196 research outputs found

    Solutions to Integrals Involving the Marcum Q-Function and Applications

    Full text link
    Novel analytic solutions are derived for integrals that involve the generalized Marcum Q-function, exponential functions and arbitrary powers. Simple closed-form expressions are also derived for the specific cases of the generic integrals. The offered expressions are both convenient and versatile, which is particularly useful in applications relating to natural sciences and engineering, including wireless cpmmunications and signal processing. To this end, they are employed in the derivation of the channel capacity for fixed rate and channel inversion in the case of correlated multipath fading and switched diversity.Comment: 15 Pages, 2 Figure

    GPU-SUPPORTED SIMULATION FOR ABEP AND QOS ANALYSIS OF A COMBINED MACRO DIVERSITY SYSTEM IN A GAMMA-SHADOWED K-µ FADING CHANNEL

    Get PDF
    In this paper we have analyzed macro-diversity (MD) system with one macro SC diversity (MD SC) receiver and two micro MRC (mD MRC) receivers over correlated Gamma-shadowed k-µ fading channel. The average bit error probability (ABEP) is calculated using the moment generating function (MGF) approach for BDPSK and BPSK modulations. Graphical representation of the results illustrates the effects of different parameters of the system on its performance as well as the improvements due to the benefits of a combined micro and macro diversity. The obtained analytical expressions are used for the GPU-enabled mobile network modeling, planning and simulation environment to determine the value of Quality of Service (QoS) parameter. Finally, linear optimization is proposed as an approach to improve the QoS parameter of the fading-affected system observed in this paper

    An Accurate Sample Rejection Estimator of the Outage Probability With Equal Gain Combining

    Get PDF
    We evaluate the outage probability (OP) for L-branch equal gain combining (EGC) receivers operating over fading channels, i.e., equivalently the cumulative distribution function (CDF) of the sum of the L channel envelopes. In general, closed form expressions of OP values are out of reach. The use of Monte Carlo (MC) simulations is not a good alternative as it requires a large number of samples for small values of OP. In this paper, we use the concept of importance sampling (IS), being known to yield accurate estimates using fewer simulation runs. Our proposed IS scheme is based on sample rejection where the IS density is the truncation of the underlying density over the L dimensional sphere. It assumes the knowledge of the CDF of the sum of the L channel gains in closed-form. Such an assumption is not restrictive since it holds for various challenging fading models. We apply our approach to the case of independent Rayleigh, correlated Rayleigh, and independent and identically distributed Rice fading models. Next, we extend our approach to the interesting scenario of generalised selection combining receivers combined with EGC under the independent Rayleigh environment. For each case, we prove the desired bounded relative error property. Finally, we validate these theoretical results through some selected experiments

    Wireless secrecy under multivariate correlated Nakagami-m fading

    Get PDF
    Current wireless secrecy research in the literature has mainly been performed for one wiretapper under correlated fading. In this paper, a new wireless secrecy framework for multiple wiretappers under multivariate exponentially-correlated (exp.c.) Nakagami-m fading is proposed. Using the distribution of multivariate exp.c. Nakagami-m fading, new, exact, and compact expressions for the ergodic secrecy capacity, and secrecy outage probability (SOP) under multiple wiretappers are obtained for an integer fading parameter m. A secrecy analysis is also performed for the first time in this paper using an adaptive on/off transmission encoder under multivariate exp.c. Nakagami-m fading. A secrecy analysis with three wiretappers under quadrivariate exp.c. Nakagami-m fading is also given, which shows the effectiveness of the new framework. Simulation results are shown to exactly match theoretical predictions

    Ergodic Capacity and Error Performance of Spatial Diversity UWOC Systems over Generalized Gamma Turbulence Channels

    Get PDF
    In this paper, we study the ergodic capacity (EC) and average bit error rate (BER) of spatial diversity underwater wireless optical communications (UWOC) over the generalized gamma (GG) fading channels using quadrature amplitude modulation (QAM) direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM). We derive closed-form expressions of the EC and BER for the spatial diversity UWOC with the equal gain combining (EGC) at receivers based on the approximation of the sum of independent identical distributed (i.i.d) GG random variables (RVs). Numerical results of EC and BER for QAM DCO-OFDM spatial diversity systems over GG fading channels are presented. The numerical results are shown to be closely matched by the Monte Carlo simulations, verifying the analysis. The study clearly shows the adverse effect of turbulence on the EC & BER and advantage of EGC to overcome the turbulence effect
    corecore