

client requests as they are being issued, the interface exposes too little information to be 

useful. 

In [12], the authors describe some examples of how to implement Primary-Backup, 

State-Machine replication and Certification-Based replication protocols using the 

proposed interface. But the interface can be used to implement any type of replication 

protocols with its possible multiple variants. For example, the certification based 

protocol presented provides a variant with snapshot isolation, based on a distributed 

certification process (as used, for example in GSI [6]). 

To implement primary-backup, the Transaction context is used to capture the moment 

when a transaction starts to execute and commits, or rollbacks, at the primary; and the 

Execution Stage is used to provide the object set needed to extract the write set of a 

transaction from the primary and propagate it to the backup replicas. In a synchronous 

approach for the Primary-Backup, there are six steps. In an asynchronous approach the 

fourth and fifth steps are postponed. In the first step the client sends the requests to the 

primary. On the following step, when the transaction begins, the primary is notified to 

register information about this event. The third step happens after the processing of an 

SQL statement and it is used to retrieve the updates, which are stored along with 

previous updates from this transaction. The fourth step is used when the primary is 

about to commit a transaction, allowing it to broadcast the stored updates to all replicas. 

The fifth step is to allow the primary to commit the transaction, after the write set is 

received and executed at all replicas. Finally, the sixth step is for the primary to reply to 

the client. 
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The certification-based protocol execution is similar to the primary-backup, as only the 

certification is distributed. Therefore, it also uses the Transaction context and the 

Execution Stage. It is also composed of six steps and the first four are the same as for 

the primary-backup implementation. On the fifth step, after receiving the write set, each 

replica certifies the transaction, deciding to commit or abort it. All replicas reach the 

same decision since the certification is deterministic and an atomic broadcast establishes 

a global total order. In case of abort, the replica that received the updates from the client 

cancels the commit, through the context component, and the other replicas discard it. In 

case of commit this replica allows the transaction to continue and the other replicas are 

able to execute the updates. The sixth and final step is for the replica contacted by the 

client to reply him. 
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2.3.10 Summary  

Table 1 presents a comparison of the presented systems, according to six specific 

properties.  

The group communication column indicates whether the system relies on a group 

communication subsystem to exchange information among replicas, or not. In the later 

case, the replicas usually do not communicate among themselves.  

In the replica consistency (client view) column, we classify the systems on whether the 

client can observe divergent replicas or not (despite the fact that, internally, replicas 

may become divergent for short periods of time).  

The update propagation column presents the strategy to propagate updates to the 

replicas. This can be done using an eager approach or a lazy approach.  

The architecture column presents the system architecture. Some systems have fully 

distributed architectures, while others include centralized components (e.g. primary-

copy).  

The isolation column shows the highest level of isolation provided by the system.  

Finally, the last column addresses the technique to detect conflicting transactions. This 

can either be done by the underlying database system or by the middleware. Some 

systems have a specific entity to detect and resolve the conflicts, called the certifier. 

From the table, we see that different alternatives exist for each aspect and that they can 

be combined in different ways. But most of the systems presented use similar 

approaches. 

However, it is also clear that similar approaches are used in a growing number of 

systems, which seems to point to a very promising approach. In our work, we will also 

work on the same direction. The main difference lies in the fact that we intend to 

explore speculative execution, which should allows us to improve existing designs. 
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In this comparison, we have not included the system presented in [9], as it uses a lazy 

replication strategy, thus focusing on different problems and using different techniques. 

We have also excluded the Gorda system [12], as it is mainly an approach to allow the 

use of different alternatives solutions for existing database systems.  

 

 Architecture Replica 

consistency 

(client 

view) 

Isolation Update 

propagation 

Group 

Communication 

Conflict 

Detection 

Kemme et 

Al. [4] 

Distributed Yes Various Both Yes System 

Ganymed 

[5] 

Primary-copy Yes SI Lazy No DB 

GSI [6] N Replicas + 

Centralized 

Certifier 

Or 

Distributed 

Certifier 

Yes SI Eager No, using the 

Centralized 

Certifier. 

Yes, using the 

Distributed 

Certifier 

System 

(Certifier) 

Tashkent 

[7] 

N replicas + 1 

central certifier 

Yes SI Eager No System 

(Certifier) 

Postgres-R 

[8] 

Distributed Yes Serializability Eager Yes System 

DSMA [10] Distributed Yes Serializability Eager Yes System 

(Certifier) 

DSMA* 

[11] 

Distributed Yes Serializability Eager Yes System 

(Certifier) 

 

Table 1: Comparing some of the presented systems properties 
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3 Design 

This chapter presents the design of our middleware system for database replication. We 

start by discussing the setting for which our system is designed and then proceed by 

presenting the system architecture.  

3.1 Analysis 

3.1.1 Design Principle 

A large number of different applications are built on top of database systems. These 

applications may have very different transaction workloads, with a different balance 

between read-only transactions and read-write transactions. For different workloads, 

different system implementations may behave differently, with some solutions working 

better for some specific workloads. Our system is no exception to this rule. 

We have designed our system to work with any workload given but we have optimized 

it for working better with workloads with a larger number of read-only transactions than 

read-write transactions. To this end, we have decided to optimize the execution of read-

only transactions. This workload is common in many applications that use databases for 

storing data, such as web-based applications [5]. 

As further detailed later, our system replicates the database over a set of replicas using a 

primary-copy approach, where the primary server is used to execute the read-write 

operations. Secondary replicas are used to execute read-only transactions. In this 

approach, with a larger number of read-write transactions, the primary replica becomes 

a bottleneck and the work done by the secondary replicas is minimal. However, if the 

number of read-only transactions is larger, the execution of these transactions can be 

distributed among database replicas, thus balancing the load of the system and allowing 

a better performance.  

This load distribution is only possible by the use of the snapshot isolation semantics that 

allows read-only transactions to execute in a replica without any synchronization with 
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other replicas. If full serializability was used, expensive synchronization algorithms 

would be necessary. The use of the snapshot isolation semantics further improves 

performance, as read-only transactions are not blocked nor aborted by read-write 

transactions, therefore further improving the number of read-only transactions that can 

execute concurrently. 

3.1.2 Optimizations 

As discussed in [4, 5, 8, 9, 10, 11], a replicated database system that uses a synchronous 

replication approach may present performance deficiencies when compared to a system 

with no replication. Besides the basic replication design presented before, we have 

decided to rely on speculative execution to further improve database performance and 

reduce the latency for operation execution. Thus, a client may use speculation to avoid 

the waiting experienced when sending operations to the databases on the remote 

replicas. By returning the probable result for the operation, the client application can 

continue executing, thus performing useful work instead of being blocked waiting for 

the operation result. If the guessed result is correct, this approach can reduce the time 

necessary to run the client application and improve the performance of the overall 

system.  If the guessed result turns out to be incorrect, the transaction just needs to be 

aborted. 

Since our approach is based on a replicated system with primary-copy using a 

synchronous approach, the updates applied to the primary replica are propagated to the 

remaining replicas when the transaction commits. To increase the performance of the 

system, the result of the commit may be returned to the client before every replica is 

updated, like in an asynchronous approach. If the primary does not fail, this approach 

can still provide the illusion of a single copy if the client never observes inconsistencies 

between the database replicas – this can be achieved by guaranteeing that the client will 

never start a transaction in a replica that has still not executed this previous updates.  

However, in the presence of failures, not updating all the replicas before answering to 

the client can lead to durability issues. If a primary replica returns the result of a commit 

and then fails before the updates of the transaction have been applied on another replica, 
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these updates will not prevail, but the client assumes they had since it has received the 

answer from the primary replica confirming that the commit succeeded. To avoid these 

problems, we have defined a minimum of replicas to update after every commit. Thus, 

the primary replica only replies to the client confirming a commit after this minimum 

number of replicas have been updated. If the primary replica fails, an updated secondary 

replica may take its place and the updates prevail. This approach works fine if, at most, 

the defined minimum number of replicas fails (including the primary).  

3.2 Architecture 

The architecture of the system is composed by three types of entities: Client, Primary 

Replica and Secondary Replica. When the system is executing, there exists a single 

Primary Replica and a limited number of Secondary Replicas. The number of clients is 

unlimited (although the implementation may impose some limits). Clients run users 

applications that access the database by communicating with both Primary and 

Secondary Replicas as explained later. 

The Primary Replica maintains the primary copy of the database and executes the read-

write transactions. The secondary replicas host copies of the primary database and 

execute the read-only transactions. 
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Figure 6: Middleware architecture 

The architecture of the system depicted in Figure 6 is an example of the system with just 

one client that communicates with the middleware, which is composed by a primary 

server and three secondary servers.  

3.2.1 Client 

Usually, a Java application that accesses a database system uses a JDBC driver to issue 

SQL commands using the JDBC defined functions. The JDBC driver contacts directly 

the database server. In order to allow applications to use our system without 

modification, we have implemented a custom JDBC driver that acts as a client for our 

replicated database system. 

This approach allows us to use replication along with some other features of the system. 

The replication is not visible to the client application, and only the client driver is aware 

of the existence of multiple database replicas.  

In our design, read-only transactions are processed by secondary replicas (if any is 

active) and read-write transactions are processed by the primary replica. To avoid the 

requirement of pre-defining a transaction as read-only like the Ganymed [5] system, we 
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use a strategy to emulate the same functionality as that system, where the read-only 

transactions are executed on the secondary replicas. The first time the client starts a 

transaction, the client driver asks the primary replica for a secondary replica to process 

the transaction. A secondary replica is chosen randomly and the client driver uses that 

replica to execute its read-only transactions. When executing a transaction, if any of the 

operations is a write, then the transaction continues to be processed by the primary 

replica instead, as depicted in figure 7. After a transaction is committed the client 

always begins the execution of the next transaction on the chosen secondary replica. To 

ensure that the transaction executes in the same version of the database the middleware 

starts the transaction on both the primary replica and the secondary replica on the 

beginning of a transaction. If the transaction changes its execution to the other replica it 

continues executing on the same version of the database. 

 

Figure 7: Change of replica when the transaction is found to be read-write 

As already mentioned, the system uses speculation to improve its efficiency. The JDBC 

driver used by the client was developed to be able to communicate with the database 

middleware using speculation when it is justified. Some operations can be speculative. 

This means that the client driver sends the operation to the server and before receiving 

the reply it speculates the most probable result, allowing the application program to 

continue its execution without waiting for the answer from the server. If latter the reply 

from the server is different from the one returned to the application, then the transaction 

needs to be aborted. When the client issues the next operation, or at least when it issues 

the commit operation, the information about the abort is reported to the application.  
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Note that this approach of returning an erroneous result to an operation does not present 

a problem because a transaction can only be considered definite after it executes a 

commit successfully. Moreover, the transaction is rolled back and the client receives an 

exception to know that the transaction failed and may re-execute it or not. 

3.2.2 Server 

The system is a middleware composed of various replicas of the database. There is a 

primary replica that is used to execute updates to the database, which are sent to the 

remaining secondary replicas after the local commit on the primary server (replica). As 

already mentioned there is a defined minimum of replicas that need to be updated before 

the primary server replies to the client driver. This guarantees that the updates prevail 

even if the primary server fails (Durability). 

The primary replica executes the updates and deals with the transaction conflicts at the 

database level, i.e., if two concurrent transactions conflict with each other, one will be 

aborted by the database system. After a transaction commits, the write set of the 

transaction is propagated to the remaining replicas for updating them. The primary 

propagates the write sets in commit order, thus guaranteeing that all replicas evolve 

through and to the same state. 

For being able to propagate the write set the updates must be extracted from the 

database. The updates of a transaction are grouped in a write set by the order they were 

executed on the database, and a replica that receives the write set executes the updates it 

contains by the same order to achieve the same database state as the primary replica. 

The main role of a secondary replica is to work as a backup of the database, which can 

be used to perform read-only transactions. Although the system tries to keep all replica 

synchronized all the time, the secondary replicas can be outdated for some small periods 

of time. If the transaction is not defined as read-only, the system assumes the transaction 

is read-only until the client issues a write operation. Therefore, a transaction is first 

executed on a secondary replica, if present, until the first write operation, and then it 

continues its execution on the primary replica.  



 57 

This approach follows the strategy of primary-copy where the writes are only executed 

on a primary replica. In order to maintain the correctness of the transaction execution, a 

transaction is both initiated on the primary and in the secondary replica in the same 

database state, so that it can continue its execution on the primary when a write 

operation is issued. Otherwise, when changing the execution from the secondary to the 

primary, different database versions could be used leading to incorrect behaviour. By 

initiating the transaction in both replicas, we guarantee that the transaction always 

executes on the same snapshot of the database, even after transferring its execution from 

the secondary to the primary replica. 

To implement this functionality, a straightforward approach is to start the transaction in 

the primary, and requiring the primary to propagate to the selected secondary replica the 

information about the transaction start. If the propagation of this information is ordered 

with the propagation of the write sets from committed transactions, it guarantees that a 

transaction is started in the same state in both the primary and secondary replicas1.  

Both types of replicas are subject to failures. When the primary server fails any 

secondary replica can be elected as primary. The secondary replica contacts the other 

replicas to update itself to the last version of the database if needed. Then it assumes the 

role of the primary server. The failure of a primary replica is detected by a client or 

secondary replicas that probe the primary replica and cannot establish contact with it 

after a defined number of tries. We consider the primary as faulty after some tries to 

discard sporadic network failures. The component that discovers the faulty primary 

starts an election algorithm which defines the first active replica as the new primary. 

This replica contacts all the remaining active replicas to update itself to the last version 

of the database and only then assumes the role of the primary replica. 

                                                 

1 When using JDBC, there is no explicit start transaction operation – a transaction is started when 

the first operation that requires database access is executed. We force the start of a transaction 

by reading some data element, thus using a slightly older than necessary snapshot for 

transaction execution. 
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When a secondary replica fails, it is discarded as an active replica by the primary server, 

which then warns the remaining replicas of their sibling failure, for it to be removed 

from their lists. The failing replica can be offline for a small or large period of time, or 

simply to be offline forever. When, and if, it returns online, it must be updated before it 

can be used to communicate with the clients. For that matter, it asks a secondary replica 

or the primary replica if no other replicas are present, for the latest unseen updates. The 

first time a secondary replica becomes online, it asks a secondary replica, or the primary 

when the primary is the only replica online, for the whole database, creating a local 

copy of the database. 

Both the primary replica and the secondary replicas log the write sets of each version of 

the database in main memory, to send them to a recovering replica which needs to 

update its database to the current global version. We opted to keep the logs in main 

memory instead of writing the logs to secondary memory to avoid decreasing the 

performance of the system. Our solution keeps the logs in main memory, but they 

should be garbage-collected after a while. This brings another issue illustrated by the 

following example. One of the secondary replicas becomes offline and is considered 

faulty. The remaining replicas are then updated and the system discards later discards 

the updates. If the failed replica returns online must be updated to the same database 

version as the other replicas, but the missed updates are no longer logged. A practical 

but inefficient solution is to propagate the whole database for the replica to be updated. 

3.2.3 Speculation 

Speculation is a technique used to improve efficiency and is based on executing with 

probable values instead of certain values, that is, values which may later be proven to be 

incorrect are used before knowing the correct values. We have applied the use of 

speculation on the client for hiding the latency of communication with the servers. The 

client application does not know about the existence of speculative operations, only the 

driver used by the client to communicate with the middleware sees the speculation. 

Some operations are eligible as speculative since their result can be predicted. 

Assuming the most probable result, the client driver returns the answer immediately to 
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the client application even before contacting the server. The operations elected as 

speculative were the creation of a prepared statement, the close of a connection, the 

execution of a statement, and the execution of a prepared statement. Each of these 

operations was chosen since its results can be predicted. Therefore the client does not 

need to wait for the reply from the server to continue with the execution. 

Regarding the prepared statements there is also caching of the values to be set on the 

statements that are sent to the server only on the execute operation, instead of 

communicating with the server for each value to be set. This avoids some remote calls, 

which require some precious time. 
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4 Implementation 

In this chapter, we present the most important implementation details of our prototype. 

We have organized this chapter in the following sections. Section 4.1 exposes the base 

functionality of the system, and is sub-divided in five chapters. Chapter 4.1.1 explains 

what happens when the system is initialized. Chapter 4.1.2 explains how the 

transactions are executed and processed by the system and all the consequent 

operations. Chapter 4.1.3 exposes how the system handles the JDBC structures. Chapter 

4.1.4 deals with the concurrency and the use of speculation and Chapter 4.1.5 explains 

how the replicas remained updated while the system is executing. Section 4.2 discusses 

the extraction of the write sets and Section 4.3 shows how the system deals with 

failures. Finally Section 4.4 explains how the system uses and implements speculation. 

4.1 Base Functionality 

The system was implemented in Java and is prepared to be used with the PostgreSQL 

database system. But with some minor changes it can be used with any database system 

that provides Snapshot Isolation and which can be accessed through JDBC. These minor 

changes are related with the creation of triggers, which is not standard SQL and is 

implemented differently for each database system. 

4.1.1 Binding 

The replicas implement the Remote interface so they can be registered on the RMI 

registry to accept RMI remote calls. A primary replica registers itself on a RMI Registry 

and becomes receptive to receive requests from the clients. A secondary replica also 

registers itself on a RMI Registry and tries to contact the primary replica based on an 

initial defined list of possible hosts that may host the primary replica. This list of 
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possible hosts includes the hosts that may have a server and is used for probing of the 

primary replica by the client driver or a secondary replica, as well as probing other 

secondary replicas. This list is used to initialize a list of active replicas that is present in 

every replica. The list of active replicas is dynamically updated when a new replica 

arrives or an active replica becomes inactive. When it starts, a secondary replica 

registers itself on the primary replica so that it can be updated and be used to reply to 

clients requests.  

As mentioned in the design section, the client of the system is actually the JDBC driver 

used by an application to access the database. The users’ applications just issue SQL 

commands through the JDBC driver. On request of the client application, the JDBC 

driver opens remote connections to the database middleware, which then uses to issue 

operations to the database. The driver uses the list of possible replica hosts to find the 

primary replica to start executing. 

4.1.2 Transaction Execution 

As it was explained in the design of the middleware, when a client starts a transaction, it 

starts executing operations on a randomly chosen secondary replica. But the execution 

of the transaction may change to the primary replica if the transaction updates the 

database. For allowing this change during transaction execution, when a client starts a 

transaction, it must start a transaction on the both the primary and secondary replicas. 

So the transaction is started on both replicas at the same time, using the same database 

snapshot. 

For distributing the load among secondary replicas, the primary replicas simply selects 

randomly a secondary replica for being used by a client. Thus, when the client creates a 

connection to the primary, it is the primary that creates a connection to an updated 

replica and sends it to the client. 

To guarantee that a transaction is started in the same version of the database, we start 

the transaction on both the primary replica and the secondary replica on the beginning 

of a transaction by forcing the start of a transaction reading some data element. This is 
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needed because there is no explicit start of a transaction in JDBC. If the transaction 

changes its execution to the other replica it continues executing on the same version of 

the database. 

When the client starts executing a transaction, the transaction is first assumed to be 

read-only. Therefore, the secondary replica connection is defined as the default 

connection and all operations issued by the client use this connection to execute 

operation just in the secondary replica database. Before sending a new operation to the 

secondary replica, the client checks if the operation can possibly be an update to the 

database. Besides common update operations (insert, delete, update), there is a 

particular select SQL statement that is also an update. This statement is the select for 

update, which is considered as an update by the system since it blocks the selected rows 

until commit, and it is usually used to later update those rows. Even if the updates are 

never executed, blocking rows in the secondary replicas could lead to conflicts when 

applying the write sets from other transactions, since the rows could still be blocked.  

If one of the operations is an update, then the replica being used changes from the 

secondary replica to the primary replica, and the following operations issued by the 

client are sent to this replica through the connection that was created initially to the 

primary. After a commit or rollback issued by the client, the default replica is again 

reset to the secondary replica. 

Before each of the instructions issued by the client is sent to the server, there is a check 

for the need to abort the transaction. This is needed because of the use of speculation 

and it will be explain in the respective chapter. 

When the client issues a commit operation, the primary starts by committing the 

transaction locally. After that, it propagates the updates of a transaction as a write set, to 

the secondary replicas that immediately acknowledge the reception before applying the 

write set. When the primary knows that a pre-determined number of replicas have 

received the updates, it will return the reply to the client, as depicted in figure 8. This 

approach guarantees that the updates will not be lost if at-most, the pre-determined 

number of replicas fail.  
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Figure 8: Execution of a commit operation. 

When propagating the update to the replicas, it is necessary to ensure that the updates 

will be executed in the secondary replicas in the same order as in the primary. For that 

we have created a table on the database to register the version of the database (the 

version number is also used for failure recovery as explained later). Each new 

committed transaction increases the version. When a write set is propagated to the 

secondary replicas it is stamped with the corresponding version. Then, the secondary 

replicas apply the write sets by the increasing order of version, as depicted in figure 9. 
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Figure 9: Reordering of the write sets on the secondary replicas 

4.1.3 Handling JDBC Internal Structures 

The JDBC driver uses a set of internal structures which do not imply communication 

with the database system. By using a middleware system the propagation of these 

structures to the client or to the server would result in a remote call. Therefore we use a 

technique which avoids the propagation of these structures. The structures are 

Statements, PreparedStatements and ResultSets.. The client driver creates proxies to 

these structures kept on the servers. The client issues operations on these structures, so 

the structures must be identifiable on the server. The proxy of the structure keeps an 

identifier which is sent to the server for each operation on this structure. For the 

ResultSet structure, the server creates an identifier and replies it to the client upon the 

creation of one structure of this type. For the Statements and PreparedStatements, it is 

the client driver itself that creates the identifier and sends it to the server, because these 

structures need to be created both on the secondary replicas and on the primary. This 

approach allows the immediate use of the Statement and PreparedStatement structures 

in the client, without having to wait for the creation of the structure on the server. As 

these operations (almost) never fail, this approach allows avoiding some performance 

penalty. If they fail, the transaction is later aborted. 
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This is mostly useful for PreparedStatements, since all its operations except the 

executeUpdate, executeBatch and executeQuery, are executed locally on the client 

driver, as it will be explained next, and can start to execute without the need of 

contacting the server.  

All operations on any of these structures are propagated sending the identifier and the 

additional data needed to perform the operation. Obviously, this is hidden from the 

client application to maintain the transparency of the remote operations.  

Regarding the need to create the Statement and PreparedStatement structures on both 

the primary replica and the secondary replica, the reason for this is precisely because the 

execution of the transaction may start on the secondary replica and then be transferred 

to the primary replica and after commit or rollback return to the secondary replica. So, 

there may be operations issued over the statement when the execution is on the 

secondary (resp. primary) that need to be also reflected in the primary (resp. secondary) 

for the following transactions. 

The PreparedStatements and the ResultSets do some caching of data. A 

PreparedStatement is a precompiled SQL statement for efficient execution multiple 

times. It provides methods to change the values of the statement after its creation. With 

a remote server, the remote calls are a burden, so they must be avoid. So, the setter 

methods are registered on the client side and only propagated when the execution of the 

statement is required, in a single remote call to the server.  

A ResultSet is a table of data representing a database result set returned from the 

execution of a statement that queries the database. Like the PreparedStatement, a 

straightforward approach would be for each operation on the ResultSet to contact the 

remote server. Once again, we avoid unnecessary remote calls by bringing the table of 

data of the ResultSet to the client, so that it can be used to execute operations of the 

ResultSet locally. A future improvement could be to balance the number of rows 

brought instead of bringing the entire table to the client. 
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4.1.4 Handling with Concurrency and Speculation Con sequences 

When sending the requests to the servers, it is possible that the order which was issued 

by the client application is different than the order the requests arrive at the server 

because of the speculation. The reason why this happens will be explain further on the 

section dedicated to speculation. So the server must implement a strategy for 

guaranteeing that the operations from a given transaction are executed in the correct 

order. The implemented solution is quite simple. Since the reordering is only needed for 

the instructions issued on the same connection, we stamp the requests with a serial 

number, and the server executes the instructions by the correct order. To achieve this 

requirement, the instructions that try to execute before time are blocked till their turn 

arrives.  

4.1.5 Keeping the replicas updated 

A secondary replica must register itself with the primary when it becomes online. If it is 

the first time the replica enters the system the whole database must be copied to the 

replica. It is preferable to use a secondary replica for this procedure to lower the load on 

the primary replica. This copy can be a very heavy procedure if the database is very 

large. With that in mind the strategy adopted was to bring to primary memory the 

ResultSet with all the rows from a table, for each table at a time, and send the rows 

individually to the new secondary replica. Since a table can be quite large the rows are 

brought to primary memory by chunks. When a chunk has no more rows it is filled up 

with more rows, until all rows are propagated to the secondary replica. This is done for 

every table from the database, except the table that retains the version of the database, 

which is a table specific from the system. 

Each server has a database version number saved on a specific table. The version is 

increased with each commit to the database. The use of a version number is useful for 

various situations, for example when a secondary replica fails and later becomes online 

again it must be updated with the missed updates. This is done based on the version 

number of the failed replica, since only the unseen updates between the version number 
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of the failed replica and the global system database version must be propagated to the 

replica. 

The primary sends the write set to all active replicas and waits for a defined minimum 

number of replicas to be updated before returning the result of the commit of the 

transaction to the client. 

4.2 Write-set extraction 

As it was already mentioned, the updates to the primary replica are propagated to the 

secondary replicas as write sets. For the write sets to be propagated they must be 

extracted from the database. During the study of the extraction of write sets we have 

made an overview of the possibilities and after some testing chose the most efficient 

solution available.  

We found three approaches for extracting the write sets. The first one was to use a 

database with implicit write set extraction. This is not supported in the database we 

wanted to use (Postgresql), therefore this solution was immediately rejected.  

The second solution would be to register the update SQL instructions issued by the 

client and forward them to be executed in the remaining replicas. This solution presents 

a problem since some instructions might be non-deterministic, mainly when they trigger 

triggers that update the database. For example, instructions that require the use of the 

replica’s current system time will return different values. If these instructions are 

executed on different replicas, the results in one replica will be different from the ones 

obtained on another replica, leading the database to become inconsistent.  

So we have opted for the last approach for the extracting write set: recording the actual 

changed performed in the database. To this end, we rely on the use of triggers.  

We have created a script that reads the database and for each table with primary key 

creates a trigger for updates, deletes and inserts on that table. This means that all the 

database tables must have primary keys, which is a common requirement when using 

database replication and can be easily addressed in tables that do not include such 
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feature by internally adding an additional column. For example, we have to do this in 

the table History of the benchmark TPC-C.  

Each of these triggers registers all the updates to a specific table. There are two possible 

approaches to send this updates to the system. One is to register the updates on an extra 

table and on commit (when the write set is required to be sent to the replicas) the data 

from this table is extracted into a write set, and sent to the replicas. The other approach 

is to use the RAISE SQL function to propagate the updates to the system immediately 

when they are executed. The primary replica stores the warning thrown by the RAISE 

function on the write set. On commit, the write set is simply sent to the replicas since it 

has all the updates executed on the transaction. Both strategies were implemented and 

tested, and the results have shown the latter strategy (the RAISE strategy) to be the most 

efficient, and consequently the one chosen for the implemented system.  

4.3 Treatment of Failures 

When a replica tries to contact another after a defined number of tries without success 

that replica is considered to be faulty. The system takes into account the failures of the 

replicas, either the primary or the secondary.  

When a secondary replica fails, it may be inactive for a very long time or even to never 

be back online again. So a failed replica must be removed from the active replicas list 

that exists in the primary replica and remaining active replicas. When a failed secondary 

replica is detected, usually when the primary tries to contact it, it is removed from the 

primary list of active replicas, and then the primary contacts the remaining active 

secondary replicas for them to remove the failed replica from their respective lists of 

active replicas.  

When a failed replica returns online, it must be updated to the current version of the 

database before it can be used in the system. To this end, when a secondary replica 

returns, it registers itself with the primary server and this one chooses a secondary 

replica for it to propagate the unseen updates – we call this replica, the sending replica. 
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If there is no other replica, the primary itself propagates the updates. While on this 

procedure the replicas cannot be used by clients. 

For making this procedure as efficient as possible, the returning secondary replica sends 

its last version to the sending replica. The sending replica only sends the unseen updates 

after that version. The receiver replica then applies the updates in the correct order and 

finally registers itself as an active replica with the primary replica. The primary replica 

adds the replica to its list of active replicas, saving also its current version, and contacts 

the other replicas to add the returned replica to their lists of active replicas. In the 

meanwhile the returning secondary replica buffers the new write sets sent by the 

primary while it was being updated, and after executing the missed updates applies the 

new write sets. 

If a primary replica fails then the procedure is different. The failure of a primary is 

detected by a client that tries to contact the primary or by a secondary replica that tries 

to do the same. If after a defined number of tries the primary replica continues 

unreachable, then it is assumed to be offline and an election algorithm is executed. This 

algorithm is called by the entity that discovered the failure in the primary replica. The 

first secondary on the list of active replicas tries to elect itself by majority vote. It 

contacts the other active replicas warning them of the candidacy and after receiving 

votes from a defined number of replicas (must be equal or greater than half of the active 

replicas), it assumes the role of primary replica, as depicted in figure 10.  



 71 

 

Figure 10: Election of a secondary replica to substitute failed primary 

During the election, each secondary replica sends the updates not seen by the candidate 

replica, for it to update itself to the latest version of the database before assuming the 

primary role. 

4.4 Speculation 

As it was already said, the result of some operations can be speculated in the client, so 

that it can continue its execution without waiting for the server reply, thus possibly 

improving performance. The operations that were chosen to be speculative, because 

their results could be predicted, were the following. 

• The close of a connection can be speculative since no other operation over this 

connection will be issued and there is no need for it to close on the database to 

continue the execution. 

• The creation of a PreparedStatement which we assume to succeed, allowing its 

immediate use on the client side to start executing operations on the prepared 

statement, since most of these operations do not need to contact the database.  
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• The execution of a statement can be an update or a query. If it is an update the 

result is the number of the execution is a Boolean which states if the statement is 

a query or not and the SQL instruction can be processed to guess which will be 

the reply to the client. If it is immediately executed as a query then a result set 

object is returned. Since this object may not be immediately used we create can 

return an empty object and only fill it when the answer from the server is 

returned. 

•  Finally the execution of a prepared statement can also be speculative. If it is a 

query the operation is the same as for a regular statement. If it is an update it is 

returned the number of rows updated which we assume to be 1. If the prepared 

statement is executed as a batch of commands then an array of updated row 

counts is returned with the value returned for each command, which can also be 

predicted. 

When one of these operations is issued by the client the operation is added to a list of 

speculative operations to be executed and its probable result is returned immediately to 

the client. These operations are then executed in background and removed from the list. 

The use of speculation presents a problem with the ordering of the instructions. Since a 

speculative operation is executed in background and the main execution on the client 

continues, it is possible that a posterior operation begins to execute at the server before 

this speculative execution which was previous issued by the client application. 

Therefore the operations must be stamped with a serial number. On the server they are 

reordered by blocking the operations that try to execute before their time until their time 

to execute arrives. The client must have two different serial numbers for each of the 

servers, the primary replica and the secondary replica being used. These serial numbers 

are created and stored when a connection is created. Then for each operation issued to a 

server the corresponding serial number is sent and incremented. Therefore each server 

has its own serial number also. 

There is a subtle, problem presented by the use of speculation. When a speculative 

operation returns its result to the client, the execution of the operation on the server was 
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not executed yet. If the execution on the server fails or it has a different result, then the 

transaction must be aborted. The problem is that it cannot be aborted in the speculative 

operation since it already returned the assumed probable result. So, the solution is to use 

an abort flag. If some problem is detected related with the speculative execution, the 

transaction is immediately rolled back in the servers. The client driver sets the abort 

flag. Before each client operation is propagated to the server, the flag is checked. If the 

flag is set to abort, then the client driver launches a 

SQLTransactionRollbackException to the client application, notifying the client that 

some problem has occurred during transaction execution. 

In this case, there still might be client operations from the aborted transaction in transit 

on their way to the server. To avoid executing these operations the server and the client 

driver have a counter that both increase after an abort of a transaction and the client 

sends the value of its counter when sending an operation to the server. When the 

messages of the aborted transaction arrive at the server they have a value different from 

the value on the server, since it was already increased. These messages are simply 

ignored and only the messages with the current value are executed. 
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5 Results 

5.1 Write-set extraction 

As mentioned on the implementation chapter, we have tested two ways of extracting a 

transaction write set. The first consisted in using a special table to register all the 

updates using a database trigger. On commit, the values stored on the table were 

returned to the application. The second method consisted in using a trigger that raised a 

warning to the JDBC driver with the update itself, each time an update (insert, update or 

delete) is performed. 

No extraction Extraction with table Extraction with Raise 

Write-ahead log 1287.2 (ms) 1979.8 (ms) 1519.6 (ms) 
 

No write-ahead log 1021.4 (ms) 1830.6 (ms) 1371.8(ms) 

 

Table 2: Time measures (milliseconds) for the extraction of the write sets 

To evaluate both methods, we have run a small micro-benchmark, with transactions 

consisting in an insert, a select and an update operation. Table 5 presents the time 

measured for executing one hundred transactions, dropping and creating the used table 

before executing each transaction. Each test was executed five times and the results 

presented in Table 5 are the average between the five executions. 

The tests were performed with the write-ahead log active and inactive. The write-ahead 

log is a mechanism used by the database system to provide atomicity and durability. 

Changes to the data files are logged to permanent storage before being executed so that 



 76 

in the event of a crash the database can be recovered using the log. Without the use of a 

write-ahead log the data pages do not need to be flushed to disk on every transaction 

commit, thus not ensuring the durability property. 

We observe that the overhead of extracting the write set using the Raise warning 

approach is minimal (almost the same time as the one obtained without extraction), 

while the overhead of using a special table is considerable. Therefore the Raise warning 

approach was chosen. 

 

5.2 Benchmark TPC-C 

Our system was benchmarked with the on-line transaction processing (OLTP) 

benchmark TPC-C. The benchmark simulates an environment where a population of 

terminal operators executes transactions on a database of nine tables. The benchmark is 

composed by five OLTP transactions that use primary and secondary key accesses. The 

five types of transaction defined are:  

• New Order – enters a new order from a customer;  

• Payment – updates the customer balance to reflect a payment;  

• Delivery – delivers orders (batch transaction);  

• Order-status – retrieves the status of the most recent order from a customer. This 

is a read-only transaction; 

• Stock-level – monitors a warehouse inventory. This is a complex read-only 

transaction.  

The system was only evaluated in terms of the benefits of using replication. The 

speculation benefits were not observed since the TPC-C Benchmark just executes 

database operations with no processing between these operations, eliminating the 

greatest strength of this type of speculation. The speculation is good to advance the 
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local execution while the remote calls are being processed, avoiding the waste of 

processor cycles while waiting for the answer to the remote call. Since there is almost 

no local execution in the benchmark this advantages of this execution are not reflected 

on the results obtained. The time schedule did not allow to experiment with a different 

Benchmark since that would imply a rewriting of the client code to remove all the 

speculation to be able to compare the execution using speculation and without 

speculation. 

The benchmark default transaction distribution is: 45% New Order, 43% Payment, 4% 

Order-status, 4% Delivery, 4% Stock-level. This means 92% of the transactions are 

read-write while only 8% of them are read-only transactions. This is clearly not a good 

setting for our system. So we have opted to use the following distribution:  4% New 

Order, 4% Payment, 45% Order-status, 2% Delivery, 45% Stock-level. 

The middleware was benchmarked with a variable number of clients: three, four 

(maximum of servers on the system) and eight (double the maximum of servers), and a 

variable number of servers from one to four (the servers are a primary replica and 

secondary replicas). The benchmark was executed for a period of 20 seconds for each 

different configuration (one client and one server, two clients and one server, etc.) 

We executed the benchmark with the PostgreSQL Serializable isolation level, which 

corresponds roughly to the Snapshot Isolation level. 

Servers 

 1 2 3 4 

3 2881,667 +307,6667 +341,3333 +570 

4 3285,4 +500,9333 +751,2667 +928,9333 

C
lie

nt
s 

8 3612 +1082,333 +1783,667 1904 

3  +11% +12% +20% 
4  +15% +23% +28% 
8  +30% +49% +53% 

Table 3: Total of executed transactions with the increase of the number of servers 
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Table 3 shows that the total number of executed transactions increases with the increase 

in the number of servers for the same number of clients. Since the workload is 

composed mainly by read-only transactions, and this type of transactions is executed by 

the secondary replicas (while the read-write are executed by the primary replica), the 

execution of the read-only transactions is decentralized. By decentralizing de execution 

of the read-only transactions a greater number of read-write transactions can be 

executed by the primary replica and also a higher number of read-only transactions is 

executed. The latter is increased by increasing the number of secondary replicas.  
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6 Conclusion 

6.1 Critical evaluation 

Database systems are a key element in a large number of different applications. Thus, it 

is important for database systems to be reliable and scalable. To achieve these 

properties, replication is an important feature. 

In this work, we have implemented a middleware system for database replication 

following a synchronous approach to avoid replica divergence. From the point of view 

of a client, the system provides single-copy consistency since the client executes as if 

only one copy of the database exists. Internally, this is not the case since when the result 

of a commit is returned to a client there are replicas that might have not been updated 

yet. 

Clients use a custom JDBC driver, which we have implemented, to contact with the 

middleware, thus allowing unmodified applications to use our system unmodified. The 

middleware is composed of a primary replica and several secondary replicas. Replicas 

use the database JDBC driver to communicate with the local database system 

(PostgreSQL in our implementation).  

The database is fully replicated in all the replicas. Execute replica executes on snapshot 

isolation, the isolation level that we find to better apply to our system. We think it 

increases the efficiency of the execution of read-only transactions. Besides it avoids the 

same phenomena as the serializable isolation level. 

The system is based on a primary-copy architecture where the primary-copy only 

executes update transactions while the secondary replicas execute all the read-only 

transactions. The system architecture is similar to the Ganymed [5] system, with some 
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modifications. First, we avoid the need of declaring the read-only transactions as read-

only beforehand, still executing them in a secondary replica. Second, we implement a 

speculative mechanism on the client to try to improve system’s performance. 

The use of primary-copy is usually associated with two disadvantages. The primary-

copy is a bottleneck and a single point of failure. The bottleneck problem is negligible 

when the fraction of read-only transactions is substantially higher than that of read-write 

transactions. To avoid the primary copy to be a single point of failure, we have 

implemented a failure detection strategy with an election algorithm to elect an updated 

secondary replica as primary replica. The system also processes the failures of the 

secondary replicas. When a failed secondary replica returns online, it uses another 

replica (preferably a secondary replica) to get the missed updates before becoming an 

active replica that can be used by the clients. 

Another contribution of this work is related with the extraction of write sets. We tested 

two alternatives and presented the results to justify the choice taken. We have also 

implemented an automatic script to read the database tables and create the triggers 

related with the extraction. 

The system also uses speculative execution for some of the client remote calls to 

improve the efficiency of its execution. The speculation could also theoretically be used 

on the servers but to implement it we needed extra time. 

We intended the middleware to be efficient. The testing of the middleware itself was not 

conclusive enough to prove this was achieved. The system was benchmarked with a 

workload with a much larger number of read-write transactions than read-only. This 

does not benefit the system implemented efficiency since it was implemented for 

workloads with a much larger number of read-only transactions. The system needs a 

more exhaustive test, with the use of a workload with a greater load of read-only 

transactions than read-write transactions. Also by testing the impact of using speculation 

some additional conclusions may be drawn. This last test may be executed testing the 

system with a different benchmark that includes other processing besides the database 

operations. 
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Nevertheless the results obtained show one benefit of using replication. The percentage 

of committed transactions increases because the burden over the primary replica 

decreases. And the benefits of using replication still prevail. If a server fails there are 

other servers ready to process the client’s requests. A secondary replica can assume the 

role of a failed primary replica and the system is maintained online. So the replication 

improves the availability of the system. 

6.2 Future work 

The implemented system has some limitations that can be improved in the future. But 

first it has to go through more testing.  

The benefits of using speculation must be evaluated using a benchmark which has 

processing other than database operations. The system itself should also be 

benchmarked with different benchmarks like the TPC-W to better evaluate its 

capabilities and efficiency. 

The system can be improved in several aspects in order to optimize it. We present some 

ideas to implement in the future. 

As previously mentioned we could balance the number of rows brought from the server 

when creating a ResultSet instead of bringing the entire table. 

The replica failure recovering could be improved. The election algorithm, executed 

when the primary fails, chooses the first active replica as the new replica, but it could 

chose the replica with the most recent updates. Also, when a secondary replica fails and 

returns online it must be updated to the last version of the database. The log approach 

could be more efficient in terms of memory space since all logs are being kept on main 

memory and no garbage collection is being done. We could implement a garbage 

collection that would clean the logs from all replicas after a defined time limit was 

achieved and only if all the active replicas had the version of their databases with a 

number equal or higher than the log entry to be deleted. If a failed replica returned 
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online it would update itself from the logs if the unseen updates were still logged, or 

else would request the whole database from a secondary replica.  

An interesting improvement to implement is related with the speculation. When a client 

uses speculation it issues an operation to the server continuing the execution and can 

immediately issue another operation to the server. On the server side the first operation 

starts to execute and the next operation must wait its turn to execute and only then is 

executed. If a third operation is issued it must also wait for its turn to execute, and so 

on. So the server sends the operations to the database one by one. But instead we can 

group the operations that arrive at the server and are waiting for their turn to execute 

and send them as a batch of operations to the database. In other words, the operations 

that arrive while one prior operation is being executed are batched to be sent to the 

database, instead on sending them one at a time.  

Regarding speculation there are some other improvements that may be studied, like the 

use of speculation on the servers to communicate with the client or between the servers. 

Other possible improvement is to apply the speculation to the commit operations, on the 

client. But this presents a problem. If we speculate the commit of a transaction, it can no 

longer abort since the results of the transaction can no longer be repealed. We need to 

use a system like the Speculator [1] or one that presents the same functionality. 

Finally we could investigate different ways of distributing the workload of read-only 

transactions by the secondary replicas instead of just choosing a random replica. 

All the above improvement proposals should be accompanied by the respective tests.  
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