3 research outputs found

    K-CUSUM: Cluster Detection Mechanism in EDMON

    Get PDF
    Source at https://www.ep.liu.se/ecp/contents.asp?issue=161. The main goal of the EDMON (Electronic Disease Monitoring Network) project is to detect the spread of contagious diseases at the earliest possible moment, and potentially before people know that they have been infected. The results shall be visualized on real-time maps as well as presented in digital communication. In this paper, a hybrid of K-nearness Neighbor (KNN) and cumulative sum (CUSUM), known as K-CUSUM, were explored and implemented with a prototype approach. The KNN algorithm, which was implemented in the K- CUSUM, recorded 99.52% accuracy when it was tested with simulated dataset containing geolocation coordinates among other features and SckitLearn KNN algorithm achieved an accuracy of 93.81% when it was tested with the same dataset. After injection of spikes of known outbreaks in the simulated data, the CUSUM module was totally specific and sensitive by correctly identifying all outbreaks and non-outbreak clusters. Suitable methods for obtaining a balance point of anonymizing geolocation attributes towards obscuring the privacy and confidentiality of diabetes subjects’ trajectories while maintaining the data requirements for public good, in terms of disease surveillance, remains a challenge

    Notes on the Localization of Generalized Hexagonal Cellular Networks

    Get PDF
    The act of accessing the exact location, or position, of a node in a network is known as the localization of a network. In this methodology, the precise location of each node within a network can be made in the terms of certain chosen nodes in a subset. This subset is known as the locating set and its minimum cardinality is called the locating number of a network. The generalized hexagonal cellular network is a novel structure for the planning and analysis of a network. In this work, we considered conducting the localization of a generalized hexagonal cellular network. Moreover, we determined and proved the exact locating number for this network. Furthermore, in this technique, each node of a generalized hexagonal cellular network can be accessed uniquely. Lastly, we also discussed the generalized version of the locating set and locating number
    corecore