5 research outputs found

    Self-healing and SDN: bridging the gap

    Get PDF
    Achieving high programmability has become an essential aim of network research due to the ever-increasing internet traffic. Software-Defined Network (SDN) is an emerging architecture aimed to address this need. However, maintaining accurate knowledge of the network after a failure is one of the largest challenges in the SDN. Motivated by this reality, this paper focuses on the use of self-healing properties to boost the SDN robustness. This approach, unlike traditional schemes, is not based on proactively configuring multiple (and memory-intensive) backup paths in each switch or performing a reactive and time-consuming routing computation at the controller level. Instead, the control paths are quickly recovered by local switch actions and subsequently optimized by global controller knowledge. Obtained results show that the proposed approach recovers the control topology effectively in terms of time and message load over a wide range of generated networks. Consequently, scalability issues of traditional fault recovery strategies are avoided.Postprint (published version

    Real-time transaction processing for autonomic grid application

    Get PDF
    The advances in computing and communication technologies and software have resulted in an explosive growth in computing systems and applications that impact all aspects of our life. Computing systems are expected to be effective and serve useful purpose when they are first introduced and continue to be useful as condition changes. With increase in complexity of systems and applications, their development, configuration, and management challenges are beyond the capabilities of existing tools and methodologies. So the system becomes unmanageable and insecure. So in order to make the systems selfmanageable and secure the concept of Autonomic computing is evolved. Autonomic computing offers a potential solution to these challenging research problems. It is inspired by nature and biological systems (such as the autonomic nervous system) that have evolved to cope with the challenges of scale, complexity, heterogeneity and unpredictability by being decentralized, context aware, adaptive and resilient. This new era of computing is driven by the convergence of biological and digital computing systems and is characterized by being self-defining, self-configuring, self-optimizing, self-protecting, self-healing, context aware and anticipatory. Autonomic computing is a new computing model to self manages computing systems with a minimal human interference. It provides an unprecedented level of self-regulation and hides complexity from Users. The Autonomic computing initiative is inspired by the human body’s autonomic nervous system. The autonomic nervous system monitors the heart- beats, checks blood sugar levels and maintains normal body temperature with out any conscious effort from the human. There is an important distinction between autonomic activity in the human body and autonomic responses in computer systems. Many of the decision made autonomic elements in computer systems make decisions based on tasks, which are chosen to be delegated to the technology. The influences of the autonomic nervous systems may imply that the autonomic computing initiative is concerned only with lowlevel self-managing capability such as reflex reaction. The basic application area of autonomic computing is grid computing. Both autonomic computing and grid computing are proposed as innovations of IT. Autonomic computing aims to present a solution to the rapidly increasing complexity crises in IT industry, as grid computing tries to share and integrate distributed computational resources and data resources. Basic aim is to implement the autonomic computing in grid related study like autonomic task distribution and handling in grids, and autonomic resource allocation. In this thesis paper we presents methods of calculating deadlines of global and local transaction And sub transaction by taking EDF algorithm and measure the performance by taking miss ratio in Different workload. We implement this work in an existing grid. The basic aim is to know autonomic computing better. It is a model to self manage computing Systems with minimal human interference. Self manage has properties like self-configuration, self-optimization, self-healing, self-protection. Autonomic grid computing combines autonomic computing with grid technologies to help companies to reduce the complexity associated with the grid system and hides the complexity from their grid user. Autonomic real-time transaction services incorporate fault tolerance into autonomic grid technology by automatically recovering systems from various failures. Here in this paper Deadlines of global transaction, sub transaction and local transaction are calculated by taking parameters arrival time, execution time, relative deadline, and slack time. We are taking a periodic transaction having λ (transaction arrival rate per second) Tasks are generated at different nodes with Poisson ratio with λ as workload. Miss ratio is the performance metrics. With increase in workload miss ratio first decreased and then rose. The reason was each sub transaction acted as a unit to compete for resources so that more workload the more system resource they consumed. So more transaction missed their deadlines, as they could not get enough resource in time. EDF algorithm has both less global and local miss ratios then other scheduling algorithm. If EDF is compare with FCFS or SJF or HPF it is apparent that both algorithms perform almost identically until no of transaction is low, then EDF misses fewer dead lines than other. Real-time transaction can handled by the grid in autonomic environment and satisfy properties of autonomic computing

    BIOLOGICAL INSPIRED INTRUSION PREVENTION AND SELF-HEALING SYSTEM FOR CRITICAL SERVICES NETWORK

    Get PDF
    With the explosive development of the critical services network systems and Internet, the need for networks security systems have become even critical with the enlargement of information technology in everyday life. Intrusion Prevention System (IPS) provides an in-line mechanism focus on identifying and blocking malicious network activity in real time. This thesis presents new intrusion prevention and self-healing system (SH) for critical services network security. The design features of the proposed system are inspired by the human immune system, integrated with pattern recognition nonlinear classification algorithm and machine learning. Firstly, the current intrusions preventions systems, biological innate and adaptive immune systems, autonomic computing and self-healing mechanisms are studied and analyzed. The importance of intrusion prevention system recommends that artificial immune systems (AIS) should incorporate abstraction models from innate, adaptive immune system, pattern recognition, machine learning and self-healing mechanisms to present autonomous IPS system with fast and high accurate detection and prevention performance and survivability for critical services network system. Secondly, specification language, system design, mathematical and computational models for IPS and SH system are established, which are based upon nonlinear classification, prevention predictability trust, analysis, self-adaptation and self-healing algorithms. Finally, the validation of the system carried out by simulation tests, measuring, benchmarking and comparative studies. New benchmarking metrics for detection capabilities, prevention predictability trust and self-healing reliability are introduced as contributions for the IPS and SH system measuring and validation. Using the software system, design theories, AIS features, new nonlinear classification algorithm, and self-healing system show how the use of presented systems can ensure safety for critical services networks and heal the damage caused by intrusion. This autonomous system improves the performance of the current intrusion prevention system and carries on system continuity by using self-healing mechanism
    corecore