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Resumo

Os sistemas de bases de dados sdo usados para armazenacaofoi@samais variadas

aplicacbes, incluindo aplicacdes Web, empresariais, de investigacdo espessoa

Dada a sua larga utilizacdo em sistemas fundamentais patitizagiores, é necessario
que os sistemas de bases de dados sejam eficientes e figvamna@limente, para que
estes sistemas possam servir um elevado numero de utilizadamgsoréante que as
bases de dados sejam escalaveis, podendo processar grandes quaetidades. Para
tal € necessario recorrer a replicacdo dos dados. Num sigptitado, 0s varios nos
contém cépias da base de dados. Assim, para garantir a convergénplidas, as
operacdes de escrita tém de ser efectuadas sobre todgdiGsr O modo como esta
propagacao € efectuada da origem a duas estratégias difefeptaneira, em que 0s
dados sao propagados assincronamente apos a conclusédo de uma trdesescaia,
conhecida como replicacdo assincrona ou optimista. A segunda, em qu9SdR
propagados sincronamente durante a transacc¢ao, conhecida como regiicagiha ou

pessimista.

Na replicacdo pessimista, ao contrario da replicacdo optimsta@péicas mantém-se
consistentes. Assim, esta aproximacdo permite simplificar agrgmacdo das
aplicacdes, porque a replicacdo dos dados € transparente paearaas. No entanto,
este tipo de aproximacdo apresenta problemas de escalabilidaik do nimero de
mensagens trocadas na sincronizagcdo, que obriga a um atraso naacordus
transaccdo. Assim, o utilizador tende a experimentar uma latéasiante superior na

abordagem pessimista.

Neste trabalho apresenta-se o desenho e implementagdo duna sisteeplicacdo de
bases de dados, com semantica snhapshot isolation, usando uma aproximacédo de

replicacdo sincrona. O sistema € composto por uma réplica @isarn conjunto de
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réplicas secundarias que replicam totalmente a base de dad@&plida mprimaria
executa as transaccdes com operacdes de escrita, enquantoept@ndassrexecutam as
transacgbes que sO tém operacdes de leitura. Apos a conclusédo tansaecdo de
escrita na réplica priméaria as alteragfes sdo propagacaspeestantes réplicas. Esta
aproximacdo adequa-se a um modelo de utilizacdo em que a fraccierdcdes de
leitura € bastante superior a de operacfes de escrita, podeadgaadas leituras ser

dividia pelas varias réplicas.

Para melhorar o desempenho do sistema, os clientes executanasaigpenacdes de
forma especulativa, de modo a evitar que figuem em espera duraseugd de uma
operacdo na base de dados. Deste modo, o cliente pode continuar acsigaoexe
enquanto a operacdo é executada na base de dados. Caso o resultado devolvido a
cliente se verifique ser incorrecto, a transaccao sera abog@a@atindo a correc¢ao da

execucao das transaccoes.




Abstract

Database systems are used to store data on the most variedhtapd, like Web

applications, enterprise applications, scientific research, or even peagpmhahtions.

Given the large use of database in fundamental systems faseh® it is necessary that
database systems are efficient e reliable. Additionally, inrdiatethese systems to
serve a large number of users, databases must be scalable, te be @lcess large
numbers of transactions. To achieve this, it is necessary to tesiata replication. In a
replicated system, all nodes contain a copy of the database. Thgnaremtee that
replicas converge, write operations must be executed on all epliba way updates
are propagated leads to two different replication strategdibs. first is known as
asynchronous or optimistic replication, and the updates are propaggtedhi@nously
after the conclusion of an update transaction. The second is known asospishor
pessimistic replication, where the updates are broadcasted syndiyodaung the

transaction.

In pessimistic replication, contrary to the optimistic replamat the replicas remain
consistent. This approach simplifies the programming of the apiplis, since the
replication of the data is transparent to the applications. Howehisr, approach
presents scalability issues, caused by the number of exchangsslages during
synchronization, which forces a delay to the termination of thesacion. This leads

the user to experience a much higher latency in the pessimistic approach.

On this work is presented the design and implementation of dadataeplication
system, with snapshot isolation semantics, using a synchronous repliapproach.
The system is composed by a primary replica and a setcohdary replicas that fully
replicate the database- The primary replica executes #uewste transactions, while

the remaining replicas execute the read-only transactionst #ige conclusion of a



read-write transaction on the primary replica the updates areagmtgd to the
remaining replicas. This approach is proper to a model where dlcgofr of read
operations is considerably higher than the write operations, allowing e lo=al to be

distributed over the multiple replicas.

To improve the performance of the system, the clients executee syperations
speculatively, in order to avoid waiting during the execution of abdata operation.
Thus, the client may continue its execution while the operation esuéad on the
database. If the result replied to the client if found to be incorrect,ahsaiction will be

aborted, ensuring the correctness of the execution of the transactions.
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1 Introduction

1.1 Motivation and context of the problem

A large number of different applications are built on top of databgseems. These
applications include most sites with dynamic contents, corporatecaipphs (e.g.
banking, airline reservations, etc.), scientific and even persaplications. Thus,
database systems need to provide a service that is reliabldfiarmhte in order to be
useful and practical to users. Additionally a database systgshbe scalable to process

large amounts of operations and data.

To guarantee reliable transaction execution, database systgrtesmient the ACID
properties (Atomicity, Consistency, Isolation and Durability)alaystem that provides
Atomicity, a transaction must be performed atomically, so #flabf the transaction
operations are performed and if one is not performed then none mustdrenpdr The
Consistency property allows the database to be inconsistent whileatisaction is
being processed, but before the transaction begins and afterribactran terminates
the database must be consistent. To reach Isolation, the ordéefexecution of the
transactions operations must be serializable, meaning that indepgradeéh# schedule
of the transaction history, the outcome must be equal as if theattions where
executed sequentially with no overlapping. In most database sysksoiejon is
relaxed to improve performance, thus allowing some limited coecayr Finally,
Durability guarantees that if the transaction commits, andue has received its

result, the modifications to the database are not lost, even if the system.crashes

Replication is a mechanism used to improve availability and perfarenaf database
systems, as well as to allow the scalability of the datba#hen replication is used,
several sites, or replicas, maintain copies of the database. finldegplication the
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whole database is stored at every replica. Under partiatagipin, only a subset of the
data is stored at each replica. Although, partial replicatiovery attractive, since a
smaller amount of resorts is necessary, it is harder to mepie automatically, as the

data needed for each operation may be distributed over several sites.

When using replication, when an update transaction is executed, ahsepiust be
updated to maintain consistency. The propagation of updates may pengasto the

end of the transaction or it may be executed immediately for each writioper

Deferred update replication techniques offer advantages over intemedmate
techniques, such as better performance, simplified server rycanve a lower deadlock
rate. However, there is a drawback to this approach: the lackohnization during

transaction execution that may increase greatly the transaction dbsrt ra

There are two major replication approaches, synchronous or eagemtieplicand
asynchronous or lazy replication. When a transaction is executedrepliaa the
changes must be applied to all other replicas. In eager rémlicdhe updates are
propagated inside the transaction, i.e., before finishing the transadtooommit, all
replicas must be updated synchronously using an atomic commit proboclazy
replication the updates are propagated asynchronously only afteottmitc of the
transaction, i.e., after the transaction has committed locallyeftre allowing the

replicas to diverge. Each approach has its own advantages and drawbacks.

Eager replication provides serializable execution since therenareoncurrency
anomalies, but there is a decrease in the global performamm esttra messages are
exchanged as a consequence of the synchronization to achieve condistersan the
replicas. The synchronization itself is a problem for efficiency sint@deeturning the
result of the transaction to the client, all replicas must betegddd herefore clients
experience a large latency using eager replication sgsté@imis approach provides
single-copy consistency, meaning that clients observe thensstaf it has only one

copy of the data, allowing the programmer to use a familiar model.

Lazy replication allows more efficient implementations gdicas do not need to be
synchronously updated inside a transaction. However, as this approaclts allow

14



transaction to see old values, the replicas can diverge. To solvdivirgence, a
reconciliation mechanism is necessary. If the number of nodkes 3qg the number of
reconciliations tends to scale up, which may lead to system olel@gie database
replicas will be inconsistent) [9]. In lazy replication the pnobei of single-copy
consistency is not observed. In fact, the programmers must be afmiie drawback

and adapt their applications accordingly.

Synchronous replication with good performance is still an aregs#darch, as recent
work show [4, 5, 6, 7, 8]. Commercial databases often use asynchropbcetien that

tolerates inconsistencies among replicas.

1.2 Solution proposed

In this work, we have tried to develop an efficient middlewaredatabase replication.
Since a lazy replication requires reconciliation becauseoivalreplicas to diverge, we
have chosen to implement a synchronous approach. Our approach providessyg!
consistency, making it much easier to implement new applicationausecthe

programmer observes one (logical) copy of the data.

The architecture of the system is loosely based on the Ganjghegstem, as it is a
replication system based on primary-copy. In this approach, updatéssacommitted
on a primary copy of the data, and then applied to the other copiegjuatanteeing
that replicas evolve to the same state. A read operation negutexin any of the

system copies, thus allowing distributing the load among system replicas.

The proposed middleware system is composed by clients and a sglich iservers.
Users’ applications run in clients and access the replicateabakd system using a
custom JDBC driver. Thus, applications can use our replication mideiewtnout any

modification.

At each replica server, the middleware component uses a JD&& tiricommunicate
with the local database copy. The local database fullycagpl the data managed by

15



the system. The database itself was not modified. At any mothent is a designated
master/primary replica.

The system provides Snapshot Isolation, an isolation level thaesetetializability.
When a transaction is started, the system creates a (Jogiagdshot of the database
with the currently committed values. The snapshot is used to raass\end write new
values, inside the transaction. Transactions do not observe updated fralues
transactions that commit after the snapshot. Snapshot Isolation campleenented
using a lock-based approach or flist-committer-winsule to prevent lost-updates. In
this case, when a transaction tries to commit, if it has updated dateathatse updated
by a transaction that committed after the start of this &tion, this transaction must
be aborted. In the former case, the locking subsystem prevents emiayydates from

being executed.

Unlike Ganymed, we avoid requiring applications to declare tréinsacas read-only,
while using a similar strategy for load balancing read-only @pdate transactions. For
this end, the following approach is used. When a client starts adteomg a transaction
is started both on a replica and on the master, guarantdeihghe same database
snapshot is used. After this, the operations of the transactiorrdrersy to the replica.
If the transaction ends without any write operations, the transaisticommitted in the
replica and it is discarded in the master. If one of the transagperations happens to
be a write operatignthen the transaction is discarded in the slave replica and the
transaction in the master continues the execution from the wpgration and
thereafter. In practice, this is similar to the Ganymed fanatity, which implements a
Primary-Copy approach, where read-only transactions executeave sdplicas and
update transactions execute on the master replica. The differertbat read-only
transactions do not need to be declared a-priori.

One disadvantage of a Primary-Copy is that it can become lansatt of the system,
particularly with a large number of replicas, since all updatestactions are executed
on the primary, as well as being a single point of failure. Boressing failures, we
have implemented a failure recovery mechanism that replaeeprimary in case of
failures. Regarding load, as it is usual that the fraction oftepansactions be small,
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we expect that this primary-copy approach does not limit themsystperformance, in

practice.

When an update transaction is committed, the updates must be propaghedlave
replicas. The master bundles the updates in a write set wipobpagates to the slave

replicas.

In our approach, as read-only transactions are executed in slavesjeitessary to
balance the load among the replicas. Additionally, it is neges$saguarantee that an
update transaction from a client does not observe a snapshot that daesluds
updates observed/executed by previous transactions from the sane Ctlnlike
Ganymed, we implement our approach without a central scheduleova@rthese
properties. For balancing the load, transactions are executed oomigndhosen
replicas. The system guarantees that a client does not obsepgbaiseof the database
older than the previously seen snapshot.

Our system resorts on speculative execution to improve the glotbafrpance. It also
decreases the number of messages exchanged by grouping spexsBages and

propagating them in a set.

Regarding speculative execution, it is used on the clients, alatingtiae regular
execution. When a client requests an operation prone to be specudatipeculative
execution is started. Without waiting for the database servey, réq@ client assumes
the most plausible reply and continues executing (speculatively Weeaeply finally
arrives at the client, the reply is compared with the resslirasd before. If both are
equal, then the client continues the execution. On the other hand, Sémer result
differs from the result returned to the application, the speculatieeution is invalid.
To signal this to the application, the transaction will fail andajpelication code must

re-execute the transaction, as usual.

In summary, the goal of this dissertation was to design ampiement an efficient
middleware for database replication that provides good performarite strong
consistency. To attain this goal, speculative execution was us#te atlients, along
with some optimizations that are later explained on the implementation chapter.
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1.3 Main contributions

This project contributes with the design and implementation of a riddéedatabase
replication system. As already discussed, a replication systens to improve
availability and performance of the database system.

Speculative execution is also applied to the replicated systeandén to explore the
advantages of this type of execution, namely to improve theegitig of the system by
using it in the clients. The clients are allowed to carry @h the execution, instead of

blocking in remote operations to the database.

The overall performance of the developed system was evaluatedawstiandard
realistic benchmark, the TPC-C. TPC-C is an on-line transaptiocessing (OLPT)
benchmark. It is composed by a set of five different concurremsactions that
simulate a computing environment, where users execute transacticmdatabase.
TPC-C reflects the transactions executed at warehouses,nlikeng and delivering
orders, checking the status of these orders, recording payments, cantrimg the
stocks.

1.4 Outline

This dissertation is organized as follows: Chapter 2 describagltiied work and it is
divided in three sections. Section 2.1 introduces the speculative exeantdomlated
works. Section 2.2 presents the different database isolation |8eeison 2.3 discusses
database replication and various works related, ending with a ceopdietween
specific properties of the systems. Chapter 3 presents the d#sihe system and
Chapter 4 discusses the implementation of this design. Chapter Btprimgeevaluation

of the system. Finally Chapter 6 presents the conclusions of the thesis.
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2 Related work

In this chapter, we will present works related to ours, organizelrée tsections. The
first section addresses speculative execution. The second sectily Ipriesents
isolation levels used in database systems. The third section addrdatabase

replication, focusing on synchronous replication approaches.

2.1 Speculative Execution

Speculative execution is the execution of some operations that nogbe necessary.
In general, speculative execution is used as a performance @ttonizFor example,
modern pipelined processors resort to speculative execution to optommzbtional

branches instructions by assuming the most probable branch deaimsioexacuting
from there immediately, instead of waiting for the decision. Laténe correct value is
different, the execution past the branch decision is discardedti{eepipeline is

emptied).

Speculator [1] allows clients to execute operations at the apphdavel speculatively,
performing client level rollback if needed. Speculator extendsLihax kernel to
support speculative execution, preventing processes from exteriooipgt until their
depending speculations are verified as correct and assuring ecolap/e state is
directly seen by non-speculative processes. In [1] the systenusedsto improve the

performance of distributed file systems.

Speculator was used to explore speculative execution in a cliget-satabase system
[2]. In a database system, a client waits on a remote call to the eatabt® results of
submitted operations. In this system, when a client submits apesdt the database

server the client speculatively assumes a result and contixeesitieg. Later, the
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assumed result is compared with the one from the server. If aheyequal, the
speculative execution is made definite. On the contrary, if theyddferent, the
speculative execution is rolled back and the program is re-exewitiedhe correct

result.

Zyzzyva uses speculation in a state machine replication syktdnolerates byzantine
failures. This system serves replicas speculatively, execaperations before they can
definitely establish the final execution order. If the order turnst@ige incorrect, the

system restores a previous version.

2.1.1 “Speculative Execution in a Distributed File S ystem” [1]

M otivation and objectives

Distributed file systems performance is worse than thdoadl file systems because
clients must contact remote servers to obtain data or, at feasrify that local copies
are up-to-date. Even distributed systems with loose consistencgadety, where the
number of synchronous messages exchanged is greatly reduced, ar®oiwngoeby

local file systems.

This work adds support for speculative execution to the Linux operattensyThen it
uses the mechanism to increase the performance of distrilletegistems with no loss
in consistency, by allowing clients to speculatively executagughe cached values

before their consistency is confirmed.

Architecture and functionality

To implement the Speculator the authors were forced to do scangeh to the Linux
kernel. The system forbids a speculative process to externaliput, since a non-
speculative process cannot see the state of a speculative piiduesiead to a set of
modifications to prevent a process from externalizing output, likeriadf operative
system mechanisms like fork, exit, signals, pipes, fifos, sockéts, The output is

buffered to be later externalized when the speculative execution becomesveefinit
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The checkpoint of the speculation is performed doing a fork of the [mdwmaisthe child
process is not put on the run queue, it is just used to store thegpstates Later if the
speculation execution is to be definitive this child process is rdisda if the

speculation is to be rolled back then the child process assumestttity idethe current

process.

A distributed file system using Speculator maintains basitdadysame architecture of a
distributed file system without Speculator, that is, a set ehtdisends requests to the
distributed file system server(s). But using Speculator involvedifioations to the
client, the server and the network protocol. The clients do cachiting dile system. In
the event of a read operation from the client application, the dacilees are used
immediately, initiating a speculation, without waiting for theveerreply. When the
reply arrives at the client, the speculation is committetiaf value is the same as the
value used in the speculation, or rolled back if the value is difeta the case of
speculative write operations the file server checks if the speculationhegots true or
false since it knows the true state of the file systent.idffalse the write operation fails

and the speculation fails.

2.1.2 “Execucao especulativa em bases de dados” [2]

M otivation and objectives

This project was developed with the future idea of using the infa@mabtain with its

execution to build an efficient middleware replicated systetnrrang to speculation,
since replicated database systems have a substantial overhemdl dgy the data
replication, which diminishes its efficiency. Usually thathe trade-off for choosing
replication, a higher security of the data but lower efficiency.

The objective of the project was to test the application of speailexecution to a
database system in order to test the improvement in its efficiency.

Architecture and functionality
The system is composed by any number of clients and proxies. li€hés submit

operations to the database using a special JDBC driver to comneuwitatthe proxy.
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The proxy receives operations submitted by the client and us&B@& driver to
forward them to the database server.

The Speculator [1] library is used to allow clients to continuecetion speculatively
instead of waiting for remote operations to the database senthrs lorocess, the client
checkpoints the current state and continues execution with the mostlprodgaip from
the database server. If the guessed reply proves to be cdmeectieint saves precious
execution time avoiding blocking during remote operations. If theesereply is
different from the guessed reply then the client rollbacks to keekpoint and re-

executes with the correct reply this time.

While executing, the JDBC driver starts a new speculation whepeamtion prone to
be speculative is executed (if not already in speculative mOgeyations for which the
result cannot be guessed are not prone to speculation obviously.

For implementing out system, some changes were introduced tpetb@ator. First, as
the Speculator interface was built to be used in supervisor modesysésm calls had
to be added to the kernel to execute the Speculator functionalitiser mode. Second,
since the output is postponed in speculative mode, some changes weréonadiow

communication between proxies and clients. The reason for this sisee@ non-
speculative process (e.g. the proxy) cannot see the state of a speculatgs fea. the

client).

Kaffe, an open-source Java Virtual Machine with user level threadsused because
Speculator only supports single-threaded programs. The databasm sigstd was the

open-source system PostgreSQL.

2.1.3 “Zyzzyva: Speculative Byzantine Fault Tolerance” [3]

Motivation and objectives

Byzantine fault tolerance pretends to provide support against hyzaiatiures in a

distributed system, which are caused by erroneously componentedatab arbitrary

faults. In a byzantine fault tolerant system the correctlytfanmg components reach

consensus regardless of the byzantine faulty components.
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Byzantine fault tolerant (BFT) replication is increasingijtractive for practical
deployment because the hardware is becoming inexpensive, théogferang the costs
of implementing BFT. Additionally, several improvements have been pedposBFT
replication techniques, thus diminishing the overhead involved. NeveghéhesBFT

replication algorithm still imposes a considerable overhead.

This work proposes the use of speculation to improve a Byzantine déararit state
machine replication using tentative speculative execution on ther derveduce the

latency experienced by clients.

Architecture and functionality
The system is composed by a finite number of clients and 3f plitag. Up to f nodes

can experience byzantine failures.

The Zyzzyva protocol proceeds in a sequence of view runs. In eagh thiere is a
designated primary replica.

The protocol has three sub-protocols: 1- agreement, which orders sedoeshe
replicas to execute; 2- view change, which coordinates thdogieaft a new primary
replica; 3- checkpoint, to limit the state that is storeddpjicas, reducing also the cost

of view changes.

In the agreement protocol, the client sends its requests taithary which forwards

the requests to the replicas that speculatively processghesteand reply to the client.
The client assumes a request is completed when it received Bhutually-consistent
replies. When the client receives between 2f + 1 and 3f repligathers 2f + 1 replies
in a commit certificate that it sends to the replicastingifor 2f + 1 replies to consider
the request complete. If less than 2f + 1 replies are receivedglient resends the
request to all replicas which may need to contact the primarycligre detects a faulty
primary if the ordering of the messages is inconsistent, amaswhe replicas, leading

to a view change to elect a new primary.

The view change protocol is used to elect a new primary. VA pramary is to be

elected when a replica takes knowledge of its faulty statdgecause f +1 replicas
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agreed to a new primary. This protocol has a phase called€lthatprimary”, which
serves to prevent a replica to abandon a view unless it is guadahst all replicas will
do the same, leading to the election of a new primary. When @aeplispects the
primary is faulty, the replica sends a message to all eephgarning them of the
suspicion. If the replica receives f + 1 answers confirmingstispicion then it sends
another message to every replica asking for a view change, éogttie information
that f + 1 replicas confirmed this suspicion, and stops sending nesssatlis view. A
replica that receives this last message automaticallyrstamo the view exchange, so

eventually all replicas will commit to the view change.

For every fixed number of requests received by a replica, ekpbmt is made. Each
checkpoint is associated with a snapshot of the database. The mepintains a stable
checkpoint and can store a tentative checkpoint. When a tentative checigpoint
generated is one replica, a message is sent to everyregiea. When f + 1 replicas
answer to the message the checkpoint is committed and the histtoye the
committed checkpoint is garbage collected.

The protocol has speculative execution because replicas executstsegetre the
total order is established. In each replica there’s a coeuniitistory and a speculative
history. The committed history is the history from the last camechicheckpoint till the
last request of the max commit certificate, which is théfioate that covers the largest
stored history. The speculative history is the history thergaifer it includes the
operations for which the server has not established that the exeorde@ris correct. If
the execution order is determined to be incorrect, e.g. due toi@aualprimary node,
the speculative history is discarded and the replica reséxgsuting operations

immediately after the committed history.

2.2 Database Isolation Levels

Database systems isolate the transactions from each othevenpthe inconsistency
of the data in a multi-user environment. As full serializabitgtricts concurrency,
weaker isolation levels have been defined. The ANSI SQL-92 [18Hatd defines
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isolation levels relying on the following phenomena (or anomalies) tan occur

during concurrent transaction execution:

1- Dirty Read — occurs when a transaction reads uncommitteddstss tlater rolled
back;

2- Non-Repeatable Read — occurs when a transaction executes thgusmmultiple
times and the results are different because they were motiyiexh interleaving

transaction.

3- Phantom — occurs when transaction T1 executes a query that reseh®fadata
from the database and another transaction creates data thit gegigprevious
transaction query. If the transaction T1 then executes the saewy the set

obtained will be different.

The standard SQL [13] defines the following four isolation levietg partially avoid

these phenomena:

1- Read Uncommitted — This is the lower isolation level and does notnpramag of

the phenomena.

N
1

Read committed — Prevents only the Dirty Read phenomenon.

w
1

Repeatable Read — Prevents both the Dirty Read and the Non-Repda¢aiol

phenomena.

4

Serializable — The highest isolation level. The Serializaddation level prevents

all the above phenomena.

The transactional system used in our middleware (PostgreSQupps the four ANSI
SQL isolation levels but internally only two distinct isolatitevels exist, which
correspond to the ANSI SQL levels Read Committed and SeriadizaRead
Uncommitted is Read Committed internally and Repeatable R&stiadizable. This is
possible by the standard SQL since the isolation levels ttaniskzrnally to equal or
higher isolation levels, therefore preventing the same phenonsethe asolation level

requested by the user, or more.
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Snapshot Isolation is a level of isolation not defined by the standdtdifat avoids the
same phenomena as defined in the ANSI SQL Serializable isolatiel) but does not
provide full serializability. The advantage of snhapshot isolation i$ ithé&s more
efficient since the read-only transactions never block nor abatidnsolation level, a
transaction executes in a snapshot of the database, which is téenthe transaction
begins and that contains all the committed values this far.sRaigshot is used by the
transaction to read and update values and is only committed to tihaskatahen the
transaction commits. Two concurrent transactions conflict with edwadr if they both

write the same data items. In this case, one of the transaction must abort.

The PostgreSQL system Serializable isolation level coomds to the Snapshot
Isolation. This may seem awkward but in practice it is possiblebtain an execution
with Snapshot Isolation equivalent to an execution with the ANSI S@iializable

isolation level.

2.3 Database Replication

Replication is used to improve reliability, fault-tolerance andlabiity. In database

systems, when using replication, database copies are stored in multiple npliessjre

If a master replica exists, it processes all the requestxall this approach a primary-
backup scheme. In contrast in a multi-master scheme any repliic@rocess a new
request and distribute the new updates to the other replicadaf#nigpproach requires
a distributed concurrency control and a solution for handling conflidtiansactions.
Eager replication solves the conflicts between transactions benineg the conflicts.
The conflict is detected before the committing of the trarmmacand one of the
conflicting transactions is aborted. Lazy replication allows aetiens to commit and
resolves the conflicts after the commit. Eager solutions promotesistency by
propagating changes to replicas within the transaction boundd@ey. solutions
promote efficiency over consistency by only propagating changesplicas after the
transaction commits (with a possible considerable delay). {fe sy presenting an
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example of a system that uses lazy replication [9], and contiithesystems that use
eager replication, as this late approach is the focus of our work

2.3.1 "The dangers of replication and a solution"[ 9]

M otivation and objectives

Scalability is an important issue for database systems. Tdris studies the scalability
problems associated with update anywhere-anytime-anywayattamsal replication
system on mobile environments. The results show that the deadlocksandilration

rates raise greatly, leading to unstable behavior.

In this study it is also shown that the use of primary copy appesareduce the
aforementioned problems and it is proposed a novel algorithm tres calithe primary
copy approach, while providing disconnected operations and sabi@izransaction

execution.

An analysis of different replication strategies (for mobile computing)

Eager replication reduces update performance and increassadiian response times
because it adds extra updates and messages to the transanterllsreplicas are
updated inside the transaction. Additionally, it does not support mobile ajptis,

since most nodes are usually disconnected.

Lazy replication is a solution for mobile applications since the tegdaan be
propagated to other nodes asynchronously, outside transactions. Howevers in thi
approach, data on replicas can become stale, allowing a transéetiobserve old
committed values, increasing the probability of conflicting tramsast With a lazy
strategy, when some replica updates have already been comwtitteda conflicting

transaction is detected, it is necessary to rely on a reconciliation meuhanis

Simple lazy replication only works well with low loads and fewdes. If the
application scales up to a larger number of nodes, if the nodes epartksted more
often, or if the delays of messages are longer, then it isss&ge to reconcile
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conflicting transactions more often. As reconciliation fails, the adgin to diverge to
the point where the database becomes inconsistent with no obvious way to repair.

In eager replication, locking detects possible conflicts beforg tlweur converting
them to waits or deadlocks. The waits cause delays while thdlodks create
application faults. In lazy replication the transactions that wowdd using an eager
strategy face reconciliation, which frequency is determinethbymuch more frequent

waits using a lazy strategy.

Due to the need of contacting the master, lazy-master repiicat not an option for
mobile applications. In this type of replication, objects have ownetsstbee their
current “official” value. Updates are executed in the mastst, and then they are
propagated to the other replichszy-master replication is slightly less deadlock prone
than eager replication but it requires contact with object mgswhich store the

object’s current value.

Architecture and functionality

The solution proposed is based on a two-tier replication approach, wkadamaslified
mastered replication scheme. Each object is mastered by a m@d®ejd reconciliation.
This scheme assumes two kinds of nodes: mobile nodes and base nodembilée
nodes are disconnected most of the time. They store a repliba database and may
originate tentative transactions. They may also master sontlee oflata items. Base
nodes are always connected and also store a replica of thesgat@bes nodes master
most of the items. The items have two versions at mobile nodesisgemversion,
which is the most recent value received from the master; &utative version, which
is an updated version of the local objects modified by a tentasimeaction. Following
the same idea there are two kinds of transactions: base transatiat work only on
master data and produce new master data; and tentative t@msdcat work on local
tentative data and produce new tentative versions and a base teamabe run on the

base nodes.

Mobile nodes accumulate tentative transactions that run againsantadive database

stored at the node. These tentative transactions are reprocesBadeagansactions
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when the mobile node reconnects to the base nodes, but may fail wimgn be
reprocessed.

2.3.2 “A suite of database replication protocols ba  sed on group

communication primitives” [4]

Motivation and Objectives

Replication in most commercial database systems is based omistigtireplication.

This approach allows inconsistencies and relies in centraligeditains. The reason
for this is the strong belief of database designers thathsgynous and update-
everywhere approaches, based on 1-copy-serializability, have rparfoe and

scalability problems.

The goal of this work was to design synchronous, update everywheocegsptbased

on group communication, that do not suffer from performance and scalability problems.

Architecture and Functionality

The system is a distributed database consisting in a fixed nuofbeodes. The
database is fully replicated, so each node has a full copy afatiaase. The nodes
themselves, communicate via message passing. The group comnoungaisystem
provides two different services, a basic service, with no orderiagagtees; and a total
order service, where all the sites deliver the messages bysaime total order.
Regarding message delivery, there is an atomic deliveryaamh-atomic delivery. A
node that fails is excluded from the group by group maintenangeeerThe members

of the new group coordinate the delivery of the failing node pending messages.

The system uses a version of the all available copies approaatis Rperations are
executed locally. Write operations are deferred until all repdrations have been
executed and are broadcasted in a write set. Since it i$ aadhble copies approach,
an update request must be performed by all available replicas.om®eing of
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conflicting transactions is established by the total order sefuwen the communication

model.

There are four levels of isolation supported by the systemal&ability, Cursor
Stability, Snapshot Isolation and a Hybrid Protocol. Snapshot Isolation i£SlI

implemented using the protocol presented in figure 1.

The transaction manager of each node N coordinates the operation requests of the transac-
tions as follows:

(1) Local Reading Phase: For each read operation r;{ X ), reconstruct the version of X labeled
with T; where T is the transaction with the highest T'S;(EOT) so that TS;(EOT) <
TS8;(BOT).

(2) Send Phase: If T; is read-only, then commit. Else bundle all writes in W 8; and multicast
it {total order service). The W5; message also contains the T'S;(BOT') timestamp.

(3) Lock and Version Check Phase: Upon delivery of WS;, perform in an atomic step:
For each operation w;(X) in WS;:

(a) If there is no write lock on X and the current version of X is labeled with T;. Then,
i T5;(EOT) > T5;{ BOT), stop checking locks and abort T;. Otherwise grant the

lock.
(b} If there is a write lock on X or a write lock is waiting. Then let T; be the last

transaction to modify X before T;: if TS;(EOT) > TS;(BOT), then stop checking
locks and abort T;. Otherwise enqueue the lock request.
(4) Write Phase: Whenever a write lock is granted, perform the corresponding operation.
(8) Commit Phase: Whenever all operations have been executed, commit 7; and release all
locks.

Figure 1. Replication protocol guaranteeing snapshot isolation (from [4])

For implementation of Snapshot Isolation each object in the systenvéangsis
versions. An older version can be reconstructed applying undo operationsotyebe
until the required version is generated. Each one of these versitaiseled with the
transaction that created the version. Tingt writer wins strategy is used, so when a
transaction T wants to write to an object that was updatexth®y transaction after the

transaction T started, the transaction T is aborted.

The beginning (BOT) and the ending (EOT) of a transaction are fidentby

timestamps. Since the system is distributed, the timestamfB3 (Eed to be
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synchronized. The system uses the write sets sequence numaejiebal virtual time,
to synchronize the timestamps.

The decision of the abort or commit of a transaction is localath enode, so no

messages are sent between the nodes.

The protocol, illustrated in figure 1, is composed by five phasesfifdtighase is the
reading phase, where the read operations are executed in a snapgieotiafabase.
Phase two is the send phase, where the write sets are ssertryaeplica using a total
order service unless the transaction is read-only and thereforennediately
committed. The next phase, executed on the delivery of the wigteis#te lock phase
which includes a version check. If a write operation from transadtiffsundled in the
write set), updates an object that was updated by another transtat committed
after the start of T, T is aborted. The same happens for cendlith transactions that
are in the process of committing, but are ordered before héitimestamp order). To
avoid the overhead in the case of frequent aborts a preliminark daecbe done
locally, before sending the write set, and the transactiobosted and restarted if a
conflict is detected. This does not avoid the need for the remoté&. dheally, the
protocol ends with the write phase and the commit phase respeciliielyvrite phase
performs the write operations when the write lock is granted hadcommit phase
commits the transaction when all operations from the write set been executed and

releases all the locks for this transaction on the replica.

The system also supports three other protocols, for which that we bmifly
summarize: Serializability is implemented using strict 2-phlagking (2PL); Cursor
Stability, is implemented using short read locks, and may leadneepeatable reads
because a lock is placed on an item as long as an SQL cursottisngdson the item,
but is released when the cursor moves on; and the Hybrid Protocoh isracmixture
of the 2PL protocol, used for update transactions, and the Sl protocakaibonly

transactions, which must be pre-declared.

The broadcast primitives are relaxed to minimize message anddogeerhead, which

leads to three versions of the Serializability, Cursor Stabditg Snapshot Isolation
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protocols. The versions of the protocols are non-blocking, blocking and reatoil
based.

In the non-blocking versions of the protocols, the delivery of theewadt and the
commit message is atomic, and the abort message does not neeskitd ammically.
This way, each node can decide to abort in-doubt transactions ¢téchrfade, without
contacting other nodes. A transaction is seen as in-doubt by a nodé&eN, iwis

invoked at a node N’ and the write set is delivered to node N, bubtre@ commit

message has not. With this approach, a group change that excladagyanbde is not
announced to the application of a node N, until all messages the falilggmight have

delivered are delivered at node N.

In a blocking version of the protocol, some of the overhead of the non-blocking
approach is avoided by allowing not reaching a decision about thadtams of the
failed node. The delivery of the write set in this approacham@t but the commit
message is not. In this version of the protocols, a node can no longee deci
independently on an in-doubt transaction, because the delivery of the canthabort
messages are non-atomic, which allows other nodes, including thedaédetb deliver

the commit or abort and terminate the transaction. So, a coordipatitotol is needed

in this version. When a transaction is in-doubt at all nodes, it musgbbked until the
recovery of the failing node. If there is a node where the trineds not in-doubt, that

node must inform the nodes where the transaction is in doubt.

Finally, the reconciliation based version that does not broadcastessage atomically
and is an alternative when performance needs to be improved. Inasigs & failing
node may have committed a transaction but the other nodes may haeeaned the
write set or may have decided to abort the transaction. Wheiling node recovers,
it must conciliate its database with the databases of tikirvg nodes and compensate
the changes done by the transaction.

The best protocol and version depends on the workload and the system configuration.
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2.3.3 “Ganymed: Scalable Replication for Transaction  al Web

Applications” [5]

M otivation and objectives

Replication is a common solution for the scalability requiremehdatabase services
like data grids and large scale web application. However to impkeraplication it is
necessary to balance trade-offs between consistency and syalabdmmercial
systems usually choose scalability, giving up on consistency. ©oin@mon solutions

offer limited scalability in exchange for consistency.

Ganymed is a database middleware that intends to provide stalabid replicated
database system without sacrificing consistency. The syargets the needs of typical
dynamic content generation with a large amount of complex reads smdlbnumber

of short update transactions.
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Architecture and functionality

Ganymed Ganymiad
JDBC driver JOBC driver
Ganymed Ganymed
Scheduler Scheduler
(Ondine) Backup)
PostgraSol PostgraSal
JDBC Driver JDBC Driver

PostgraSQL PostgreSOl FosigreSQL
Replica 1 Replica 3 Replica 5
(Master) (Slave) (Slave)

Figure 2: Ganymed Prototype Architecture (from [5])

The Ganymed architecture, depicted in figure 2, is composed bydouponents: the

clients, the replicas, the scheduler and a manager component.

The clients are application servers that connect to the schélokdegh a custom JDBC
driver, for submitting operations. For the clients the scheduler abstea single
database with Snapshot Isolation. The scheduler communicates widiplicas using a
PostgreSQL JDBC driver. The set of replicas contains atévlasplica and several
Slave replicas. Each replica must be a database providing Sndgsladion. The
replicas can be added and removed from the system at runtimeeahthster role can
be assigned dynamically. There is also a manager componentwhgn a dedicated
machine and monitors the system. This manager component is usleavttha user to
configure the system, adding and removing replicas, and to substitdidding
scheduler.
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The main component is the middleware scheduler that controls thatexeof client
transactions over the set of replicas. There is a backup sehédwdubstitute a failing

one.

The scheduler implements the RSI-PC (Replicated Snapshot IsolatiorPrimary
Copy) algorithm. The algorithm separates update and read-@myatctions. Updates
go directly to the master replica without delay and queries go to the sjalicas.

After committing a transaction in the master, the updates aredzumb a write set,
which is broadcasted to all replicas. For the extraction of thee wets, the JDBC
interface was extended with the necessary logic to collastges to the database. The

write sets are table row based.

Read-only transactions need to call Connection.setReadonly(), so théyawn in
advance. Read-only transactions that are known in advance areedssiga slave
replica according to thieast pending requests firgile, even if the master has capacity
to process them. If the read-only transactions are not known in adwartbere are no

slave replicas present, the transactions have to be processed by theepbsser r

Read-only transactions will always see the latest snapshio¢ ofatabase. If the replica
does not have the latest version of the database the executioa tarkaction is
suspended until all needed write sets have been applied to the repiida,is verified
by the scheduler. To avoid this delay the client may specifgltbered staleness of the

transaction, or send the read-only transactions to the master replica.

If a replica fails, the system uses the remaining replidathel master fails, a slave
replica becomes the master. The reaction to failing replan be done by the

scheduler without intervention from the manager console.

Ganymed can be used of-the-shell for any application, as it do@spmse any special
data organization, structuring of the load, or particular arrangeaig¢he schema. The
only requirement for achieving good performance is for read-onhsa@ions to be

known in advance.
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2.3.4 “Database Replication Using Generalized Snapsh ot

Isolation” [6]

M otivation and objectives

Conventional snapshot isolation requires transactions to observe thestapshot of
the database, which is not suitable for replicated databasesiseewinlike centralized
databases, the latest snapshot is not available in every rephcéaet, to determine

which is the latest snapshot, it might be necessary to contact all replicas.

This work extends snapshot isolation to suite replicated databbgeslefining
Generalized Snapshot Isolation, which allows the transactions tovebsdder
snapshots of the database, instead of just the latest. A partas&aof the Generalized
Snapshot Isolation is the Prefix-Consistent Snapshot Isolation, whersnapshot

contains, at least, the writes of previously committed transactions.

Generalized Snapshot Isolation

Generalized snapshot isolation (GSI) is an extension of the convénsioapshot
isolation, maintaining many of its properties. This approach allowsrgsaction to
execute in a snapshot older than the latest, instead of justdkelilke the conventional
shapshot isolation. This increases the probability of aborts for upd@ateactions in

consequence of the increase in the number of “concurrent” transactions.

Replicas can process read-only transactions locally as no temfley arise. An update
transaction may be executed locally, except the commit, whichresqgeertification to
detect write-write conflicts. A transaction reads only corteditdata and does not
commit if updates conflict with another committed update transagfiost-committer-
wins"). If there is any intersection of the write set of tta@saction, with the write sets
of the update transactions that have committed after the snapshotbys#dte

transaction, the transaction aborts; otherwise it commits.
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Prefix-Consistent Snapshot Isolation (PCSI) is an instance @& $th¢hat uses the most
recent snapshot available, by including the updates of all treosadhat are in the

transaction's workflow and have committed before the transaction started.

Architecture and functionality

The system architecture is composed by any number of clieytsiuanber of replicas
running Snapshot Isolation and a certifier. Transactions are exemutid replicas. If
the transaction is read-only then it executes locally in thikceeand does not involve

the certifier, but the commits of update transactions must be certified.

The authors propose two algorithms to implement PCSI. The algontangsegarding

the certifier implementation.

The first algorithm has a centralized certifier which ad$ores the write sets of the
transactions and is implemented on a master replica. The remaepficas work as
slaves that communicate only with the master. Read and writetiopsrare locally
executed on the slave replicas and read-only transactions do not caat@awvith the
master, while update transactions must be certified, therefos¢ communicate with

the master.

The other algorithm has a distributed certification: all reglieaecute transactions and
certify update transactions. For the delivery of the writs $et certification, for all
replicas, an atomic broadcast is used. Thus the ordering of tiansaist established

and all replicas may reach the same decision on which replicas commit/abort.

In both algorithms the only operation that requires remote commioncé the
certification of an update transaction. Upon the commit of the updateatction, the

write set is applied at the other replicas, according to the algorithm.

Regarding failures, a recovering site must apply the effecdl ofessages which it has
not delivered or that it has not processed. In the first algoritvhen a site recovers it
reads the last committed snapshot locally and asks for the evestt updates from the

master. In the second algorithm, the recovering site also readsstheommitted
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snapshot locally but then broadcasts a recovery message to #s& fissing updates,

which may be sent by any replica.

2.3.5 “Tashkent+: Memory-Aware Load Balancing and Up  date
Filtering in Replicated Databases” [7]

Motivation and objectives

In replicated databases, an important feature to achieve goodnpentoe is the load-
balancing of the requests among running replicas. Conventional loadtibgla
strategies, like round robin and least active connections, have aagbddlance but
introduce memory contention (as transactions are placed without reaswilddge on
which data they will access). LARD (Locally-Aware Requesstiibution) reduces
memory contention using a content aware load-balancing techniquet andery
effective for read-only static content Web workloads — smals filebut it can work
poorly for workloads where requests with large working setsratgient, like database

transaction workloads, besides handling updates inefficiently.

This work introduces a memory-ware load balancing (MALB) technigdnech uses
knowledge about the size and the contents of the working set of tiansao assign

them, so that they can execute in main memory, reducing disk 1/O.
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Architecture and functionality

Requests from Clients

Replica

leader
Cartifier cerlifier

backup hackup
cartifier certifier

Figure 3: Tashkent replicated database design (from [7])

Tashkent+ is composed by the database replicas, a certifier artilzalaacer to accept
requests from clients and dispatch them to the set of replicatheAprevious system,
Tashkent+ uses generalized snapshot isolation (GSI). Replicas corateumly with
the certifier. The certifier is used to verify which concurgnéxecuted update
transaction can commit, by deciding the commit order and cheé&ingpnflicts. Each
replica has a proxy attached that intercepts the requestpamr@ntly. The proxies use
an algorithm to prevent bursts from overloading the database. Whmmamit is
attempted by an update transaction, the proxy sends a requestdertifier, to certify
the write set, so this one can detect write-write conflicts. Theessfudly certified write
sets are recorded in a persistent log. Data consistencyimdamead propagating the
write sets to all replicas.

For handling failures, a primary-backup scheme is used. There biacleup load
balancer. When the primary fails, clients use the backup andta# dransactions are
aborted and retried. The certifier is also replicated forlabiity, with one leader

certifier and two backups.
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The main innovation of Tashkent is the MALB algorithm that intendslispatch
transactions to replicas avoiding memory contention. To this end, ttee cftaeach
database replicas is monitored by taking estimates of the woskiis. This is achieved
exploring information in the transactions execution plans, which cortaitables and
indices used and how they are accessed. The estimates arg tisedMA\LB algorithm
to create transaction groups so that each one fits in the mawmnef a replica and to

dynamically allocate replicas for the transaction groups.

The load balancer receives replica load information on the CPU andigkel/O
channel utilization from lightweight daemons running in each replica.loads of each

transaction group are compared and additional replicas are atldoatiee most loaded

group.

In a stable workload, the partitioning of the transaction groups attreseplicas can be
made permanent by the load balancer. Each replica receivesed suiiee transaction
types, so the tables not used at the replica can be dropped or alolbecbme out-of-
date. So, updates to these unused tables can be filtered sina#they have to be
processed by the replica. This technique is called update filt@nagcan be enabled on
the Load Balancer. Dynamic replica allocation is disabled wipmhate filtering is

enabled.

2.3.6 “Don’t be lazy, be consistent: Postgres-R, An  ew way to

implement Database Replication” [8]

Motivation and objectives
Update everywhere replication has several limitations, as highlab&arates, message

overhead and poor response times.

The goal of this work is to circumvent these limitations bypgishadow copies to first
execute the transactions locally, thus postponing the propagatior ofpttates. The
system relies on group communication to pre-order the transaction® aoeduire all

locks needed by a transaction in an atomic step.

The proposed solution is integrated into the PostgreSQL database system.
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Architecture and functionality

Server

Com mu.nicaﬂ'{m :
Ensemble

Postgres—R Server

Figure4: Postgres-R Architecture (from [8])

Postgres-R was implemented as an extension to PostgreSQitaimag the same

functionality but providing replication as an additional feature.

The Postgres-R architecture consists of several nodes (3ereah running an
instance of Postgres-R. The database is replicated atesl ¥Vhen clients want to
access the database they send a request to a postmasternirmgegsin a replica. The

postmaster handles the transactions required by the client.

Update transactions execute on shadow. The changes to the shadew awpi
propagated to the other sites at commit time, thus reducing theage A transaction
can read its previous writes by reading the shadow copies. dotsstan be checked

and triggers fired during the update on the shadow copy.
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Read transactions are executed locally. A read transactidonted when a conflicting

write arrives. This approach avoids deadlocks and inconsistent executions.

The replication protocol has an eager approach, and executes actitansn four
phases: | - Local Read Phase, Il - Send Phase, Il - Loclke PINasWrite Phase. In the
first phase, all read operations are performed locally andwiiite operations are
executed on the shadow copies. In the second phase, if the t@msactad-only, it
commits locally. Otherwise, the write sets are broadcastalll $des. The third phase is
used to request all write locks needed by the transaction, thuantgeing that the
transaction can be serialized in respect to concurrent tramssickinally, on the fourth
phase, the updates of the transaction are executed and aftenthat all locks it
required are released.

To provide serializability, Postgres-R uses a reliable to@érogroup communication
primitive to multicast the write set and to determine theabkzation order of the
transactions. A local site commits a transaction whenever dialgerialization order
has been determined. It does not have to wait for the other sitesegekecuted the
transaction because it relies on the fact that the othervgiteserialize the transaction

in the same way.

Since PostgreSQL uses locking at the table level, which is otk for efficiency
reasons, Postgres-R uses a simple (logical) tuple level loskingme based on key
values. This is implemented resorting to the shadow copies. Since dnengead
Phase, the updates of a transaction are executed on the shadowocafy, the
updated key values can be include on the write set that will begatguhto the other

sites. This allows a logical tuple level locking during the Lock Phase.

2.3.7 “The Database State Machine Approach” [10]

M otivation and objectives
As many of the previous works, the motivation for this work is thedner good

performance in replicated databases that provide 1-copy serializability
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The Database State Machine approach for synchronous databassiogppiooposes an
approach to deal with replicated databases over a cluster ofssemmch differs from
traditional mechanisms by not using distributed transactional meshganiThe
approach relies on deferred updates, but is meant to redutearnisaction abort rate
using a reordering certification test to look for possibleatigable executions before
deciding to abort.

Architecture and functionality

The system is composed by a set of replicas, each with@fyllof the database, and a
set of clients. The sites communicate via message passinfaihmntependently by
crash (Byzantine failures are not supported). Clients submit ttmss that are
executed by the database sites. The system provides 1-coplzability for the

transaction execution.

The transactions are locally executed with no interaction withr atites and locally
synchronized using strict two phase locking. The system hasmanation protocol,
which is executed when the client requests the commit of a ¢teorsan this protocol,
the transaction’s write set and read set are atomicablyggated to all replicas, where
the transaction is certified and committed, if possible. Theficatton is used to ensure
one-copy serializability, aborting a transaction if its comma#ads the database to an

inconsistent state.

Each replica behaves like a state machine, so when procegnglelivered

transactions, all replicas should reach the same state. To attigval certifiers must
enforce that write-conflicting transactions are applied in @maesorder, by granting
their locks by the same order as they are delivered. Tdyctré delivered transaction,
the certifier checks if the write sets of committed tratisas conflict with the read set

of the committing transaction.

Read-only transactions are locally executed and committed, and donewmut
certification, but may be aborted due to local deadlocks or duringettidcation of

remote update transactions. To avoid aborting read-only transactions durifigatieni
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of remote update transactions, the transactions must be declara@ad-only
transactions. Then, remote update transactions wait for the conchidiom read-only

transaction, to obtain the locks needed.

The system presents a modification to the certification kedtlobwers the abort rates.
The idea is to reorder the transactions that are trying to chntmiincrease the
probability of committing them, by constructing a serial order tbaers the possible

conflicts.

On recovery from failure, a replica receives the updates ofrtissed transactions
(while the replica was down) by communicating with a replica tines seen all

transactions in the system.

2.3.8 “Revisiting the Database State Machine Approac  h” [11]

M otivation and objectives
The goal of this work is to extend the DSMA to avoid the extraciahpropagation of
read sets, while incurring in no communication overhead and guarantdsng

serializability of transactions.

Architecture and functionality

The base of DSMA* remains the same as the DSMA: a non ceettaipproach with
deferred update replication, where read-only transactions are gpeocéscally, and
update transactions do not require synchronization between replicasamiilit time.
Each site has a full-copy of the database and transactiorcally kexecuted according

to strict two-phase locking (2PL).

The DSMA* extends DSMA to avoid the need of read sets durindficetion. The
extraction of read sets implies modifying the database iwitgrror to parse the SQL
statements outside of the database. Instead of using the refad settification, the
write set is used. By using just the write sets to checkcémflicts, only snapshot

isolation is achieved. So to achieve serializability the authorslalithe database in
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logical sets. For each set, corresponding dummy rows are creaaet. tfhe a
transaction reads or writes to an object of the set, a writeatipe is executed in the
corresponding dummy rows. This strategy is used to detectizaiidity conflicts. For
example, a transaction T1 reads from a record R from a setdSa #&ransaction T2
writes to the record R and commits. When T1 tries to commit thékde a writing
conflict, therefore T1 is aborted. But this approach has a drawbackraitsaction T1
may want to read a row from the record R that is differearhfthe row written by T2.
Nevertheless, it is still aborted. So to achieve serializgpilite number of possible

conflicts rises greatly.

As in DSMA sites communicate with each other through atomic breadgach site
has the role of a replica manager and all replicas reca@m@cess the same sequence

of requests in the same order.

2.3.9 “Gorda: An Open Architecture for Database Repl ication
(extended)” [12]

Motivation and objectives

Database vendors provide no support for third party replication. Thus, toderovi
replication, two approaches are possible. The first one is to mthaifglatabase. This
approach, that is only possible when the source code is availabi@digo maintain
when new versions are released, and it restricts portabilitys&bend approach is to
implement a middleware layer that uses the database. Threaappintroduces a

performance overhead due do additional communication.

This work intends to address this problem, allowing the implementati third party

replication in existing database systems.

The solution proposed is a novel architecture (GORDA) along withogrgamming
interface (GAPI) for replication, allowing the implementatmindifferent strategies on
any compliant DBMS. This approach intends to be cost-effectiveeffident, by
enabling the reuse of replication protocols or components in multiple BBMS

allowing close coupling with DBMS internals.
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Architecture and functionality

The base of the architecture is a reflective system thawvsla computation to be
inspected or manipulated. For example, in an object oriented systeimvocations of
methods on objects can be reflected as objects, which can be manipulated anednspec
These reflected objects are called the meta-objects, in oppositithe ordinary, or

base, objects.
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Figure5: Processing stages and contexts (from [12])

The transaction processing is abstracted as a pipeline, as dejpicligure 5. The
pipeline is composed by the following stages: Parsing, Optimization, kxecubgical
Storage and Physical Storage. The idea is to issue notfisatit the meta-level when

proceeding from one stage to another.

In the database system, the following meta-objects are use@BMS and Database,
which expose metadata and allow notifications of lifecycle evehes;Connection,

which reflect existing client connections to the database; thes#ction, to notify
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events related to a transaction; and the Request, to ease the atampof requests
within a connection to a database and the corresponding transactions.

These meta-objects and pipeline stages were chosen to obtain caratadevel of
granularity. If a very fine granularity was used, the interfemald not be easily mapped
to different DBMSs and the performance overhead would be very higin &Wery
large granularity, like the one obtained when wrapping the serveméedapting the
client requests as they are being issued, the interface expodéte information to be

useful.

In [12], the authors describe some examples of how to implement riz+Baakup,
State-Machine replication and Certification-Based replicationopad$ using the
proposed interface. But the interface can be used to implemeny@ayf replication
protocols with its possible multiple variants. For example, theificatton based
protocol presented provides a variant with snapshot isolation, basedistrilauted

certification process (as used, for example in GSI [6]).

To implement primary-backup, the Transaction context is used to edpikimMmoment
when a transaction starts to execute and commits, or rollbaclke ptimary; and the
Execution Stage is used to provide the object set needed to @kractite set of a
transaction from the primary and propagate it to the backup replicassynchronous
approach for the Primary-Backup, there are six steps. In anhasyiotis approach the
fourth and fifth steps are postponed. In the first step the client seadequests to the
primary. On the following step, when the transaction begins, the primanotified to

register information about this event. The third step happensthéerocessing of an
SQL statement and it is used to retrieve the updates, whelstared along with
previous updates from this transaction. The fourth step is used wheritery is

about to commit a transaction, allowing it to broadcast the storestagptb all replicas.
The fifth step is to allow the primary to commit the transectafter the write set is
received and executed at all replicas. Finally, the sixthistéor the primary to reply to

the client.
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The certification-based protocol execution is similar to theary-backup, as only the
certification is distributed. Therefore, it also uses the Tramsacontext and the
Execution Stage. It is also composed of six steps and thediinstfe the same as for
the primary-backup implementation. On the fifth step, after raogithe write set, each
replica certifies the transaction, deciding to commit or aliorll replicas reach the
same decision since the certification is deterministic and an atooaddast establishes
a global total order. In case of abort, the replica that rede¢he updates from the client
cancels the commit, through the context component, and the other rejpdicaisl it. In
case of commit this replica allows the transaction to contindetee other replicas are
able to execute the updates. The sixth and final step is forgheareontacted by the

client to reply him.
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2.3.10 Summary

Table 1 presents a comparison of the presented systems, accardsing dpecific

properties.

The group communication column indicates whether the system relies gnmoup
communication subsystem to exchange information among replicas,.dn tlo¢ later

case, the replicas usually do not communicate among themselves.

In the replica consistency (client view) column, we classifysystems on whether the
client can observe divergent replicas or not (despite the Hatt internally, replicas

may become divergent for short periods of time).

The update propagation column presents the strategy to propagate ujpdabes

replicas. This can be done using an eager approach or a lazy approach.

The architecture column presents the system architecture. Sgstems have fully

distributed architectures, while others include centralized comporfergs primary-

copy).

The isolation column shows the highest level of isolation provided by the system.

Finally, the last column addresses the technique to detect dowgflichnsactions. This
can either be done by the underlying database system or hyitldbeware. Some

systems have a specific entity to detect and resolve the conflices] tdadl certifier.

From the table, we see that different alternatives existdoh aspect and that they can
be combined in different ways. But most of the systems presamgedsimilar

approaches.

However, it is also clear that similar approaches are use gnowing number of
systems, which seems to point to a very promising approach. hvavky we will also
work on the same direction. The main difference lies in the tfaadt we intend to

explore speculative execution, which should allows us to improve existing designs.
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In this comparison, we have not included the system presented in [Plys&s a lazy
replication strategy, thus focusing on different problems and usifegatit techniques.

We have also excluded the Gorda system [12], as it is mainlg@oach to allow the

use of different alternatives solutions for existing database systems.

Distributed Various System

Primary-copy Yes Sl Lazy No DB
N Replicas + Yes Sl Eager No, using the System
Centralized Centralized  (Certifier)
Certifier Certifier.
Or Yes, using the
Distributed Distributed
Certifier Certifier
N replicas + 1 Yes Sl Eager No System
central certifier (Certifier)
Distributed Yes Serializability Eager Yes System
Distributed Yes Serializability Eager Yes System
(Certifier)
Distributed Yes Serializability Eager Yes System
(Certifier)

Table 1: Comparing some of the presented systems properties
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3 Design

This chapter presents the design of our middleware system fdragdateeplication. We
start by discussing the setting for which our system is designd then proceed by

presenting the system architecture.

3.1 Analysis

3.1.1 Design Principle

A large number of different applications are built on top of databgseems. These
applications may have very different transaction workloads, withffareit balance
between read-only transactions and read-write transactions. Feredif workloads,
different system implementations may behave differently, vathessolutions working

better for some specific workloads. Our system is no exception to this rule.

We have designed our system to work with any workload given biiawe optimized
it for working better with workloads with a larger number ofd-@aly transactions than
read-write transactions. To this end, we have decided to optimizxéeation of read-
only transactions. This workload is common in many applications thatatabases for

storing data, such as web-based applications [5].

As further detailed later, our system replicates the databasea set of replicas using a
primary-copy approach, where the primary server is used touexehe read-write
operations. Secondary replicas are used to execute read-only tiamsadn this
approach, with a larger number of read-write transactions, thepyireplica becomes
a bottleneck and the work done by the secondary replicas is miriimakver, if the
number of read-only transactions is larger, the execution of thessatitions can be
distributed among database replicas, thus balancing the load syfstieen and allowing

a better performance.

This load distribution is only possible by the use of the snapshot sokgmantics that

allows read-only transactions to execute in a replica withoytsgnchronization with
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other replicas. If full serializability was used, expensive bymmization algorithms
would be necessary. The use of the snhapshot isolation semantics farfiteves
performance, as read-only transactions are not blocked nor abortedad-write
transactions, therefore further improving the number of read-ontgdions that can

execute concurrently.

3.1.2 Optimizations

As discussed in [4, 5, 8, 9, 10, 11], a replicated database systamsdbat synchronous
replication approach may present performance deficiencies when i@mhipaa system
with no replication. Besides the basic replication design presdmgéore, we have
decided to rely on speculative execution to further improve datgisagermance and
reduce the latency for operation execution. Thus, a client magpesellation to avoid
the waiting experienced when sending operations to the databasdwe omntote
replicas. By returning the probable result for the operation, tleatciipplication can
continue executing, thus performing useful work instead of beiogket waiting for
the operation result. If the guessed result is correct, this appoaacreduce the time
necessary to run the client application and improve the performaintee overall
system. If the guessed result turns out to be incorrect, thext¢taors just needs to be
aborted.

Since our approach is based on a replicated system with prirogyy-gsing a
synchronous approach, the updates applied to the primary replica aaggterpto the
remaining replicas when the transaction commits. To increaspettiermance of the
system, the result of the commit may be returned to the diefiotre every replica is
updated, like in an asynchronous approach. If the primary does not igpproach
can still provide the illusion of a single copy if the client meMaserves inconsistencies
between the database replicas — this can be achieved by geim@gtitat the client will

never start a transaction in a replica that has still not executed this prepaatss.

However, in the presence of failures, not updating all the rephetse answering to
the client can lead to durability issues. If a primary repktarns the result of a commit

and then fails before the updates of the transaction have been appdiedtber replica,
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these updates will not prevail, but the client assumes they halisimas received the
answer from the primary replica confirming that the commiteaeded. To avoid these
problems, we have defined a minimum of replicas to update aftey ewsrmit. Thus,
the primary replica only replies to the client confirming a ootrafter this minimum
number of replicas have been updated. If the primary replicadailspdated secondary
replica may take its place and the updates prevail. This approakh five if, at most,

the defined minimum number of replicas fails (including the primary).

3.2 Architecture

The architecture of the system is composed by three typestities: Client, Primary
Replica and Secondary Replica. When the system is executing,etkiste a single
Primary Replica and a limited number of Secondary Replicasntitvder of clients is
unlimited (although the implementation may impose some limitsgn@lirun users
applications that access the database by communicating with botaryrand

Secondary Replicas as explained later.

The Primary Replica maintains the primary copy of the datadadexecutes the read-
write transactions. The secondary replicas host copies of theamyridatabase and

execute the read-only transactions.
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Figure 6: Middlewar e ar chitecture

The architecture of the system depicted in Figure 6 is an example of tha syigtgust
one client that communicates with the middleware, which is composedrimary

server and three secondary servers.

3.2.1 Client

Usually, a Java application that accesses a database syxgsera JDBC driver to issue
SQL commands using the JDBC defined functions. The JDBC driver tomliaectly
the database server. In order to allow applications to use ouensysithout
modification, we have implemented a custom JDBC driver that acéscéient for our

replicated database system.

This approach allows us to use replication along with some othardsaif the system.
The replication is not visible to the client application, and only lieatcdriver is aware

of the existence of multiple database replicas.

In our design, read-only transactions are processed by secomgdicas (if any is
active) and read-write transactions are processed by timanyrireplica. To avoid the
requirement of pre-defining a transaction as read-only like trey@ed [5] system, we
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use a strategy to emulate the same functionality as tk&nsywhere the read-only
transactions are executed on the secondary replicas. Therfisstthie client starts a
transaction, the client driver asks the primary replica forcars#ary replica to process
the transaction. A secondary replica is chosen randomly and &m dhver uses that
replica to execute its read-only transactions. When executiragsection, if any of the
operations is a write, then the transaction continues to be prodegdbe primary
replica instead, as depicted in figure 7. After a transactiocommitted the client
always begins the execution of the next transaction on the chesamdsry replica. To
ensure that the transaction executes in the same versionasdttiase the middleware
starts the transaction on both the primary replica and the secorejdiga on the
beginning of a transaction. If the transaction changes itsiggado the other replica it

continues executing on the same version of the database.

Secondary

_______________

Read-write e ’ Read-only

Figure 7: Change of replica when thetransaction isfound to beread-write

As already mentioned, the system uses speculation to impsogtidiency. The JDBC
driver used by the client was developed to be able to communicétehsitdatabase
middleware using speculation when it is justified. Some operatiamdbe speculative.
This means that the client driver sends the operation to the semddrefore receiving
the reply it speculates the most probable result, allowing thecapph program to

continue its execution without waiting for the answer from the seliviatter the reply

from the server is different from the one returned to the apicahen the transaction
needs to be aborted. When the client issues the next operationeastawhen it issues

the commit operation, the information about the abort is reported to the application.
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Note that this approach of returning an erroneous result to an opedaies not present
a problem because a transaction can only be considered definitat affecutes a
commit successfully. Moreover, the transaction is rolled back andidr receives an

exception to know that the transaction failed and may re-execute it or not.

3.2.2 Server

The system is a middleware composed of various replicas of tabaga. There is a
primary replica that is used to execute updates to the datatlaish, are sent to the
remaining secondary replicas after the local commit on theapyiserver (replica). As
already mentioned there is a defined minimum of replicas that need to be updated befo
the primary server replies to the client driver. This guaranteststhe updates prevail

even if the primary server fails (Durability).

The primary replica executes the updates and deals with thadt@msconflicts at the
database level, i.e., if two concurrent transactions conflict veith ether, one will be
aborted by the database system. After a transaction comthmtswrite set of the
transaction is propagated to the remaining replicas for updatimg. thbee primary
propagates the write sets in commit order, thus guaranteein@lthaplicas evolve

through and to the same state.

For being able to propagate the write set the updates must laetedtfrom the
database. The updates of a transaction are grouped in a writeteetdyder they were
executed on the database, and a replica that receives theeteecutes the updates it

contains by the same order to achieve the same database state as tiyeqplioa.

The main role of a secondary replica is to work as a backup afatiabase, which can
be used to perform read-only transactions. Although the systesnttrikeep all replica
synchronized all the time, the secondary replicas can be outdatsuiriersmall periods
of time. If the transaction is not defined as read-only, the system asthertesnsaction
is read-only until the client issues a write operation. Thergfargansaction is first
executed on a secondary replica, if present, until the firgse wperation, and then it

continues its execution on the primary replica.
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This approach follows the strategy of primary-copy where thiesvare only executed
on a primary replica. In order to maintain the correctness ofahnsdction execution, a
transaction is both initiated on the primary and in the secondarygaejplithe same
database state, so that it can continue its execution on the prmhgry a write
operation is issued. Otherwise, when changing the execution fi@setondary to the
primary, different database versions could be used leading to incbekaviour. By
initiating the transaction in both replicas, we guarantee thatr#msaction always
executes on the same snapshot of the database, even after tranisegxecution from

the secondary to the primary replica.

To implement this functionality, a straightforward approach iddd ghe transaction in
the primary, and requiring the primary to propagate to the sdlsetndary replica the
information about the transaction start. If the propagation of thisnn&ton is ordered
with the propagation of the write sets from committed transactibgsiarantees that a

transaction is started in the same state in both the primary and secondaagrepli

Both types of replicas are subject to failures. When the prirsaryer fails any
secondary replica can be elected as primary. The secondaryarepfitacts the other
replicas to update itself to the last version of the datalbbaseded. Then it assumes the
role of the primary server. The failure of a primary repli€adetected by a client or
secondary replicas that probe the primary replica and cannot sistabintact with it
after a defined number of tries. We consider the primary @syfafter some tries to
discard sporadic network failures. The component that discovers thg fauttary
starts an election algorithm which defines the first actiy@ica as the new primary.
This replica contacts all the remaining active replicas to epitk!f to the last version

of the database and only then assumes the role of the primary replica.

1 When using JDBC, there is no explicit start fransaction operation — a transaction is starfed when
the first operation that requires database access is executed. We force the start of a tfransaction
by reading some data element, thus using a slightly older than necessary snapshot for
tfransaction execution.
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When a secondary replica fails, it is discarded as an acplieady the primary server,
which then warns the remaining replicas of trebling failure, for it to be removed
from their lists. The failing replica can be offline for a #naa large period of time, or
simply to be offline forever. When, and if, it returns online, it mhesupdated before it
can be used to communicate with the clients. For that matssiksta secondary replica
or the primary replica if no other replicas are present, fotatest unseen updates. The
first time a secondary replica becomes online, it asks a segyaegdica, or the primary
when the primary is the only replica online, for the whole databasating a local

copy of the database.

Both the primary replica and the secondary replicas log the geiis of each version of
the database in main memory, to send them to a recovering reglica needs to
update its database to the current global version. We opted to ket&mshe main
memory instead of writing the logs to secondary memory to avoudedsing the
performance of the system. Our solution keeps the logs in mainompeiout they
should be garbage-collected after a while. This brings another iilkssteated by the
following example. One of the secondary replicas becomes offtideisaconsidered
faulty. The remaining replicas are then updated and the systeardsidater discards
the updates. If the failed replica returns online must be updatdtk tsame database
version as the other replicas, but the missed updates are no logged.| A practical

but inefficient solution is to propagate the whole database for the replica to bedipdat

3.2.3 Speculation

Speculation is a technique used to improve efficiency and is lmasedecuting with

probable values instead of certain values, that is, values whickateape proven to be
incorrect are used before knowing the correct values. We havesdpple use of
speculation on the client for hiding the latency of communication Wwehservers. The
client application does not know about the existence of speculativetiopsyanly the

driver used by the client to communicate with the middleware sees the sjpeculat

Some operations are eligible as speculative since their reault be predicted.

Assuming the most probable result, the client driver returns theeanswnediately to
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the client application even before contacting the server. The apesatilected as
speculative were the creation of a prepared statement, the afl@aseonnection, the
execution of a statement, and the execution of a prepared statdfaeh of these
operations was chosen since its results can be predicted. Thettedoclient does not

need to wait for the reply from the server to continue with the execution.

Regarding the prepared statements there is also cachthg walues to be set on the
statements that are sent to the server only on the executatiope instead of
communicating with the server for each value to be set. This avamnds semote calls,

which require some precious time.
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4 Implementation

In this chapter, we present the most important implementatioiisdetaur prototype.
We have organized this chapter in the following sections. Section gasex the base
functionality of the system, and is sub-divided in five chapters. €hdpt.1 explains
what happens when the system is initialized. Chapter 4.1.2 explains hw®w t
transactions are executed and processed by the system ande atlorieequent
operations. Chapter 4.1.3 exposes how the system handles the JDB@estriichapter
4.1.4 deals with the concurrency and the use of speculation and Chapter gldifisex
how the replicas remained updated while the system is exec8tgon 4.2 discusses
the extraction of the write sets and Section 4.3 shows how thensydtals with

failures. Finally Section 4.4 explains how the system uses and implements tspecula

4.1 Base Functionality

The system was implemented in Java and is prepared to be usdatieMlbstgreSQL
database system. But with some minor changes it can be usedwilatabase system
that provides Snapshot Isolation and which can be accessed through JDBC. These minor
changes are related with the creation of triggers, which is taotdard SQL and is

implemented differently for each database system.

4.1.1 Binding

The replicas implement the Remote interface so they candiger®d on the RMI
registry to accept RMI remote calls. A primary replicgiseers itself on a RMI Registry
and becomes receptive to receive requests from the clients.ofdsey replica also
registers itself on a RMI Registry and tries to conthet grimary replica based on an
initial defined list of possible hosts that may host the prinmaplica. This list of
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possible hosts includes the hosts that may have a server and fsrugeibing of the

primary replica by the client driver or a secondary replicawall as probing other
secondary replicas. This list is used to initialize a lisiative replicas that is present in
every replica. The list of active replicas is dynamicalpdated when a new replica
arrives or an active replica becomes inactive. When it startsecondary replica
registers itself on the primary replica so that it can be t@odand be used to reply to

clients requests.

As mentioned in the design section, the client of the systactuslly the JDBC driver
used by an application to access the database. The users’ apmdigast issue SQL
commands through the JDBC driver. On request of the client appficahe JDBC
driver opens remote connections to the database middleware, whichsé®mo issue
operations to the database. The driver uses the list of posgbtarieosts to find the

primary replica to start executing.

4.1.2 Transaction Execution

As it was explained in the design of the middleware, when atdtarts a transaction, it
starts executing operations on a randomly chosen secondary r&ulicthe execution
of the transaction may change to the primary replica if thasaction updates the
database. For allowing this change during transaction execution, wtiemtastarts a
transaction, it must start a transaction on the both the primargenmhdary replicas.
So the transaction is started on both replicas at the sameusing,the same database

shapshot.

For distributing the load among secondary replicas, the primancaspimply selects
randomly a secondary replica for being used by a client. Thus, thbestient creates a
connection to the primary, it is the primary that createmnection to an updated

replica and sends it to the client.

To guarantee that a transaction is started in the samewakthe database, we start
the transaction on both the primary replica and the secondary replittee beginning

of a transaction by forcing the start of a transaction reastmge data element. This is
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needed because there is no explicit start of a transactionB&.JD the transaction
changes its execution to the other replica it continues exeautirige same version of

the database.

When the client starts executing a transaction, the transastibrsti assumed to be
read-only. Therefore, the secondary replica connection is definetheaslefault
connection and all operations issued by the client use this connéctierecute
operation just in the secondary replica database. Before sending @eetion to the
secondary replica, the client checks if the operation can podstbhn update to the
database. Besides common update operations (insert, delete, update)is tlzere
particular select SQL statement that is also an update.stdtmsment is the select for
update, which is considered as an update by the system since itthiedeected rows
until commit, and it is usually used to later update those rows) Ewbe updates are
never executed, blocking rows in the secondary replicas could leauhficcts when

applying the write sets from other transactions, since the rows could stitbhdde=dl

If one of the operations is an update, then the replica being usedeshftam the
secondary replica to the primary replica, and the following operaigmsed by the
client are sent to this replica through the connection that wasedrénitially to the
primary. After a commit or rollback issued by the client, theadifreplica is again

reset to the secondary replica.

Before each of the instructions issued by the client isteeihie server, there is a check
for the need to abort the transaction. This is needed because oktbé speculation
and it will be explain in the respective chapter.

When the client issues a commit operation, the primary startsobymitting the
transaction locally. After that, it propagates the updates r@ingdction as a write set, to
the secondary replicas that immediately acknowledge the recdyfore applying the
write set. When the primary knows that a pre-determined numberpbtag have
received the updates, it will return the reply to the clientjegscted in figure 8. This
approach guarantees that the updates will not be lost if at-thespre-determined

number of replicas fail.
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Figure 8: Execution of a commit operation.

When propagating the update to the replicas, it is necessanguoeethat the updates

will be executed in the secondary replicas in the same orderths primary. For that

we have created a table on the database to register thenvefsthe database (the

version number is also used for failure
committed transaction increases the versi

secondary replicas it is stamped with the

recovery as explaine).laEach new
on. When a write ggbp@gated to the
corresponding version. Treesetondary

replicas apply the write sets by the increasing order of version, as depidigure 9.
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Figure 9: Reordering of thewrite sets on the secondary replicas
4.1.3 Handling JDBC Internal Structures

The JDBC driver uses a set of internal structures which do ry ioommunication
with the database system. By using a middleware system thegptmpa of these
structures to the client or to the server would result in aterall. Therefore we use a
technigue which avoids the propagation of these structures. The stsuchne
Statements, PreparedStatements and ResultSets.. The clientcdeiatss proxies to
these structures kept on the servers. The client issues opgratidhese structures, so
the structures must be identifiable on the server. The proxy oftihetlse keeps an
identifier which is sent to the server for each operation on gdtriscture. For the
ResultSet structure, the server creates an identifier aneégsaplio the client upon the
creation of one structure of this type. For the StatementfesmhredStatements, it is
the client driver itself that creates the identifier and sentbsthe server, because these
structures need to be created both on the secondary replicas andpsimtmy. This
approach allows the immediate use of the Statement and PreptesdStastructures
in the client, without having to wait for the creation of the stmecon the server. As
these operations (almost) never fail, this approach allows avoiding pernformance

penalty. If they fail, the transaction is later aborted.
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This is mostly useful for PreparedStatements, since allojsrations except the
executeUpdate, executeBatch and executeQuery, are executdy totahe client
driver, as it will be explained next, and can start to executeout the need of

contacting the server.

All operations on any of these structures are propagated sendindethdier and the
additional data needed to perform the operation. Obviously, this is hiddentifre

client application to maintain the transparency of the remote operations.

Regarding the need to create the Statement and Prepared&tasénuetures on both
the primary replica and the secondary replica, the reason for thicisglyebecause the
execution of the transaction may start on the secondary replicthemdbe transferred
to the primary replica and after commit or rollback return toskeondary replica. So,
there may be operations issued over the statement when the @xeisuton the

secondary (resp. primary) that need to be also reflected inithargr(resp. secondary)

for the following transactions.

The PreparedStatements and the ResultSets do some caching of Adata.
PreparedStatement is a precompiled SQL statement for affiebeecution multiple
times. It provides methods to change the values of the stateftegritsacreation. With
a remote server, the remote calls are a burden, so they masbite So, the setter
methods are registered on the client side and only propagated whetetution of the

statement is required, in a single remote call to the server.

A ResultSet is a table of data representing a database¢ sesuleturned from the
execution of a statement that queries the database. Like tpar&iStatement, a
straightforward approach would be for each operation on the Restit®ontact the
remote server. Once again, we avoid unnecessary remote célisbyg the table of
data of the ResultSet to the client, so that it can be used totexaperations of the
ResultSet locally. A future improvement could be to balance thebeumf rows

brought instead of bringing the entire table to the client.
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4.1.4 Handling with Concurrency and Speculation Con  sequences

When sending the requests to the servers, it is possible that grendridh was issued
by the client application is different than the order the requasige at the server
because of the speculation. The reason why this happens will benegpiaer on the
section dedicated to speculation. So the server must implementataggtrfor
guaranteeing that the operations from a given transaction aceitedein the correct
order. The implemented solution is quite simple. Since the reordsrorgy needed for
the instructions issued on the same connection, we stamp the regiibsss serial
number, and the server executes the instructions by the correct Bodachieve this
requirement, the instructions that try to execute before timdlacked till their turn

arrives.

4.1.5 Keeping the replicas updated

A secondary replica must register itself with the primahewit becomes online. If it is
the first time the replica enters the system the whole dsgatyaust be copied to the
replica. It is preferable to use a secondary replica for tloisgoiure to lower the load on
the primary replica. This copy can be a very heavy procedutesiflatabase is very
large. With that in mind the strategy adopted was to bring to pyimeemory the
ResultSet with all the rows from a table, for each tabla aime, and send the rows
individually to the new secondary replica. Since a table can belgtge the rows are
brought to primary memory by chunks. When a chunk has no more rowsllgdsup
with more rows, until all rows are propagated to the secondphigae This is done for
every table from the database, except the table that retainerien of the database,

which is a table specific from the system.

Each server has a database version number saved on a spbtsficTte version is
increased with each commit to the database. The use of a versitbemisnuseful for
various situations, for example when a secondary replica fails terdblcomes online
again it must be updated with the missed updates. This is done baseel wersion

number of the failed replica, since only the unseen updates betweerstmn number
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of the failed replica and the global system database versionbaysbpagated to the

replica.

The primary sends the write set to all active replicas ants i@ a defined minimum
number of replicas to be updated before returning the result otahenit of the

transaction to the client.

4.2 \Write-set extraction

As it was already mentioned, the updates to the primary replecgropagated to the
secondary replicas as write sets. For the write sets to dagated they must be
extracted from the database. During the study of the exiracti write sets we have
made an overview of the possibilities and after some testinge dhesmost efficient

solution available.

We found three approaches for extracting the write sets. Téteolne was to use a
database with implicit write set extraction. This is not supgoitethe database we

wanted to use (Postgresql), therefore this solution was immediatedteckje

The second solution would be to register the update SQL instructismsd by the
client and forward them to be executed in the remaining repli¢as.solution presents
a problem since some instructions might be non-deterministic, mairdn they trigger
triggers that update the database. For example, instructions dgoiaeréne use of the
replica’s current system time will return different valuek.tHese instructions are
executed on different replicas, the results in one replicabeildlifferent from the ones

obtained on another replica, leading the database to become inconsistent.

So we have opted for the last approach for the extractirtg get: recording the actual

changed performed in the database. To this end, we rely on the use of triggers.

We have created a script that reads the database and lfiotabée with primary key
creates a trigger for updates, deletes and inserts on that Taidemeans that all the
database tables must have primary keys, which is a common requiireimen using
database replication and can be easily addressed in tabledothmadt include such
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feature by internally adding an additional column. For examplehave to do this in
the table History of the benchmark TPC-C.

Each of these triggers registers all the updates to a spetifec There are two possible
approaches to send this updates to the system. One is torrégast@dates on an extra
table and on commit (when the write set is required to be sehe teeplicas) the data
from this table is extracted into a write set, and sent toejplecas. The other approach
is to use the RAISE SQL function to propagate the updates to tteensyamediately
when they are executed. The primary replica stores the wgathiown by the RAISE
function on the write set. On commit, the write set is singpliyt to the replicas since it
has all the updates executed on the transaction. Both strategeswwéemented and
tested, and the results have shown the latter strategy (the RAISHg pxrat be the most

efficient, and consequently the one chosen for the implemented system.

4.3 Treatment of Failures

When a replica tries to contact another after a defined numbge®fithout success
that replica is considered to be faulty. The system takes actwuat the failures of the

replicas, either the primary or the secondary.

When a secondary replica fails, it may be inactive for a gty time or even to never
be back online again. So a failed replica must be removed from ike eglicas list
that exists in the primary replica and remaining active raplitVhen a failed secondary
replica is detected, usually when the primary tries to corttaittis removed from the
primary list of active replicas, and then the primary contdloés remaining active
secondary replicas for them to remove the failed repliom ftheir respective lists of

active replicas.

When a failed replica returns online, it must be updated to thentuwreesion of the
database before it can be used in the system. To this end, wieeoralay replica
returns, it registers itself with the primary server ahts tone chooses a secondary

replica for it to propagate the unseen updates — we call flisaethe sending replica.
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If there is no other replica, the primary itself propagatesupeates. While on this
procedure the replicas cannot be used by clients.

For making this procedure as efficient as possible, the returaoandary replica sends
its last version to the sending replica. The sending replicasemgs the unseen updates
after that version. The receiver replica then applies the updatbs icorrect order and
finally registers itself as an active replica with thenarty replica. The primary replica
adds the replica to its list of active replicas, saving atsourrent version, and contacts
the other replicas to add the returned replica to their listacb¥e replicas. In the
meanwhile the returning secondary replica buffers the new wgste sent by the
primary while it was being updated, and after executing ttssedi updates applies the

new write sets.

If a primary replica fails then the procedure is different. Taiture of a primary is
detected by a client that tries to contact the primary aa bgcondary replica that tries
to do the same. If after a defined number of tries the primgolicee continues
unreachable, then it is assumed to be offline and an election lahgasitexecuted. This
algorithm is called by the entity that discovered the failarthe primary replica. The
first secondary on the list of active replicas tries tacteleself by majority vote. It
contacts the other active replicas warning them of the candidatyaféer receiving
votes from a defined number of replicas (must be equal or greatehalf of the active

replicas), it assumes the role of primary replica, as depicted in figure 10.
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Figure 10: Election of a secondary replica to substitute failed primary

During the election, each secondary replica sends the updateendtysthe candidate
replica, for it to update itself to the latest version of theldeta before assuming the

primary role.

4.4 Speculation

As it was already said, the result of some operations capdwmelated in the client, so
that it can continue its execution without waiting for the serepty, thus possibly
improving performance. The operations that were chosen to be spesulaicause

their results could be predicted, were the following.

* The close of a connection can be speculative since no other operatiaghisve
connection will be issued and there is no need for it to close on thigadatto

continue the execution.

* The creation of a PreparedStatement which we assume to sudémechgaits
immediate use on the client side to start executing operatiotiseoprepared

statement, since most of these operations do not need to contact the database.
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* The execution of a statement can be an update or a query. #ntupdate the
result is the number of the execution is a Boolean which sfatesstatement is
a query or not and the SQL instruction can be processed to guetswithibe
the reply to the client. If it is immediately executed aguary then a result set
object is returned. Since this object may not be immediatelyweeatteate can
return an empty object and only fill it when the answer from theeses

returned.

« Finally the execution of a prepared statement can also be apeeulf it is a
query the operation is the same as for a regular statemdérnis Hn update it is
returned the number of rows updated which we assume to be 1. If theegrepar
statement is executed as a batch of commands then anoarugpglated row
counts is returned with the value returned for each command, whichscabea

predicted.

When one of these operations is issued by the client the operatidded to a list of
speculative operations to be executed and its probable resetiiised immediately to
the client. These operations are then executed in background and removed frein the li

The use of speculation presents a problem with the ordering aigtradtions. Since a
speculative operation is executed in background and the main execution dierhe
continues, it is possible that a posterior operation begins to exactite server before
this speculative execution which was previous issued by that capplication.
Therefore the operations must be stamped with a serial numbeéheGerver they are
reordered by blocking the operations that try to execute bdfenetime until their time
to execute arrives. The client must have two different serialbewenfor each of the
servers, the primary replica and the secondary replica lbsieag. These serial numbers
are created and stored when a connection is created. Then fapeaation issued to a
server the corresponding serial number is sent and incremented. Therath server

has its own serial number also.

There is a subtle, problem presented by the use of speculation. 4peTEative

operation returns its result to the client, the execution of theatipe on the server was
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not executed yet. If the execution on the server fails or it lthf$esient result, then the
transaction must be aborted. The problem is that it cannot be abottexispeculative
operation since it already returned the assumed probable resulieSo)dtion is to use
an abort flag. If some problem is detected related with theukgie@ execution, the
transaction is immediately rolled back in the servers. The ctlemer sets the abort
flag. Before each client operation is propagated to the servdtathes checked. If the
flag is set to abort, then the client  driver launches a
SQLTr ansact i onRol | backExcept i on to the client application, notifying the client that

some problem has occurred during transaction execution.

In this case, there still might be client operations from thetathdransaction in transit
on their way to the server. To avoid executing these operatiosether and the client
driver have a counter that both increase after an abort of adt@mmsand the client
sends the value of its counter when sending an operation to the. Séfiven the
messages of the aborted transaction arrive at the servdndkieya value different from
the value on the server, since it was already increasedeTimessages are simply

ignored and only the messages with the current value are executed.
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5 Results

5.1 Write-set extraction

As mentioned on the implementation chapter, we have tested twoolvaysracting a
transaction write set. The first consisted in using a speafdé tto register all the
updates using a database trigger. On commit, the values stored oablinevere
returned to the application. The second method consisted in using a thiggaised a

warning to the JDBC driver with the update itself, each tima@date (insert, update or
delete) is performed.

No extraction Extraction with table  Extraction with Raise
Write-ahead log 1287.2 (ms) 1979.8 (ms) 1519.6 (ms)
No write-ahead log 1021.4 (ms) 1830.6 (ms) 1371.8(ms)

Table 2: Time measures (milliseconds) for the extraction of thewrite sets

To evaluate both methods, we have run a small micro-benchmark, witladiians

consisting in an insert, a select and an update operation. Tablesén{x the time
measured for executing one hundred transactions, dropping and creatingdthablse
before executing each transaction. Each test was executednfe® @and the results

presented in Table 5 are the average between the five executions.

The tests were performed with the write-ahead log activaraative. The write-ahead
log is a mechanism used by the database system to provide igtaanit durability.

Changes to the data files are logged to permanent storage beifiogeexecuted so that
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in the event of a crash the database can be recovered uslog.tidéthout the use of a
write-ahead log the data pages do not need to be flushed to disk grirameaction

commit, thus not ensuring the durability property.

We observe that the overhead of extracting the write set ubmgRaise warning
approach is minimal (almost the same time as the one obtainledutviéxtraction),
while the overhead of using a special table is considerable.fdhethe Raise warning

approach was chosen.

5.2 Benchmark TPC-C

Our system was benchmarked with the on-line transaction proce$€ihgP)
benchmark TPC-C. The benchmark simulates an environment where a popofation
terminal operators executes transactions on a database oélblies fThe benchmark is
composed by five OLTP transactions that use primary and secorglanc&esses. The

five types of transaction defined are:
* New Order — enters a new order from a customer;
* Payment — updates the customer balance to reflect a payment;
e Delivery — delivers orders (batch transaction);

+ Order-status — retrieves the status of the most recent ooteraf customer. This

is a read-only transaction;

e Stock-level — monitors a warehouse inventory. This is a complexomgd

transaction.

The system was only evaluated in terms of the benefits ofy ugiplication. The
speculation benefits were not observed since the TPC-C Benchmarkxpmsutes
database operations with no processing between these operationeatalgnthe

greatest strength of this type of speculation. The speculatignod to advance the
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local execution while the remote calls are being processed, agotie waste of
processor cycles while waiting for the answer to the remdteSiace there is almost
no local execution in the benchmark this advantages of this executiomtareflected
on the results obtained. The time schedule did not allow to experimh a different
Benchmark since that would imply a rewriting of the client canleeimove all the
speculation to be able to compare the execution using speculation amalitwit

speculation.

The benchmark default transaction distribution is: 45% New Order, 48fnéht, 4%
Order-status, 4% Delivery, 4% Stock-level. This means 92% of timsattéions are
read-write while only 8% of them are read-only transactionss Ehclearly not a good
setting for our system. So we have opted to use the followingbdisbn: 4% New
Order, 4% Payment, 45% Order-status, 2% Delivery, 45% Stock-level.

The middleware was benchmarked with a variable number of cli¢mtse, four
(maximum of servers on the system) and eight (double the maxohservers), and a
variable number of servers from one to four (the servers arenaafyrireplica and
secondary replicas). The benchmark was executed for a period ot@@dseor each
different configuration (one client and one server, two clients and one server, etc

We executed the benchmark with the PostgreSQL Serializabkigsollevel, which

corresponds roughly to the Snapshot Isolation level.

Servers
1 2 3 4
3| 2881.667 | +307,6667 | +341,3333 +570
w0
4] 32854 |+500,9333 | +751,2667 | +928,0333
O 8] 3612(+1082,333|+1783.667 1904
3 +11% +12% +20%
4 +15% +23% +28%
8 +30% +49% +53%

Table 3: Total of executed transactionswith the increase of the number of servers
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Table 3 shows that the total number of executed transactionssesreéh the increase
in the number of servers for the same number of clients. Since ohidoad is

composed mainly by read-only transactions, and this type of treorsac executed by
the secondary replicas (while the read-write are executelthdo primary replica), the
execution of the read-only transactions is decentralized. By dakeing de execution
of the read-only transactions a greater number of read-weesdctions can be
executed by the primary replica and also a higher number ofordgdransactions is

executed. The latter is increased by increasing the number of secondiaasrep
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6 Conclusion

6.1 Critical evaluation

Database systems are a key element in a large numbefesénifapplications. Thus, it
is important for database systems to be reliable and scalableachiieve these

properties, replication is an important feature.

In this work, we have implemented a middleware system féoabadse replication
following a synchronous approach to avoid replica divergence. From thegboiigw
of a client, the system provides single-copy consistency simcelient executes as if
only one copy of the database exists. Internally, this is not #gestace when the result
of a commit is returned to a client there are replicasrhght have not been updated

yet.

Clients use a custom JDBC driver, which we have implementedhrtiaat with the
middleware, thus allowing unmodified applications to use our systenodified. The
middleware is composed of a primary replica and several segorgfdicas. Replicas
use the database JDBC driver to communicate with the locabat&tasystem

(PostgreSQL in our implementation).

The database is fully replicated in all the replicas. Exempikca executes on snapshot
isolation, the isolation level that we find to better apply to outesys We think it
increases the efficiency of the execution of read-only traiosectBesides it avoids the

same phenomena as the serializable isolation level.

The system is based on a primary-copy architecture whergrtheary-copy only
executes update transactions while the secondary replicas exdctive read-only

transactions. The system architecture is similar to they@ed [5] system, with some
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modifications. First, we avoid the need of declaring the read-cahgactions as read-
only beforehand, still executing them in a secondary replica. See@dnplement a

speculative mechanism on the client to try to improve system’s performance.

The use of primary-copy is usually associated with two disadgast The primary-
copy is a bottleneck and a single point of failure. The bottlenssiigim is negligible

when the fraction of read-only transactions is substantially hitja@ that of read-write
transactions. To avoid the primary copy to be a single point ofréailwe have

implemented a failure detection strategy with an electionrithgo to elect an updated
secondary replica as primary replica. The system also pexdhls failures of the
secondary replicas. When a failed secondary replica returns oitlinegs another
replica (preferably a secondary replica) to get the missed epti@fore becoming an

active replica that can be used by the clients.

Another contribution of this work is related with the extraction atevsets. We tested
two alternatives and presented the results to justify the chakan. We have also
implemented an automatic script to read the database tablesremtd the triggers

related with the extraction.

The system also uses speculative execution for some of the wm@ote calls to
improve the efficiency of its execution. The speculation couldtaksoretically be used

on the servers but to implement it we needed extra time.

We intended the middleware to be efficient. The testing of the middlewdfenésenot
conclusive enough to prove this was achieved. The system was beketimath a
workload with a much larger number of read-write transactions tead-only. This
does not benefit the system implemented efficiency since it imptemented for
workloads with a much larger number of read-only transactions.sysem needs a
more exhaustive test, with the use of a workload with a greaser bf read-only
transactions than read-write transactions. Also by testing the impachgfapeculation
some additional conclusions may be drawn. This last test maydoeter testing the
system with a different benchmark that includes other processindebdabe database

operations.
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Nevertheless the results obtained show one benefit of using replicitie percentage
of committed transactions increases because the burden over theyprephca
decreases. And the benefits of using replication still preMaal.server fails there are
other servers ready to process the client’s requests. A segar@lca can assume the
role of a failed primary replica and the system is maintaordohe. So the replication
improves the availability of the system.

6.2 Future work

The implemented system has some limitations that can be impimyikd future. But

first it has to go through more testing.

The benefits of using speculation must be evaluated using a benchriatk vas
processing other than database operations. The system itselfd satsd be
benchmarked with different benchmarks like the TPC-W to betteluate its

capabilities and efficiency.

The system can be improved in several aspects in order toizpiimWe present some

ideas to implement in the future.

As previously mentioned we could balance the number of rows browghtthe server

when creating a ResultSet instead of bringing the entire table.

The replica failure recovering could be improved. The election ithgor executed
when the primary fails, chooses the first active replica asi¢he replica, but it could
chose the replica with the most recent updates. Also, when a secosplary fails and
returns online it must be updated to the last version of the dataieséog approach
could be more efficient in terms of memory space since alldogdeing kept on main
memory and no garbage collection is being done. We could implementbagga
collection that would clean the logs from all replicas aftatefined time limit was
achieved and only if all the active replicas had the versionef ttatabases with a
number equal or higher than the log entry to be deleted. If a falgdca returned
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online it would update itself from the logs if the unseen updates sték logged, or
else would request the whole database from a secondary replica.

An interesting improvement to implement is related with thedpgon. When a client
uses speculation it issues an operation to the server continuingetigtien and can
immediately issue another operation to the server. On the sateeths first operation
starts to execute and the next operation must wait its turreimuee and only then is
executed. If a third operation is issued it must also wait $otuith to execute, and so
on. So the server sends the operations to the database one by one.eBdtwestan
group the operations that arrive at the server and are wéadinpeir turn to execute
and send them as a batch of operations to the database. In other h®@serations
that arrive while one prior operation is being executed are lhtithée sent to the

database, instead on sending them one at a time.

Regarding speculation there are some other improvements dlyabenstudied, like the
use of speculation on the servers to communicate with the clibetween the servers.
Other possible improvement is to apply the speculation to the cavperiations, on the
client. But this presents a problem. If we speculate the comraitrahsaction, it can no
longer abort since the results of the transaction can no longepéaled. We need to

use a system like the Speculator [1] or one that presents the same functionality.

Finally we could investigate different ways of distributing therkload of read-only

transactions by the secondary replicas instead of just choosing a random replica

All the above improvement proposals should be accompanied by the respective tests.
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