3 research outputs found

    Parallel algebraic multilevel Schwarz preconditioners for a class of elliptic PDE systems

    Full text link
    Algebraic multilevel preconditioners for algebraic problems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a point-based approach with a primary matrix corresponding to a single PDE. The preconditioners are implemented in a parallel computing framework and are tested on two representative PDE systems. The results of the numerical experiments show the effectiveness and the scalability of the proposed methods. A convergence theory for the twolevel case is presented

    Performance analysis of parallel Schwarz preconditioners in the LES of turbulent channel flows

    No full text
    We present a comparative study of parallel Schwarz preconditioners in the solution of linear systems arising in a Large Eddy Simulation (LES) procedure for turbulent plane channel flows. This procedure applies a time-splitting technique to suitably filtered Navier-Stokes equations, in order to decouple the continuity and momentum equations, and uses a semi-implicit scheme for time integration and finite volumes for space discretisation. This approach requires the solution of four sparse linear systems at each time step, accounting for a large part of the overall simulation; hence the linear system solvers are a crucial component in the whole procedure. Several preconditioners are applied in the simulation of a reference test case for the LES community, using discretisation grids of different sizes, with the aim of analysing the effects of different algorithmic choices defining the preconditioners, and identifying the most effective ones for the selected problem. The preconditioners, coupled with the GMRES method, are run within SParC-LES, a recently developed LES code based on the PSBLAS and MLD2P4 libraries for parallel sparse matrix computations and preconditioning. © 2012 Elsevier Ltd. All rights reserved
    corecore