
 i

REAL-TIME TRANSACTION PROCESSING FOR

AUTONOMIC GRID APPLICATION

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

Computer Science and Engineering

By

BANALATA SARANGI

Department of Computer Science and Engineering

National Institute of Technology

Rourkela

2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53188957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

REAL-TIME TRANSACTION PROCESSING FOR

AUTONOMIC GRID APPLICATION

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

Computer Science and Engineering

By

BANALATA SARANGI

Under the guidance of

BIBHUDATTA SAHOO

Department of Computer Science and Engineering

National Institute of Technology

Rourkela

2007

 iii

National Institute of Technology

Rourkela

CIRTIFICATE

This is to certify that the thesis entitled “Real-time Transaction Processing for Autonomic

Grid Application” Submitted by Ms Banalata Sarangi in partial fulfillment of the

requirements for the award of master of Technology degree in computer science and

engineering with specialization in “Computer Science” at the National Institute of

Technology, Rourkela (Deemed University) is an Authentic work carried out by her

under my Supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other university/Institution for the award of any Degree or Diploma.

 Bibhudatta Sahoo

Senior Lecturer

Department of CSE

National Institute of Technology

Date 21 may 2007 Rourkela-769008

 iv

ACKNOWLEDGEMENTS

No thesis has been created entirely by an individual; many people have help to create

This thesis and each of their contribution has been valuable. I express my sincere

gratitude to my thesis supervisor, Prof Bibhudatta Sahoo for his kind and valuable

guidance for the completion of this thesis work, His consistent support and intellectual

made me energize and innovate new ideas. I am grateful to Dr.S.K.Jena, Professor and

Head, CSE for his excellent support during my work. I am also thankful to Dr.

S.K.Ratha, Dr.B.Majhi, Dr.D.P Mohapatra, and Dr.A.K. Turuk, and Dr.R.Baliarsingh of

CSE department for providing me support and advice in preparing my thesis. Thanks to

all my classmates for their love and support. Last, but not the least I would like to

thanks my parents and family member for supporting me to complete my master degree

in all ways.

 Banalata Sarangi

 v

Contents

 Certificate iii

 Acknowledgement iv

 Abstract vii

 List of figure ix

1. Introduction…………………………………………………………….. 1

2. Literature Review………………………………………………………. 4

2.1 autonomic computing: implementing the vision…………………… 6

 2.2 Autonomic Computing Systems and Application………………….. 6

 2.3 Primary mechanism of autonomic computing……………………… 7

 2.4 ACS (autonomic computing system)……………………………….. 7

2.5 Automation for autonomic computing ……………………………... 8

3. Autonomic computing………………………………………………….. 10

3.1 What is autonomic computing? …………………………………….. 11

 3.1.1 what are the origins of autonomic computing?………………. 11

 3.1.2 what is the goal of autonomic computing?…………………… 11

 3.1.3 what does autonomic computing promise to deliver?………… 12

 3.2 Characteristics of an Autonomic System…………………………... 12

 3.3 Properties of Autonomic System…………………………………… 12

 3.3.1 Self –Configuration……………………………………………. 13

 3.3.2 Self –Protection………………………………………………… 13

 3.3.3 Self –optimization……………………………………………… 13

 3.3.4 Self- healing……………………………………………………. 13

 3.4 Architecture of an autonomic element………………………………. 14

 3.5 Application of Autonomic computing……………………………….. 15

4. Grid Computing………………………………………………………….. 16

4.1 Introduction………………………………………………………….. 17

4.2 What is a Grid?……………………………………………………….. 17

 vi

4.3 Grid computing………………………………………………………. 18

4.4 Grid Architecture ……………………………………………………..19

4.5 Grid Components…………………………………………………….. 20

4.6 Application Areas of Grid Computing………………………………. 26

5. Real-time transaction processing………………………………………… 28

 5.1 What is transaction? …………………………………………………… 29

 5.2 Real-time transaction processing………………………………………. 29

 5.2.1 Real-time Grid transaction ……………………………………….30

 5.2.2 Autonomic real time grid transaction…………………………… 30

6. Real time transaction processing for autonomic grid applications…………..33

6.1 Introduction………………………………………………………………34

6.2 Related work……………………………………………………………...34

6.3 Autonomic Grid computing………………………………………………35

6.4. Deadline calculation…………………………………………………… 36

6.5 simulation…………………………………………………………………41

6.6 result………………………………………………………………………42

 6.7 Conclusion………………………………………………………………...44

 Bibliography…………………………………………………………………..45

 vii

Abstract

The advances in computing and communication technologies and software have resulted

in an explosive growth in computing systems and applications that impact all aspects of

our life. Computing systems are expected to be effective and serve useful purpose when

they are first introduced and continue to be useful as condition changes. With increase in

complexity of systems and applications, their development, configuration, and

management challenges are beyond the capabilities of existing tools and methodologies.

So the system becomes unmanageable and insecure. So in order to make the systems self-

manageable and secure the concept of Autonomic computing is evolved. Autonomic

computing offers a potential solution to these challenging research problems. It is

inspired by nature and biological systems (such as the autonomic nervous system) that

have evolved to cope with the challenges of scale, complexity, heterogeneity and

unpredictability by being decentralized, context aware, adaptive and resilient. This new

era of computing is driven by the convergence of biological and digital computing

systems and is characterized by being self-defining, self-configuring, self-optimizing,

self-protecting, self-healing, context aware and anticipatory. Autonomic computing is a

new computing model to self manages computing systems with a minimal human

interference. It provides an unprecedented level of self-regulation and hides complexity

from Users. The Autonomic computing initiative is inspired by the human body’s

autonomic nervous system. The autonomic nervous system monitors the heart- beats,

checks blood sugar levels and maintains normal body temperature with out any conscious

effort from the human. There is an important distinction between autonomic activity in

the human body and autonomic responses in computer systems. Many of the decision

made autonomic elements in computer systems make decisions based on tasks, which are

chosen to be delegated to the technology. The influences of the autonomic nervous

 viii

systems may imply that the autonomic computing initiative is concerned only with low-

level self-managing capability such as reflex reaction. The basic application area of

autonomic computing is grid computing. Both autonomic computing and grid computing

are proposed as innovations of IT. Autonomic computing aims to present a solution to the

rapidly increasing complexity crises in IT industry, as grid computing tries to share and

integrate distributed computational resources and data resources. Basic aim is to

implement the autonomic computing in grid related study like autonomic task distribution

and handling in grids, and autonomic resource allocation.

In this thesis paper we presents methods of calculating deadlines of global and local transaction

And sub transaction by taking EDF algorithm and measure the performance by taking miss ratio in

Different workload. We implement this work in an existing grid.

The basic aim is to know autonomic computing better. It is a model to self manage computing

Systems with minimal human interference. Self manage has properties like self-configuration,

self-optimization, self-healing, self-protection. Autonomic grid computing combines autonomic

computing with grid technologies to help companies to reduce the complexity associated with the

grid system and hides the complexity from their grid user. Autonomic real-time transaction

services incorporate fault tolerance into autonomic grid technology by automatically recovering

systems from various failures.

Here in this paper Deadlines of global transaction, sub transaction and local transaction are

calculated by taking parameters arrival time, execution time, relative deadline, and slack time. We

are taking a periodic transaction having λ (transaction arrival rate per second) Tasks are generated

at different nodes with Poisson ratio with λ as workload. Miss ratio is the performance metrics.

With increase in workload miss ratio first decreased and then rose. The reason was each sub

transaction acted as a unit to compete for resources so that more workload the more system

resource they consumed. So more transaction missed their deadlines, as they could not get enough

resource in time. EDF algorithm has both less global and local miss ratios then other scheduling

algorithm. If EDF is compare with FCFS or SJF or HPF it is apparent that both algorithms

perform almost identically until no of transaction is low, then EDF misses fewer dead lines than

other. Real-time transaction can handled by the grid in autonomic environment and satisfy

properties of autonomic computing.

 ix

List of figure
3.1 Control loop………………………………………………………….14

3.2 Potential architecture………………………………………………...15

4.1 Block Diagram of Computational Grid……………………………….20

4.2 The layered Grid architecture ……………………………………… 23

4.3 Classification of real-time transaction………………………………..29

5.1 Architecture of real time transaction…………………………………31

6.1 Flow of real time transaction processing……………………………..36

6.2 State conversion diagram……………………………………………..38

6.3 Global miss ratio………………………………………………………42

6.4 Miss ratio at different workload………………………………………42

 x

 1

CHAPTER-1

INTRODUCTION

 2

Recent years have seen an explosive growth and wide deployment of Internet

technologies, the proliferation of networked systems/devices, services and applications,

and the emergence of a ubiquitous information Grid. These pervasive computing and

communication technologies are rapidly weaving themselves into the fabrics of everyday

life and are fundamentally redefining the way we interact with information, each other,

and the world around us. However, these systems, services, and applications present

significant challenges due to the size, heterogeneity and dynamism of the environment,

the volume and diversity of the data, and the lack of quality or integrity assurances. In

fact, this growth and proliferation is rapidly leading to unprecedented software/system

scales, complexity, heterogeneity, dynamics, unpredictability and unreliability and is

threatening to undermine the very benefits that information technology aims to provide. It

is rapidly causing existing paradigms, processes and technologies to breakdown and

making our computational/information infrastructure brittle, unmanageable and insecure

 The increasingly evolving environment of computing and communication systems in

conjunction with the need for convergence and integration of existing and future

heterogeneous environments introduces a huge complexity in the management of these

systems. Such complexity necessitates the introduction of automation in today's and

future systems, so as to minimize the need for human intervention.

Autonomic computing is a new computing model to self manages computing systems

with a minimal human interference. It provides an unprecedented level of self-regulation

and hides complexity from Users. The Autonomic computing initiative is inspired by the

human body’s autonomic nervous system. The autonomic nervous system monitors the

heart- beats, checks blood sugar levels and maintains normal body temperature with out

any conscious effort from the human. There is an important distinction between

autonomic activity in the human body and autonomic responses in computer systems.

Many of the decision made autonomic elements in computer systems make decisions

based on tasks, which are chosen to be delegated to the technology. The influences of the

autonomic nervous systems may imply that the autonomic computing initiative is

concerned only with low-level self-managing capability such as reflex reaction.

 3

Real-time transaction depends on dead line. Dead line in real time transaction refers to

the time by which the transaction must finish or else undesirable result may produce.

Depending on the strictness of deal line real time transactions are of three-type

mimicking traditional distributed system.

• Hard real-time transaction

• Soft real-time transaction

• Firm real time transaction.

The main goal of the work presented here is to study the behaviors of autonomic

computing. This paper presents autonomic real time transaction service (ARTTS), which

incorporates fault tolerance in autonomic grid technology by automatically recovering the

system from various failures. The ARTTS able to detect and prevent the system wide

failures for autonomic grid system and handle the entire process on behalf of user.

Here I present an extensive study on autonomic computing architecture, its working

principle, grid as a distributed environment, components of grid architecture, transaction,

periodic, a periodic real time transaction and various scheduling algorithm, deadline

calculation and finally implementing real-time transaction scheduling algorithms in grid

environment to satisfy autonomic properties.

 Finally, the application software used is MATLAB, version 7.1 that is a high performance

language for technical computing. It integrates computation, visualization, and

programming in an easy-to-use environment where problems and solutions are expressed

in familiar mathematical notation.

 4

CHAPTER-2

LITERATURE REVIEW

 5

Feilong Tang, Minglu Li, and Joshua Zhexue Huang [1] worked on Real-time transaction

Processing for autonomic Grid applications and design and verify the coordination

algorithm using petrinet model. They possessed coordination algorithm for the sub

transaction and global transaction.

Xiaolong Jin, and Jiming Liu [2] Characterize autonomic task distribution and

Handling in grids.

Rainer Unland, and Huaglory Tianfield [3] visualize the aspects of Autonomic computing

Systems.

Ricardo M.Bastos, Flavio M.de Oliveira, and Jase Palazzo M.de Oliveira [4] worked on

Autonomic computing approach for resource allocation, and provide a model for agent

based autonomic resource allocation. Basically they present an autonomic solution based

in a multi-agent model for resource allocation in a manufacturing environment.

Steve R.white, James E.Hanson, Ian Whally, David M.chess, and Jeffrey O.Kephart [5]

describe An Architectural Approach to Autonomic Computing.

E.Grishikashvili Pereira, R.Pereira, and A.Taleb-Bendiav [6] evaluate the Performance

for self-healing Distributed services and fault detection mechanisms.

Andrea Baldini, Alfredo Benso, and Paolo Prinetto [7] discover a dependable autonomic

computing environment for self-testing of complex heterogeneous systems.

 6

2.1 Autonomic computing :Implementing the vision

The need for autonomic computing system (technologies that enable systems to be more

self managing and require minimal human intervention) is growing everyday as system

becomes more complex, more difficult to maintain, and more expensive to manage. IBM

has products with autonomic capabilities available today, and is developing new

technologies to move customer to the ever-changing levels of autonomic computing.

2.2 Autonomic Computing Systems and Applications

Autonomic applications and systems are composed from autonomic elements, and are

Capable of managing their behaviors and their relationships with other systems/

applications in accordance with high-level policies. Autonomic systems/applications

Exhibit eight defining characteristics:

Self Awareness: An autonomic application/system “knows itself” and is aware of

Its state and its behaviors.

Self Configuring: An autonomic application/system should be able configure and

Reconfigure it under varying and unpredictable conditions.

Self-Optimizing: An autonomic application/system should be able to detect sub optimal

Behaviors and optimize itself to improve its execution.

Self-Healing: An autonomic application/system should be able to detect and recover

From potential problems and continue to function smoothly.

Self-Protecting: An autonomic application/system should be capable of detecting

And protecting its resources from both internal and external attack and maintaining

Overall system security and integrity.

 7

Context Aware: An autonomic application/system should be aware of its execution

Environment and be able to react to changes in the environment.

Open: An autonomic application/system must function in a heterogeneous world And

should be portable across multiple hardware and software architectures. Consequently it

must be built on standard and open protocols and interfaces.

Anticipatory: An autonomic application/system should be able to anticipate to the Extent

possible, its needs and behaviors and those of its context, and be able to Manage it

proactively.

2.3 Primary mechanism of autonomic computing

Two mechanism are primary for autonomic computing i.e. system adaptation and

complexity hiding from user.

Ac ACS (autonomic computing system) is autonomous in that it completely hides the

complexity hiding from users means that autonomic computing will provide users with a

computing environment that allows them to concentrate on what they want with out

worrying about how it has to be done.

Autonomic computing = system adaptation + complexity hiding

 = Automation of system adaptation.

2.4 ACS (autonomic computing system)

The work of an ACS further divided into four groups according to the properties and

characteristics as follows.

 8

1. Establishing frameworks of autonomic computing

• Improving Grid service’s Qos through self-configuring regulation.

• Autonomic fault migration in embedded systems

• Autonomic networks: engineering and self healing properties

• Autonomic wireless sensor networks.

2. Self-configuration in dynamic software architecture and web security

• Automated adaptations to dynamic software architecture s by using autonomous

agents

• A dynamically reconfigurable system based on workflow and service agents.

• Dynamic security reconfiguration for semantic web

3. Automation for autonomic computing

• Real-time transaction processing for autonomic grid applications

• Characterizing autonomic task distribution and handling in grids

• Autonomic resource allocation by multi-agent system.

4. Auto tuning and learning

• Pricing based strategies for autonomic control of web servers for time-varying

request arrivals

• Adaptive job routing and scheduling.

2.5 Automation for autonomic computing

The real-time transaction processing is a key and challenging technology to prevent

systems in an autonomic Grid environment from various failures. Tang et al. (2004)

presents an autonomic real-time transaction service. It can dynamically discover grid

services as participants to execute specified sub-transactions, coordinate these

participants to achieve the real-time and transactional requirements, and assign priorities

to schedule concurrent transactions.petrinet are used to model and validate the co-

 9

ordination algorithms of real-time grid transactions. By handling the potential failures

and exceptions in an autonomic manner, the autonomic real time transaction service can

facilitate the implementation of real-time transaction and alleviate users from the system

administration in Grid environment.

In a grid, numerous tasks need to be distributed in a decentralized fashion. One of the

important problems is how to implement task distribution and handling. Jin and Liu

present an agent based task distribution and handling paradigm for grid.

 10

CHAPTER-3

AUTONOMIC COMPUTING

 11

3.1 What is autonomic computing?

Autonomic computing is an approach to self-managed computing systems with a

minimum of human interference. The term derives from the body’s autonomic nervous

system, which controls key function without conscious awareness or involvement.

Autonomic computing is an emerging area of study and a grand challenge for the entire

IT community to address in earnest.

Autonomic computing is a promising new concept in system development. It aims to (i)

increase reliability by designing systems to be self-protecting and self-healing; and (ii)

increase autonomy and performance by enabling systems to adapt to changing

circumstances, using self configuring and self optimizing mechanisms.

Autonomic computing concept is inspired by the human body’s autonomic nervous

system. Like human have good mechanisms for adapting to changing environments and

repairing minor physical damage.

3.1.1 what are the origins of autonomic computing?

Autonomic computing is the evolution of a long tradition of understanding and creating

self-regulating systems. It's risen to the top of the I/T agenda because of the immediate

need to solve the skills shortage and the rapidly increasing size and complexity of the

world'-computing-infrastructure.

3.1.2 what is the goal of autonomic computing?

The goal is to realize the promise of I/T: increasing productivity while minimizing

complexity for users. It's time to design and build computing systems capable of running

themselves, adjusting to varying circumstances, and preparing their resources to handle

most efficiently the workloads we put upon them.

 12

3.1.3 what does autonomic computing promise to deliver?

Most immediately, the automated management of computing systems. But that capability

will provide the basis for much more: from seamless e-sourcing and grid computing to

dynamic e-business and the ability to translate business decisions that managers make to

the I/T processes and policies that make those decisions a reality. Ultimately, autonomic

computing is a challenge that must be met before the industry can deliver 'the next big

thing.'

3.2 Characteristics of an Autonomic System

• The system must know its own components and their details.

• The system must change its configurations constantly with changing

environments.

• The system must continuously look for ways to optimize its process.

• The system must recognize abnormal conditions or problems that may harm its

• Workings and be able to recover from them.

• The system must be protected against attacks.

• The system must know its environment, surroundings, and other resources

available to it.

• The system must have open standard and operated in heterogeneous world.

• The system must able to stay ahead of the user and guess intelligently what

resources will be required and how to use them efficiently.

3.3 Properties of Autonomic System

An autonomic system is self-managing means it focuses basically on four issues, it is

self-protecting, self -configuring, self-healing and self- optimizing.

 13

3.3.1 Self -Configuration

 A self-configuring system automatically configures themselves according to high-level

policies. Self-configuring is a systems ability to readjust itself automatically to changing

circumstances. Self-configuration is an important part of autonomic computing vision.

Autonomic elements configure themselves, based on the environment they find

themselves and the high-level task for which they have been set, with out any detail

human intervention in the form of configuration files or installation dialogs. This may

simply be in self-healing, self-optimization or self protection.

3.3.2 Self -Protection

A self-protecting system will defend it self from accidental or malicious external attack.

This means being aware of potential threats and having ways of handling those threats. It

must aware of potential threats and having ways of handling those threats. These systems

are automatically resist malicious attacks or cascading failures. They use early warnings

to anticipate and prevent system-wide failures. There are two distinct but related aspects

to self-protection, protecting against undesirable systems behavior due to bugs or

unanticipated conditions, and protection against system penetration by attackers.

3.3.3 Self -optimization

Self-optimization means a system is aware of its ideal performance, can measure its

current performance against that ideal performance and has strategies for attempting

improvements. Components and systems continually seek opportunities to improve their

own performance and efficiency.

3.3.4 Self- healing

Autonomic systems automatically detect, diagnose, and repair local software and

hardware problems. Self-healing is concerned with ensuring effective recovery when a

fault occurs. This means successfully identifying the fault and then, where possible,

 14

repairing it, there should be minimal disruption to users, avoiding loss of data and

significant delay in processing.

3.4 Architecture of an autonomic element

Basically we assume that an autonomic computing system is made up of a connected set of

autonomic elements. Each element must include a sensor and effectors. Monitoring behaviors

is done through the sensors, comparing this with expectation, deciding what action, if any, is

needed and then executing that action through the effectors, creates a control loop.

Figure-3.1

D e c id e R e s o u rc e

C o n t ro l

m e a s u re

F ig u re -1 C o n tro l lo o p

In each autonomic element there is managed component and a corresponding autonomic

manager implementing the required self -monitoring and self- adjusting. An internal monitor

observes the state of the managed component and passes this information to the self monitor

for evaluation and action. The measured state is compared with the expected state held in a

system knowledge base. Undesirable deviations are reported to the self adjuster for action,

which may result in changes to the managed component. Similarly an external monitor

observes the state of the environment via an autonomic signal channel and this also may trigger

internal changes. The signal channel provides linkage to other autonomic manager. The heart

beat or pulse monitor provides a summary of the state of an autonomic element to other

autonomic elements responsible for monitoring the state.

 15

Autonomic element

Autonomic signal channel

Managed component

Autonomic manager

Heartbeat
monitor

External
monitor

Internal
monitor

Self
adjuster

System knowledge

Self monitor

Other autonomic element Other autonomic element

Figure-2 potential architecture of an autonomic element

 figure-3.2

3.5 Application of Autonomic computing

The basic application area of autonomic computing is grid computing. Both autonomic

computing and grid computing are proposed as innovations of IT. Autonomic computing

aims to present a solution to the rapidly increasing complexity crises in IT industry, as

grid computing tries to share and integrate distributed computational resources and data

resources. Basic aim is to implement the autonomic computing in grid related study like

autonomic task distribution and handling in grids, and autonomic resource allocation.

 16

CHAPTER –4

GRID COMPUTING

 17

4.1 Introduction

The popularity of the Internet as well as the availability of powerful computers and high-

speed network technologies as low-cost commodity components is changing the way we

use computers today. These technology opportunities have led to the possibility of using

distributed computers as a single, unified computing resource, leading to what is

popularly known as Grid computing. The term Grid is chosen as an analogy to a power

Grid that provides consistent, pervasive, dependable, transparent access to electricity

irrespective of its source. This new approach to network computing is known by several

names, such as Meta computing, scalable computing, global computing, Internet

computing, and more recently peer to-peer (P2P) computing. Grids enable the sharing,

selection, and aggregation of a wide variety of resources including supercomputers,

storage systems, data sources, and specialized devices that are geographically distributed

and owned by different organizations for solving large-scale computational and data

intensive problems in science, engineering, and commerce.

Thus creating virtual organizations and enterprises as a temporary alliance of enterprises

or organizations that come together to share resources and skills, core competencies, or

resources in order to better respond to business opportunities or large-scale application

processing requirements, and whose cooperation is supported by computer networks.The

concept of Grid computing started as a project to link geographically dispersed

supercomputers, but now it has grown far beyond its original intent. The Grid

infrastructure can benefit many applications, including collaborative engineering, data

exploration, high-throughput computing, and distributed supercomputing.

4.2 What is a Grid?

Grid is a type of parallel and distributed system that enables the sharing, selection, and

aggregation of geographically distributed "autonomous" resources dynamically at

runtime depending on their availability, capability, performance, cost, and users' quality-

of-service requirements. Grid computing, most simply stated, is distributed computing

 18

taken to the next evolutionary level. The goal is to create the illusion of a simple yet large

and powerful self-managing virtual computer out of a large collection of connected

heterogeneous systems sharing various combinations of resources.

Grid is a collection of distributed resources connected by a network, possibly at different

sites and in different organizations. Those resources may include supercomputers,

instruments such as telescopes and microscopes, computer-controlled factory floor tools,

mid- level servers, desktop machines, laptop etc.

The resources in a Grid typically share at least some of the following characteristics:

• They are numerous.

• They are owned and managed by different, potentially mutually distrustful

organizations and individuals that likely have different security policies and

practices.

• The resources are potentially faulty.

• They have different security requirements and policies.

• They are heterogeneous, i.e., they have different CPU architectures, are running

different operating systems, and have different amounts of memory and disk.

• Heterogeneous, multilevel networks connect them.

• They have different resource management policies.

• They are likely to be geographically separated (on a campus, in an enterprise, on a

continent).

4.3 Grid computing

A grid usually connects huge number of computers over the Internet as a complex

computational System. Here numerous tasks are distributed to grid nodes in decentralized

fashion. It contains five Components.

1. A portal

2. A service broker

3. Task scheduler

 19

4. A task manager

5. A group of grid node.

The portal acts as a user interface, through which user can log in and use the grid. After

having logged into the grid, a user can submit a task.

The service broker will check whether or not the grid possesses resources suitable for

handling the submitted task. If so, it will further check whether or not the resources are

available now.

The task scheduler is responsible for scheduling submitted tasks to be served. The task

manager finally launches a submitted task.

The nodes, as the core of a grid, are prerequisites. Grid nodes can be desktops,

workstations, and clusters that belong to different LANs, WANs, or the Internet.

4.4 Grid Architecture

In grid computing, many thousands of small-distributed computing networks would be

linked over worldwide grids in a Web like system resembling a public utility’s power

grid. That will let businesses send data transfer, share software more easily and store even

more information than today’s computer networks. The development of Grid-enabled

applications presents a significant challenge, however, because of the high degree of

heterogeneity and dynamic behavior in architecture, mechanisms, and performance

encountered in Grid environment.

The Grid is made up of a number of components from enabling resources to end user

applications. A layered architecture of the Grid and its components are shown in the

following Figure.

 20

 Figure-4.1 Block Diagram of Computational Grid

Grid computing technologies enable controlled resource sharing in distributed

communities and the coordinated use of those shared resources as community members

tackle common goals. These technologies include new protocols, services, and APIs for

secure resource access, resource management, fault detection, communication, and so

forth that in term enable new application concepts such as virtual data, smart instruments.

4.5 Grid Components

A computational grid can be modeled using 4-layer architecture as (1) Grid fabric, (2)

Core Grid Middleware, (3) Grid Tools, and (4) Grid Fabric.

A Grid Fabric is consists of all the globally distributed resources that are accessible from

anywhere on the Internet. These resources could be computers (such as PCs, SMPs,

clusters) running a variety of operating systems (such as UNIX or Windows) as well as

resource management systems such as LSF (Load Sharing Facility), Condor, PBS

(Portable Batch System) or SGE (Sun Grid Engine), storage devices, databases, and

special scientific instruments such as a radio telescope or particular heat sensor.

Grid Applications

Grid Tools

Grid Middleware

Grid Fabric

 21

The Core Grid Middleware offers core services such as remote process management, co-

allocation of resources, storage access, information registration and discovery, security

and aspects of Quality of Service (QOS) such as resource reservation and trading.

The Grid Tools (User-Level Grid Middleware) includes application development

environments, programming tools, and resource brokers for managing resources and

scheduling application tasks for execution on global resources.

The Grid Applications consists of Grid applications or portals. Grid applications are

typically developed using Grid-enabled languages and utilities such as MPI (message-

passing interface) or Nimrod parameter specification language. An example application,

such as parameter simulation or grand-challenge problem would require computational

powers, access to remote data sets, and may need to interact with scientific instruments.

Grid portals offer Web-enabled application services, where the users can submit and

collect results for their jobs on remote resources through the Web.

4.5.1 Virtual Organizations

Grid architecture identifies fundamental system components, specifies the purpose and

function of these components, and indicates how these components interact with one

another.

Within internal enterprise IT infrastructures, SP-enhanced IT infrastructures, and multi-

organizational Grids, computing is increasingly concerned with the creation,

management, and application of dynamic ensembles of resources and services (and

people)—what is called as virtual organizations. Depending on context, these ensembles

can be small or large, short-lived or long-lived, single institutional or multi-institutional,

and homogeneous or heterogeneous. Individual ensembles may be structured

hierarchically from smaller systems and may overlap in membership. Regardless of these

differences, developers of applications for VOs face common requirements as they seek

to deliver QoS—whether measured in terms of common security semantics, distributed

workflow and resource management, coordinated fail-over, problem determination

 22

services, or other metrics—across a collection of resources with heterogeneous and often

dynamic characteristics. Nature of these requirements and the mechanisms required to

address them in practical settings introduces an Open Grid Services Architecture that

supports the creation, maintenance, and application of ensembles of services maintained

by VOs.

An extensible and open Grid architecture, in which protocols, services, application

programming interfaces, and software development kits are categorized according to their

roles in enabling resource sharing is described below.

Fabric: Interfaces to Local Control

The Grid Fabric layer provides the resources to which shared access is mediated by Grid

protocols: for example, computational resources, storage systems, catalogs, network

resources, and sensors. A “resource” may be a logical entity, such as a distributed file

system, computer cluster, or distributed computer pool; in such cases, a resource

implementation may involve internal protocols (e.g., the NFS storage access protocol or a

cluster resource management system’s process management protocol), but these are not

the concern of Grid architecture.

Fabric components implement the local, resource-specific operations that occur on

specific resources (whether physical or logical) as a result of sharing operations at higher

levels. There is thus a tight and subtle interdependence between the functions

implemented at the Fabric level, on the one hand, and the sharing operations supported,

on the other. Richer Fabric functionality enables more sophisticated sharing operations.

It is suggested that at a minimum, resources should implement enquiry mechanisms that

permit discovery of their structure, state, and capabilities (e.g., whether they support

advance reservation) on the one hand, and resource management mechanisms that

provide some control of delivered quality of service, on the other. The following brief

and partial list provides a resource specific characterization of capabilities.

 23

 Figure-4.2 The layered Grid architecture and its relationship to the Internet protocol

• Computational resources: Mechanisms are required for starting programs and for

monitoring and controlling the execution of the resulting processes. Management

mechanisms that allow control over the resources allocated to processes are useful, as are

advance reservation mechanisms. Enquiry functions are needed for determining hardware

and software characteristics as well as relevant state information such as current load and

queue state in the case of scheduler-managed resources.

• Storage resources: Mechanisms are required for putting and getting files. Third party

and high-performance (e.g., striped) transfers are useful. So are mechanisms for reading

and writing subsets of a file and/or executing remote data selection or reduction

functions. Management mechanisms that allow control over the resources allocated to

data transfers (space, disk bandwidth, network bandwidth, CPU) is useful, as are advance

reservation mechanisms. Enquiry functions are needed for determining hardware and

software characteristics as well as relevant load information such as available space and

bandwidth utilization.

Application

Collective

Resource

Connectivity

Fabric

Application

Transport

Internet

Link G
rid

 P
ro

to
co

l A
rc

hi
te

ct
ur

e

In
te

rn
et

 P
ro

to
co

l A
rc

hi
te

ct
ur

e

 24

• Network resources: Management mechanisms that provide control over the resources

allocated to network transfers (e.g., prioritization, reservation) can be useful. Enquiry

functions should be provided to determine network characteristics and load.

• Code repositories: This specialized form of storage resource requires mechanisms for

managing versioned source and object code: for example, a control system such as CVS.

• Catalogs: This specialized form of storage resource requires mechanisms for

Implementing catalog query and update operations: for example, a relational database.

Connectivity: Communicating Easily and Securely

The Connectivity layer defines core communication and authentication protocols required

for Grid-specific network transactions. Communication protocols enable the exchange of

data between Fabric layer resources. Authentication protocols build on communication

services to provide cryptographically secure mechanisms for verifying the identity of

users and resources. Communication requirements include transport, routing, and

naming. Authentication solutions for VO environments should have the following

characteristics:

• Single sign on. Users must be able to “log on” (authenticate) just once and then have

access to multiple Grid resources defined in the Fabric layer, without further user

intervention.

• Delegation: A user must be able to endow a program with the ability to run on that

user’s behalf, so that the program is able to access the resources on which the user is

authorized. The program should (optionally) also be able to conditionally delegate a

subset of its rights to another program (sometimes referred to as restricted delegation).

• Integration with various local security solutions: Each site or resource provider may

employ any of a variety of local security solutions, including Kerberos and Unix security.

Grid security solutions must be able to interoperate with these various local solutions.

They cannot, realistically, require wholesale replacement of local security solutions but

rather must allow mapping into the local environment.

 25

• User-based trust relationships: In order for a user to use resources from multiple

providers together, the security system must not require each of the resource providers to

cooperate or interact with each other in configuring the security environment. For

example, if a user has the right to use sites A and B, the user should be able to use sites A

and B together without requiring that A’s and B’s security administrators interact. Grid

security solutions should also provide flexible support for communication protection

(e.g., control over the degree of protection, independent data unit protection for unreliable

protocols, Support for reliable transport protocols other than TCP) and enable stakeholder

control over authorization decisions, including the ability to restrict the delegation of

rights in various ways.

Resource: Sharing Single Resources

The Resource layer builds on Connectivity layer communication and authentication

protocols to define protocols (and APIs and SDKs) for the secure negotiation, initiation,

monitoring, control, accounting, and payment of sharing operations on individual

resources. Resource layer implementations of these protocols call Fabric layer functions

to access and control local resources. Resource layer protocols are concerned entirely

with individual resources and hence ignore issues of global state and atomic actions

across distributed collections; such issues are the concern of the Collective layer. Two

primary classes of Resource layer protocols can be distinguished:

• Information protocols are used to obtain information about the structure and state of a

resource, for example, its configuration, current load, and usage policy (e.g., cost).

• Management protocols are used to negotiate access to a shared resource, specifying, for

example, resource requirements (including advanced reservation and quality of service)

and the operation(s) to be performed, such as process creation, or data access. Since

management protocols are responsible for instantiating sharing relationships, they must

serve as a “policy application point,” ensuring that the requested protocol operations are

consistent with the policy under which the resource is to be shared. Issues that must be

considered include accounting and payment. A protocol may also support monitoring the

status of an operation and controlling (for example, terminating) the operation. While

many such protocols can be imagined, the Resource (and Connectivity) protocols layers

 26

Form the neck of our hourglass model, and as such should be limited to a small and

focused set. These protocols must be chosen so as to capture the fundamental

mechanisms of sharing across many different resource types (for example, different local

resource management systems), while not overly constraining the types or performance

of higher-level protocols that may be developed.

Collective: Coordinating Multiple Resources

While the Resource layer is focused on interactions with a single resource, the next layer

in the architecture contains protocols and services (and APIs and SDKs) that are not

associated with any one specific resource but rather are global in nature and capture

interactions across collections of resources. For this reason, we refer to the next layer of

the architecture as the Collective layer. Because Collective components build on the

narrow Resource and Connectivity layer, they can implement a wide variety of sharing

behaviors without placing new requirements on the resources being shared

4.5.2 Application Areas of Grid Computing.

These applications fall into the following categories.

Just in Time, or On-demand computing. On-demand computing provides access to

specialized resources that are only needed on a short-term or infrequent basis. When such

a resource is requested, it is usually needed immediately. However, because access needs

are sparse, there might not be sufficient justification to own the resources or even co-

locate users with the resources. In a grid environment, many users might share such

resources cost-effectively. On-demand computing must dynamically support a potentially

large user population and a number of diverse resources. Technology issues with on-

demand computing include resource location, scheduling and co scheduling with local

resources, code configuration management, security, and payment mechanisms in an

open environment.

• Data-intensive computing. With the current explosion in information, data-intensive

computing becomes an important application area that must be supported by grids,

 27

which involves the synthesis of new information from geographically distributed data

sources. A key issue that the grid must solve is scheduling and configuration of high-

volume data flows through the multiple levels of network hierarchy.

• Collaborative computing. Perhaps the newest application enabled by computational

grids is collaborative computing, or the creation of laboratories without walls. The

basic goal is to enhance the interactions between humans and computing resources

that might be geographically distributed. There are many issues involved in dealing

with the real-time requirements human perceptual capabilities and the rich variety of

interactions that might take place with the computational resources.

• High-throughput computing. High-throughput computing involves executing as many

tasks as possible within a given time frame. Often, the tasks are loosely coupled or

totally independent. The large number of resources available in a grid provides many

spare cycles for throughput computing. Key to the success of high-throughput

computing is accurate resource load information and efficient scheduling

mechanisms.

Distributed supercomputing. A driving goal of computational grids is to solve problems

that cannot currently be solved today on a single system by aggregating computational

resources from many sites together. Fundamental issues include parallel algorithm

scalability and tight co scheduling of resources from multiple computing sites. Implicit in

distributed supercomputing is that the resources are typically very expensive and

therefore very limited. Distributed supercomputing might be a component of other grid

applications such as on-demand computing or collaborative computing.

 28

CHAPTER –5

REAL TIME TRANSACTION PROCESSING

 29

5.1 what is transaction?

Transaction is an agreement, communication or movement carried out between separate

entities or objects often involving the exchange of items of values, such as information

goods, services and money.

Transaction is a set of related tasks that either succeed or fail as a unit. Transaction either

commits or aborts. These are of various types.

• Database transaction

• Atomic transaction

• Financial transaction

Basically in this paper I am concentrating on distributed transaction and nested

transaction.

5.2 Real-time transaction processing.
In a real-time transaction, the deadline refers to the Time by which the transaction must

finish or Else undesirable results may occur. Based on the strictness of deadlines, real-

time Grid transactions can be classified into three kinds.

R e a l - t i m e t r a n s a c t i o n

H a r d r e a l - t i m e
t r a n s a c t i o n

S o f t / F i r m r e a l -
t i m e t r a n s a c t i o n

P e r i o d i c S p o r a d i c

T y p e - I T y p e - I I T y p e - I I I T y p e - V

T y p e V

N o r e s t r i c t i o n o n d a t a
a c c e s s p a t t e r n ,a r r i v a l
p a t t e r n ,d a t a
r e q u i r e m e n t ,R u n t i m e
r e q u i r e m e n t

W r i t e
o n l y

U p
d a t e

R e a d -
o n l y

R e a d -
o n l y

K n o w n d a t a r e q u i r e m e n t

K n o w n r u n t i m e r e q u i r e m e n t

U n k n o w n d a t a r e q u i r e m e n t

U n k n o w n r u n t i m e r e q u i r e m e n t

Figure-4.3 classification of real-time transaction

 30

Hard real-time transaction: If these transactions miss their deadlines, catastrophic

consequences may result.

Firm real-time transaction: It is of no value to complete a firm real-time transaction after

its deadline has passed. But catastrophic results do not occur after firm real-time

transaction passes its deadline.

Soft real-time transaction: Satisfaction of deadline is also the primary performance goal.

Unlike a firm real-time transaction, however, there may still be some benefit for

completing a soft real-time transaction after its deadline.

ARTTS incorporates fault tolerance into autonomic grid technologies by automatically

recovering Systems from various failures. The ARTTS is able to detect and prevent

system wide failures for Autonomic grid systems and handle the entire process of a real-

time transaction on behalf of Users.

Optimal Grid is an autonomic Grid infrastructure developed in IBM. Using Optimal Grid;

the problem owner has no need to concern the partition and deployment of the problem

and to know the enlisting of computing nodes. The delivery of the code for various parts

of the distributed computing, the run time management of the overall problem and

dynamic rebalancing are done automatically. Transaction processing is the effective

approach to recovering systems from potential failures. The autonomic Grid must be able

to handle exceptions and failures in execution of reliable applications. Benefiting from

above efforts, the ARTTS provides the self-protection ability through automating real-

time Grid transaction processing to prevent the system from system-wide failures and

maintain system consistency and real-time property without intervention of users.

 5.2.1 Real-time Grid transaction

 Tang et al. (2003a) have discussed coordination of different activities in Grid

computing and presented corresponding coordination algorithms for two types of

transactions, atomic transaction (AT) and cohesion transaction (CT). The AT, served as

coordinating the short-lived transaction, consists of a set of atomic sub transactions that

have to commit synchronously. The CT, consisting of atomic sub-transactions or

 31

cohesion sub-transactions, allows some sub-transactions to commit while others fail in

order to coordinate the long-lived transaction. The real-time Grid transaction is an

extension of the above work in the autonomic Grid environment.

 5.2.2 Autonomic real time grid transaction

The ARTTS acts as the real-time Transaction building blocks for making autonomic Grid

Systems.

A R T T S

schedu ler log

S ervice
d iscovery

P riority
assign m en t coord ina tor

G rid In frastruc tu re

L ocal transac tion m anager

G rid R esou rces

R eal-tim e G rid A pplica tions

O G S A T X A pp-spec ific

X A

G rid S ystem L ayer

A pp lica tion L ayer

A uton om ic R eal-tim e
transac tion c om p on en t
layer

T he arch itec tu re of th e rea l-tim e transac tion

Figure-5.1

 It consists of

• Service Discovery, which discovers appropriate Grid services, i.e., participants,

according to application requirements.

• Priority Assignment, which calculates deadlines of (sub) transactions and then

assigns priorities to them.

• Coordinator or Participant, which is dynamically created and lives until the end

of a global real-time transaction. If the ARTTS receives a request to initiate a

real-time transaction, its Scheduler creates a Coordinator to control the global

transaction. In case that the ARTTS is required to complete a sub-task, its

Scheduler generates a Participant to manage the sub transaction.

 32

• Log, which records the coordination operations and the state information for

possible recovery.

• Scheduler, which is responsible for scheduling above modules.

• Interfaces, including (a) the OGSA interfaces for service management such as

creating a service instance, (b) the TX interface for transaction management such

as starting a transaction, and (c) the application-specific interfaces for specific

application purposes.

 33

CHAPTER-6

REAL TIME TRANSACTION PROCESSING FOR

AUTONOMIC GRID APPLICATIONS

 34

6.1 Introduction

The future Grid will be an autonomic environment that can not only assist users to share

large-scale resources and accomplish collaborative tasks but also self-manage to reduce

the users’ interventions as much as possible. In such an autonomic Grid environment, the

real-time transaction processing is a key and challenging technology to protect systems

from various failures. This survey paper presents an autonomic real-time transaction

service (ARTTS) that can (1) dynamically discover Grid services as participants to

execute specified sub-transactions, (2) coordinate these participants to achieve the real-

time and transactional requirements, and (3) assign priorities to schedule concurrent

transactions. By handling the potential failures and exceptions autonomically, the ARTTS

can facilitate the implementation of real-time Grid transactions and simplify the system

management work, which frees users from the complex interference in the autonomic

Grid environment.

6.2 Related work

6.2.1 Service discovery

The first step of handing a Grid transaction is to dynamically discover services to execute

sub-transactions. The Universal Description, Discovery, and integration (UDDI) define

how to publish and discover Web services. Providers of Web services directly publish

their services in the UDDI server. Service discovery is an important work in grid

transaction, which helps in executing, sub transaction. Service here is of two types

• Transient

• Persistent

The former refers to the services whose instances are created and/or destroyed in runtime

and live only for a specified period. Therefore, it is impractical for the UDDI server to

manage both creation and registration of millions of remote transient Grid services. This

 35

paper employs two-level registry mechanism to adapt to those transient services. Service

descriptions are registered in the Undeserved while its local registry performs creation of

a transient service instance.

6.2.2 Transaction processing

Transaction processing has three kinds of roles. Application program, Transaction

manager, Resource manager. And two interface XA and TX. Real time scheduler

schedule real time transaction using priority assignment policy and resolve data conflict

by lock mechanism. Main issue is how to propagate deadlines from global transaction to

its sub transaction and how to control concurrent execution of transaction.

6.3 Autonomic Grid computing

Optimal Grid is an autonomic Grid infrastructure developed in IBM. Using Optimal Grid;

the problem owner has no need to concern the partition and deployment of the problem

and to know the enlisting of computing nodes. The delivery of the code for various parts

of the distributed computing, the run time management of the overall problem and

dynamic rebalancing are done automatically. Transaction processing is the effective

approach to recovering systems from potential failures. The autonomic Grid must be able

to handle exceptions and failures in execution of reliable applications. Benefiting from

above efforts, the ARTTS provides the self-protection ability through automating real-

time Grid transaction processing to prevent the system from system-wide failures and

maintain system consistency and real-time property without intervention of users.

6.3.1 Real-time Grid transaction

Tang et al. (2003a) have discussed coordination of different activities in Grid computing

and presented corresponding coordination algorithms for two types of transactions,

atomic transaction (AT) and cohesion transaction (CT). The AT, served as coordinating

the short-lived transaction, consists of a set of atomic sub transactions that have to

commit synchronously. The CT, consisting of atomic sub-transactions or cohesion sub-

 36

transactions, allows some sub-transactions to commit while others fail in order to

coordinate the long-lived transaction. The real-time Grid transaction is an extension of

the above work in the autonomic Grid environment.

Transaction processing for the autonomic Grid environment focuses on how to coordinate

sub-transactions rather than processing of each individual sub-transaction. The real-time

Grid transaction mainly concerns with participant discovery, coordination algorithms,

and policies of deadline and priority assignment.

6.3.2 Flow of the real-time Grid transaction processing

 In the autonomic Grid environment, a typical real-time transaction processing

includes following steps, as shown

Grid Service

Priority
assignment

coordinator
Log

Scheduler

Service
Discovery

Real-time Grid
Application

Initiate Result Global service
registry

Local service
registry

Scheduler

ARTTS

ARTTS

participant
Log

Priority
assignment

Create

Discover
Participant

cc

Coordination
messages

The flow the real time Grid transaction processing

Figure-6.1

 37

1. The initial ARTTS initiates a global transaction for a Grid application, discovers and

selects satisfactory Grid services to serve as participants, using the Service Discovery

module

2. Its Scheduler creates a Coordinator and broadcasts the Coordination Context (CC)

messages to all selected remote participants, which create Participant locally and return

Response messages to the Coordinator.

3. The created Coordinator and Participants interact to control the transaction execution,

including correct completion and failure recovery.

 6.3.3 Discovery of participants

In the Grid service environment, any network entity is encapsulated into a service, which

is identified by the Grid service handle(s) and reference(s). The goal of discovering

participants is to dynamically find the references of service instances. A service

discovery model with a two-level registry has been proposed in Tang et al. (2003b).

Handles and references of persistent Grid service instances (or handles of factory for

transient Grid services) are registered with the Local Service Registry, which publishes

service descriptions in the Global Service Registry. The basic steps of service discovery

can be described as follows.

• Query the Global Service Registry to obtain the service description and the

handle of their home Local Service Registry.

• Select desirable services based on some policies such as the lowest cost.

• Discover the references of the selected services in the Local Service Registry.

For a transient Grid service, its factory service creates the service instances and

returns the initial service references.
6.3.4 Coordination of participants

The real-time Grid transaction aims at time-critical Situation, where the most important

goal is to maximize the number of transactions that can finish before their deadlines

rather than the system throughput. To improve the successful rate, a few functional

 38

alternative services are organized into a functional alternative service group (FASG) to

execute the same sub-transaction in parallel. If one member of a FASG can successfully

complete before its deadline and reports a Committable message, the FASG is considered

committable and other members are aborted. In the preparation phase, each functional

alternative service executes a specified sub-transaction in its private work area (PWA).

When a service completes the sub transaction successfully before its deadline, it returns a

Committable message. Any actual commit occurs only when the global transaction

commits. On receipt of an Abort message, the service rollbacks operations taken

previously by releasing the PWA. In the commit phase, the Commit message enables the

committable participants, which have reported the Committable messages, to commit

sub-transactions.

The bellow figure illustrates the state conversion diagram of the Real-time Grid

transaction. Solid rectangles indicate the states of both Coordinator and Participants while

the dashed rectangle only denotes the state of Participants. Note that the transaction

enters the prepared state only after the Coordinator receives a Committable message from

each FASG before deadline d (T). Otherwise, the Coordinator sends Rollback messages

to all participants.

R esp on se

A c tiv e

P rep a rin g

P rep a red

C o m m ittin g

A b ort

R o llb ac k in g

E n d ed

A b ortin g

A b ortin g
Roll

R o llb a ck ed

C o m m itted
G en era ted b y C o ord in a to r

G en era ted b y p a rtic ip an t

T h e s ta te c on v ers ion d ia gra m o f th e rea l- tim e G rid tran sac tion

Figure-6.2

 39

6.4. Deadline calculation

Deadline refers to the time by which the transaction must finish or else undesirable

results may occur.

Tasks are of two types:

 Local task- the task that are executed only at the originating node.

 Global task- it consist of series of sub transaction.

The objective is to determine the priorities of the sub transaction so that the percentage of

missed deadline is kept as low as possible.

Dead line of local transaction:

weistiriTd ++=)(

d (T)=deadline

r i= arrival time

Sti = slack

Wei = Execution time

Deadline of sub transaction:

A global task is in the form of T=[T1, T2…Tm]

There are basically 4 methods

1. UD-Ultimate deadline

)()(TdlTidl =

2 ED-Effective Deadline

∑
+=

−=
m

jj
TjPexTdlTidl

1
)()()(

3. EQS-Equal slack

)1/(])()()([)()(+−−−+= ∑
=

imTjpexTiarTdlTiarTidl
m

ij

 40

4. EQF-Equal Flexibility first

∑∑
==

−−++=
m

ij

m

ij
TjpexTipexTjpexTiarTdlTipexTiarTidl)](/)([*))]()()([()()()(

Let X is a transaction

ar(X)—arrival time

dl(X)---deadline

sl(X)—slack

ex(X)—real execution time

pex(X)—Predicted execution time

dl(Ti)—deadline of sub transaction

Earliest deadline first

Highest priority is given to the transaction with closest deadline

 41

6.5 Simulation

Let a model contain k nodes, each node services their tasks according to some real-time

scheduling algorithms. Example-EDF.

The transaction manager generates local and global transactions with an independent

Poisson stream with an arrival rate varying from 1 to 80 transactions per second.

Evaluation time, deadline of transaction follows a uniform distribution.

No of transaction resources access is atleast one main memory database is taken for

simplicity.

First step of simulation consisted in measuring the global miss ratio for different

scheduling algorithm, let EDF and FCFS.GMR is defined as The total number of

transaction that miss their deadlines compared to the total number of transactions

accepted by the algorithm.

Table 1

System Parameter

Parameter Description Value

Wei Execution time 30 to 300 ms

sfi Slack factor: sti = sfi *Wei

di = ri + Wei (1 + sfi)

3 to 5

 Transaction arrival rate per ג

second

1 to 80 transaction

per second

NR Number of resources 20

 42

6.6 Results

We found that the EDF algorithm have less global miss ratio in compare to FCFS.both

the algorithm performs almost identically until number of transaction per second grows to

30.following that point EDF misses fewer deadlines than FCFS.

Figure 6.3

Figure 6.4 Miss ratio in different workload

MREDF

MRFCFS

 43

 In the above figure value of ג is 1,4,7 from bottom to top. With increase in

workload miss ratio first decreased and then rose. The reason was each sub

transaction acted as a unit to compete for resources so that more workload the more

system resource they consumed. So more transaction missed their deadlines, as they

could not get enough resource in time.

 44

6.7 Conclusion and future works

In this paper we basically concentrate on the autonomic systems. We discuss about

autonomic real time transaction service. How this service dynamically discover grid

services to execute specified sub-transactions. Dynamically assign priorities for

scheduling concurrent transaction. As a result, by handling the entire transaction process

on behalf of users automatically it facilitate the implementation of real-time and

transactional grid application to provide self-protection function and simplify the

management work.

The future work will be to make the autonomic application more practical and satisfy all

the four properties for solving various issues in the autonomic grid environment. The

future work will focus on combining security measure with our work’s the overall grid

environment will get authentication, authorization and communication protection.

 45

Bibliography

[1] Feilong Tang, Minglu Li, and Joshua Zhexue Huang. “Real-time transaction

Processing for autonomic Grid applications,”Engineering Application of

Artificial Intelligence 17(2004), pp.799-807, China, 2004.

[2] Xiaolong Jin, and Jiming Liu, “Characterizing autonomic task distribution and

Handling in grids,” Engineering Application of Artificial Intelligence 17(2004),

Pp.809-823, Hong Kong, 2004.

[3] Rainer Unland, and Huaglory Tianfield, “ Towards Autonomic computing

Systems,” Engineering Application of Artificial Intelligence 17(2004), pp.689-

699, Germany, 2004.

[4] Eser Kandogan, John Bailey Rob Barrett, and Paul p. Maglio, “Usable autonomic

computing systems: the system administrators’ perspective,” In Advance

Engineering Informatics 19, pp.213-221, Nov 2005.

[5] Roy Sterritt, and Dave Bustard, “Towards an Autonomic computing

Environment,” Proceeding of IEEE 14th international workshop on Database and

Expert systems applications (DEXA ’03), 2003.

[6] Ricardo M.Bastos, Flavio M.de Oliveira, and Jase Palazzo M.de Oliveira,

“Autonomic computing approach for resource allocation,”Expert systems with

applications 28(2005), pp.9-19, Brazil, 2005.

[7] Andrea Baldini, Alfredo Benso, and Paolo Prinetto. “A dependable autonomic

computing environment for self-testing of complex heterogeneous

systems,”Electronics notes in Theoretical Computer science 116(2005), pp.45-57,

Italy, 2005.

 46

[8] Jeffrey O.Kephart, and David M.chess, “The vision of Autonomic

Computing,”IEEE computer society, Jan 2003, pp.41-49.

[9] Paul Lin, Alexander MacArthur, and John Leaney, “Defining Autonomic

Computing: A software engineering prospective,”Proceedings of the 2005 IEEE

Australian Software engineering conference (ASWEC ’05), 2005.

[10] Steve R.white, James E.Hanson, Ian Whally, David M.chess, and Jeffrey

O.Kephart, “An Architectural Approach to Autonomic Computing,” Proceedings

of IEEE International conference on Autonomic Computing (ICAC’04), 2004.

[11] E.Grishikashvili Pereira, R.Pereira, and A.Taleb-Bendiav, “Performance

evaluation for self healing Distributed services and fault detection mechanisms,”

Journals of Computer and System Science, 2006.

[12] Yuan-Shan Dai, “Autonomic Computing and Reliability Improvement,”

Proceedings of the 8th IEEE International Symposium on Object-Oriented

 Real-Time distributed computing, 2005.

[13] Shimon Whiteson, and Peterstone, “Towards Autonomic Computing: Adaptive

network routing and scheduling,” Proceeding of IEEE International Conference

Autonomic Computing, 2004.

[14] L.Baccouche. , “Scheduling Muli-class real-Time Transactions: A performance

 Evaluation,”Enformatika Society, vol 6,pp.249-252, 2005.

 [15] Ben kao and hector Garcia-Molina, “deadline assignment in a Distributed soft real-

 Time System,”IEEE Transaction on parallel and distributed systems. Vol 8,Dec

1997.

 47

