31 research outputs found

    Planning for the Lifecycle Management and Long-Term Preservation of Research Data: A Federated Approach

    Get PDF
    Outcomes of the grant are archived here.The “data deluge” is a recent but increasingly well-understood phenomenon of scientific and social inquiry. Large-scale research instruments extend our observational power by many orders of magnitude but at the same time generate massive amounts of data. Researchers work feverishly to document and preserve changing or disappearing habitats, cultures, languages, and artifacts resulting in volumes of media in various formats. New software tools mine a growing universe of historical and modern texts and connect the dots in our semantic environment. Libraries, archives, and museums undertake digitization programs creating broad access to unique cultural heritage resources for research. Global-scale research collaborations with hundreds or thousands of participants, drive the creation of massive amounts of data, most of which cannot be recreated if lost. The University of Kansas (KU) Libraries in collaboration with two partners, the Greater Western Library Alliance (GWLA) and the Great Plains Network (GPN), received an IMLS National Leadership Grant designed to leverage collective strengths and create a proposal for a scalable and federated approach to the lifecycle management of research data based on the needs of GPN and GWLA member institutions.Institute for Museum and Library Services LG-51-12-0695-1

    Communications for smart grid substation monitoring using WIMAX protocol

    Get PDF
    The SMARTGRID is a general term for a series of infrastructural changes applied to the electric transmission and distribution systems. By using the latest communication and computing technology, additional options such as Condition Monitoring can now be implemented to further improve and optimise complex electricity supply grid operation. Lifecycle optimisation of high voltage assets and other system components in the utility provide a case in point. Today Utility experts agree that application of scheduled maintenance is not the effective use of resources. To reduce maintenance expenses and unnecessary outages and repairs of equipment due to scheduled maintenance, utilities are adopting condition based approaches. Real time online monitoring of substation parameters can be achieved by retrofitting the existing substation with SMARTGRID technology. The IEC 61850 is a common protocol meant for Substation Automation Systems, designed for the purpose of establishing interoperability, one that all manufacturers of all different assets must comply with. This thesis advocates the estimation of bandwidth required for monitoring a substation after retrofitting the existing substation with smart communication technologies. This includes establishing a latest wireless communication infrastructure from the substation to the control centre and evaluating the performance modelling and simulating the physical layer of communication technologies such as WIMAX (IEEE802.16) and MICROWAVE point to point using MATLAB SIMULINK and RADIO mobile online simulation software. Also, link budget of the satellite communication for the same application is calculated. Satellite communication in this case is considered as a redundant or back up technology to ensure that the communication between entities is continuous. On performing the simulation on different environments the results prove that the selected protocols are best suited for condition monitoring. The measured Latency could be the best approximated value which complies with the current objective. However the white noise that exists in the substation has significant hazard with respect to the security of the wireless network. To compensate this constraint whole substation is hard wired by means of plastic fibre optics and the data sent to the base station located near the substation

    Quantitative Verification and Synthesis of Resilient Networks

    Get PDF

    Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity

    Get PDF
    Demand is increasing for high throughput processing of irregular streaming applications; examples of such applications from scientific and engineering domains include biological sequence alignment, network packet filtering, automated face detection, and big graph algorithms. With wide SIMD, lightweight threads, and low-cost thread-context switching, wide-SIMD architectures such as GPUs allow considerable flexibility in the way application work is assigned to threads. However, irregular applications are challenging to map efficiently onto wide SIMD because data-dependent filtering or replication of items creates an unpredictable data wavefront of items ready for further processing. Straightforward implementations of irregular applications on a wide-SIMD architecture are prone to load imbalance and reduced occupancy, while more sophisticated implementations require advanced use of parallel GPU operations to redistribute work efficiently among threads. This dissertation will present strategies for addressing the performance challenges of wavefront- irregular applications on wide-SIMD architectures. These strategies are embodied in a developer framework called Mercator that (1) allows developers to map irregular applications onto GPUs ac- cording to the streaming paradigm while abstracting from low-level data movement and (2) includes generalized techniques for transparently overcoming the obstacles to high throughput presented by wavefront-irregular applications on a GPU. Mercator forms the centerpiece of this dissertation, and we present its motivation, performance model, implementation, and extensions in this work

    SdrLift: A Domain-Specific Intermediate Hardware Synthesis Framework for Prototyping Software-Defined Radios

    Get PDF
    Modern design of Software-Defined Radio (SDR) applications is based on Field Programmable Gate Arrays (FPGA) due to their ability to be configured into solution architectures that are well suited to domain-specific problems while achieving the best trade-off between performance, power, area, and flexibility. FPGAs are well known for rich computational resources, which traditionally include logic, register, and routing resources. The increased technological advances have seen FPGAs incorporating more complex components that comprise sophisticated memory blocks, Digital Signal Processing (DSP) blocks, and high-speed interfacing to Gigabit Ethernet (GbE) and Peripheral Component Interconnect Express (PCIe) bus. Gateware for programming FPGAs is described at a lowlevel of design abstraction using Register Transfer Language (RTL), typically using either VHSIC-HDL (VHDL) or Verilog code. In practice, the low-level description languages have a very steep learning curve, provide low productivity for hardware designers and lack readily available open-source library support for fundamental designs, and consequently limit the design to only hardware experts. These limitations have led to the adoption of High-Level Synthesis (HLS) tools that raise design abstraction using syntax, semantics, and software development notations that are well-known to most software developers. However, while HLS has made programming of FPGAs more accessible and can increase the productivity of design, they are still not widely adopted in the design community due to the low-level skills that are still required to produce efficient designs. Additionally, the resultant RTL code from HLS tools is often difficult to decipher, modify and optimize due to the functionality and micro-architecture that are coupled together in a single High-Level Language (HLL). In order to alleviate these problems, Domain-Specific Languages (DSL) have been introduced to capture algorithms at a high level of abstraction with more expressive power and providing domain-specific optimizations that factor in new transformations and the trade-off between resource utilization and system performance. The problem of existing DSLs is that they are designed around imperative languages with an instruction sequence that does not match the hardware structure and intrinsics, leading to hardware designs with system properties that are unconformable to the high-level specifications and constraints. The aim of this thesis is, therefore, to design and implement an intermediatelevel framework namely SdrLift for use in high-level rapid prototyping of SDR applications that are based on an FPGA. The SdrLift input is a HLL developed using functional language constructs and design patterns that specify the structural behavior of the application design. The functionality of the SdrLift language is two-fold, first, it can be used directly by a designer to develop the SDR applications, secondly, it can be used as the Intermediate Representation (IR) step that is generated by a higher-level language or a DSL. The SdrLift compiler uses the dataflow graph as an IR to structurally represent the accelerator micro-architecture in which the components correspond to the fine-level and coarse-level Hardware blocks (HW Block) which are either auto-synthesized or integrated from existing reusable Intellectual Property (IP) core libraries. Another IR is in the form of a dataflow model and it is used for composition and global interconnection of the HW Blocks while making efficient interfacing decisions in an attempt to satisfy speed and resource usage objectives. Moreover, the dataflow model provides rules and properties that will be used to provide a theoretical framework that formally analyzes the characteristics of SDR applications (i.e. the throughput, sample rate, latency, and buffer size among other factors). Using both the directed graph flow (DFG) and the dataflow model in the SdrLift compiler provides two benefits: an abstraction of the microarchitecture from the high-level algorithm specifications and also decoupling of the microarchitecture from the low-level RTL implementation. Following the IR creation and model analyses is the VHDL code generation which employs the low-level optimizations that ensure optimal hardware design results. The code generation process per forms analysis to ensure the resultant hardware system conforms to the high-level design specifications and constraints. SdrLift is evaluated by developing representative SDR case studies, in which the VHDL code for eight different SDR applications is generated. The experimental results show that SdrLift achieves the desired performance and flexibility, while also conserving the hardware resources utilized

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation

    Methodologies for Evaluating User Centric Performance of Mobile Network Applications

    Get PDF
    Performance is an important attribute of mobile software applications, having a direct impact on end-user's experience. One of the obstacles that make software performance testing difficult to pursue is the lack of performance requirements that complicates the process of verifying the correctness of the test case output. Moreover, compared to other platforms, mobile applications' quality assurance is more challenging, since their functionality is affected by the surrounding environment. In this work, we propose methodologies and frameworks to evaluate the impact of interaction of the quality of the wireless network connection and application configurations on performance behaviour and performance robustness of a mobile networked application as perceived by the end user. We follow a model-based approach. The thesis starts by defining the system model of software applications that we target, the network stack that the application is assumed to use to provide the service to the end user, and the metric used to capture the quality of the provided network service. Then, an analytical performance model that captures the application-network interactions is developed using the Markovian framework. To model realistic interactions with the network, the performance model is developed and solved using supplementary variable technique (SVT). The model is intensively verified with simulation. Furthermore, two input network models are analytically developed. In both models, the mobile application is assumed to have a wireless network access through a WiFi access point that implements IEEE 802.11 protocol. In the first model, data transfer is achieved using user datagram protocol (UDP), while in the second, data transfer is accomplished using transmission control protocol (TCP). For the TCP model, two scenarios are considered. In the first scenario, an application data unit (APDU) is assumed to fit in one TCP packet, while in the second scenario, an APDU is assumed to fit in multiple TCP packets. All models are verified using the well-known NS2 network simulator. Third, we propose a model based test generation methodology to evaluate the impact of the interaction of the environment, the wireless network, and the application configurations on the performance of a mobile networked application. The methodology requires four artefacts as inputs, namely, a behaviour model of the software under test, a network model, a test coverage criterion, and a set of desired performance levels. The methodology consists of three steps: performance model development, test generation, and estimation of test execution parameters. To evaluate the end-user quality of experience, test generation is formulated as an inversion problem and solved as an optimization problem. To generate an efficient set of test cases, two test coverage criteria are proposed: user experience (UE) and user experience and input interaction (UEII). Test execution optimizations are inferred using a performance simulation model. To show the applicability of the methodology, two mobile networked app examples are used: multimedia streaming and web browsing. The effectiveness of the methodology is evaluated by comparing the time cost to design a test suite with random testing. The obtained results are very promising. Fourth, to minimize the incurred cost of performance model evaluations, we utilize metamorphic testing to generate test cases. Metamorphic testing is a technique that is proposed to alleviate the test oracle problem. By utilizing certain inherent properties of the system under test (metamorphic relations), test cases are generated and verified without the need to know the expected output of each individual test case in advance. By hybridizing our proposed test generation methodology with metamorphic testing, the time cost of generating a test suite is reduced tremendously. We first generate a limited set of seed test cases using our test generation methodology. Then, we generate a set of follow-up test cases by utilizing the developed network models as metamorphic relations and without the need to invoke the performance model. Follow-up test generation is formulated as a maximization problem. The objective is to maximize the distance between a seed test case and follow-up test cases so that to generate a non-redundant set of test cases. Three distance metrics are used: Euclidean, squared Euclidean, and Manhattan. The modified methodology is used to generate test cases for a multimedia streaming application. We empirically evaluate the modified test generation methodology using two evaluation metrics: the incurred time cost and the percentage of redundancy in the generated test suite. The obtained results show the advantage of the modified methodology in minimizing the cost of test generation process. Fifth, we propose a third methodology to evaluate the impact of the wireless network conditions on robustness of performance of adaptive and non-adaptive mobile networked applications. Software robustness is mainly about how the system behaves under stressful conditions. In this work, we target performance robustness under stressful network conditions. The proposed methodology consists of three steps and it requires three different artefacts as inputs. To quantify robustness, two metrics (static and dynamic robustness) are proposed. The main challenge in evaluating robustness is the combinatorial growth of network-application interactions that need to be evaluated. To mitigate this issue, we propose an algorithm to limit the number of interactions, utilizing the monotonicity property of the performance model. To evaluate the dynamic robustness metric, the ability of the adaptive application to tolerate degraded network conditions has to be evaluated. This problem is formulated as a minimization problem. The methodology is used to evaluate the performance robustness of a mobile multimedia streaming application. The effectiveness of the proposed methodology is evaluated. The obtained results show three to five times reduction in total cost compared to the naive approach in which all combinations are exhaustively evaluated

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore