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ABSTRACT We evaluate the outage probability (OP) for L−branch equal gain combining (EGC) receivers
operating over fading channels, i.e., equivalently the cumulative distribution function (CDF) of the sum
of the L channel envelopes. In general, closed form expressions of OP values are out of reach. The use
of Monte Carlo (MC) simulations is not a good alternative as it requires a large number of samples for
small values of OP. In this paper, we use the concept of importance sampling (IS), being known to yield
accurate estimates using fewer simulation runs. Our proposed IS scheme is based on sample rejection
where the IS density is the truncation of the underlying density over the L dimensional sphere. It assumes
the knowledge of the CDF of the sum of the L channel gains in closed-form. Such an assumption is
not restrictive since it holds for various challenging fading models. We apply our approach to the case
of independent Rayleigh, correlated Rayleigh, and independent and identically distributed Rice fading
models. Next, we extend our approach to the interesting scenario of generalised selection combining
receivers combined with EGC under the independent Rayleigh environment. For each case, we prove
the desired bounded relative error property. Finally, we validate these theoretical results through some
selected experiments.

INDEX TERMS Outage probability, equal gain combining, importance sampling, sample rejection,
generalised selection combining, bounded relative error.

I. INTRODUCTION

SUMS of random variables (RVs) occur in many challeng-
ing wireless communication applications. For instance,

the instantaneous signal-to-noise-ratio (SNR) expressions at
the output of equal gain combining (EGC) and maximum
ratio combining (MRC) diversity receivers involve sums of
RVs [2]. Therefore, the evaluation of outage probability
(OP) values turns out to be equivalent to computing the
cumulative distribution function (CDF) of fading channel
envelopes for EGC and of channel gains for MRC [3]. Sums
of RVs play a central role when the generalised selection

combining (GSC) scheme is combined with either EGC or
MRC techniques [4]. In such cases, the expressions of the
OP are given by the CDFs of sums of ordered channel
amplitudes for GSC/EGC or channel gains for GSC/MRC.
Except for the CDF of the sum of two Rayleigh dis-

tributions [5], closed-form expressions of the CDF of
the sum of fading channel envelopes have not yet been
derived in the literature. To address this knowledge gap,
various approximation methods have been proposed. For
example, closed-form approximations have been developed
for the case of independent Rician fading RVs [6]–[8].
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In [9], a simple approximate expression of the CDF of
Rayleigh sums was derived. Approximations of the sum
of κ − μ and η − μ distributions have also been consid-
ered in [10]. An extensive interest was devoted to the case
of the sum of Log-normal RVs for which various approx-
imation methods have been proposed [11]–[17]. Moreover,
several works have been proposed to deal with correlated
fading models such as Nakagami−m [18]–[20], Weibull [21],
Generalized Gamma [22], and Gamma-Gamma [23] distri-
butions. Furthermore, closed-forms approximations of OP
with EGC reception for FSO and FSO/RF systems can be
found in [24], [25]. Emerging data-based machine learning
solutions have been recently proposed, see [26].
Generally, the accuracy of these closed-form approxi-

mations is not always ensured and may degrade for a
certain choice of systems parameters. Therefore, alterna-
tive approaches are of important practical interest. The
Monte Carlo (MC) method presents one alternative method.
However, this method requires a substantial computational
effort when small values of the CDF are considered, thus
making this method impractical. To avoid this, variance
reduction techniques are used extensively in the context
of rare events simulations [27], [28]. Importance sampling
(IS) is the most popular variance reduction technique and
is known, when used appropriately, to yield a very accurate
estimate of OP with a fewer number of runs.
There are numerous examples in the literature on the esti-

mation of tail probabilities of sums of RVs using the IS
approach. However, few works have been developed to deal
with problems involving the probability that a sum of RVs
is less than a sufficiently small threshold, as we propose
here. For instance, in the Log-normal fading environment,
an exponential twisting approach has been proposed in [29]
to deal with the CDF of independent and identically dis-
tributed (i.i.d) sum of Log-normal variates. The correlated
Log-normal case has also been considered in [30]–[32].
Efficient IS schemes have been developed to estimate the
CDF of the sum of Gamma-Gamma [33] and κ −μ, η−μ

and α − μ [34] RVs. In [35], two unified IS approaches
have been proposed to estimate OP values over a generalised
fading framework using the well-known hazard rate twist-
ing technique [36]. Finally, IS and conditional MC (another
popular variance reduction technique) estimators have been
proposed in [4] to estimate the CDF of partial sums of
ordered independent RVs that are useful to estimate OP
values for GSC/EGC or GSC/MRC receivers.
Contrary to the evaluation of OP under the EGC diver-

sity model, closed-form expressions of OP at the output of
MRC diversity receivers are available for many challeng-
ing fading environments. This is the case for independent
Rayleigh fading channels where the expression of OP at the
output of MRC receivers is the CDF of the sum of inde-
pendent exponential RVs which is given in [37]. The same
observation holds for the correlated Rayleigh case [38]. The
i.i.d κ − μ and η − μ fading models are other examples
where the values of OP with the MRC scheme are given

respectively by the CDF of the squared κ − μ and squared
η − μ variates [39]. A further interesting example is when
GSC is combined with MRC under the independent Rayleigh
fading channels. The OP expression, which is given in this
case by the CDF of sums of ordered independent exponen-
tial variates, is given in closed-form [40]. These observations
provide the main motivation for our study. We summarize
the main contributions of the present work as follows:
• We propose an IS estimator of the OP at the output
of EGC diversity receivers, i.e., the probability that the
sum of fading channel envelopes (or the sum of ordered
fading channel envelopes in the case of GSC/EGC
receivers) falls below a given threshold, based on the
knowledge of a closed-form expression of the OP with
MRC scheme, i.e., the probability that the sum of chan-
nel gains (or the sum of ordered channel gains in the
case of GSC/MRC receivers) is less than a certain
threshold. More specifically, our proposed IS scheme
is based on sample rejection where the biased probabil-
ity density function (PDF) is given by the truncation of
the underlying PDF over the multidimensional hyper-
sphere with a radius equal to the specified threshold.
To the best of the authors’ knowledge, this connection
has not been proposed by the existing approaches.

• Assuming the knowledge of a closed-form expression
of the OP with MRC scheme is not restrictive since this
assumption holds for several practical fading models. A
non exhaustive list includes the independent Rayleigh,
the correlated Rayleigh with exponential correlation, the
i.i.d κ − μ and η − μ, the independent Nakagami−m,
and the independent Rayleigh for GSC/EGC receivers.

• After we explain the general concept of the proposed
estimator, we apply our approach to four interesting sce-
narios, namely the independent Rayleigh, the correlated
Rayleigh with exponential correlation, the i.i.d Rice, and
the independent Rayleigh when EGC is combined with
GSC. We provide for each case a detailed procedure
on how the proposed estimator is implemented and we
prove that the bounded relative error property, which
is one of the desired properties in the context of rare
event simulations [28], is achieved.

• Note that in addition to its simplicity in implementation
and analysis, the scope of applicability of our proposed
IS estimator includes the sum of correlated Rayleigh
RVs, which has not yet been considered by other exist-
ing approaches. Moreover, although an estimator of the
CDF of the sum of i.i.d Rice variates has been developed
in [35], it is not clear how sampling according to the
biased PDF is performed. This constitutes another con-
tribution of the present work where the CDF of i.i.d
sum of Rice variates is easily implemented.

A part of this work was included in the corresponding con-
ference version [1]. More precisely, the conference version
includes the independent Rayleigh, the correlated Rayleigh
with exponential correlation, and the i.i.d Rice scenarios.
The contribution of the present journal version is to further
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extend the proposed approach to the challenging scenario
of estimating OP values for independent Rayleigh fading
channels when EGC is combined with GSC. We describe in
details how our proposed approach applies to this case and
show theoretically the bounded relative error property. We
also include a numerical experiment showing the efficiency
of the proposed estimator compared to existing estimators.
In view of the great interest in ultra-reliable wireless

data transfer [41], [42], there is an increasing interest in
developing sophisticated algorithms to quickly and accu-
rately assessing the performance of wireless communications
systems. More specifically, for ultra-reliable 5G or 6G
systems, one often encounters error probabilities (such that
the bit error rate or the outage probability) with very small
values, say of the order of 10−9. Thus, proposing an algo-
rithm that accurately and quickly estimates such rare event
probabilities is of paramount practical interest. Another
application of the proposed algorithm is the optimization
of EGC systems. In fact, given an outage probability value
that the operator aims to achieve, the question is to find
the best suitable parameters such as the number of branches
and the used power needed to achieve this outage probability
requirement.
The rest of the paper is organised as follows. In Section II,

we present the problem setting and describe the main con-
cept of IS. Section III is devoted to presenting the general
idea of the proposed IS estimator. Moreover, we apply, in
the same section, our IS estimator to four interesting scenar-
ios. For each scenario, we provide a detailed implementation
procedure and prove that the desired property of bounded rel-
ative error holds. Finally, a comparison of our estimator with
some existing estimators as well as naive MC simulations
is performed in Section IV.

II. PROBLEM SETTING
The instantaneous SNR at the output of L−branch EGC
diversity receiver is expressed as in [3], [35]

γend = Es
N0L

(
L∑
i=1

Ri

)2

, (1)

where Es
N0

is the SNR per symbol at the transmitter, L is the
number of diversity branches, and Ri is the channel envelope
(the fading channel amplitude) of the ith diversity branch.
The OP, which is a widely used metric for performance
analysis of wireless communication systems operating over
fading channels, is defined as the probability that the SNR
γend is below a given threshold γth

Pout = P(γend ≤ γth), (2)

which is equivalent, using the SNR expression in (1), to

Pout = P

(
L∑
i=1

Ri ≤ γ0

)
, (3)

where γ0 =
√

γthLN0
Es

. Thus, the problem is reduced to evalu-
ating the CDF of the sum of fading envelopes (modulus of the
fading channels) of the L diversity branches. Unfortunately,
this quantity is out of reach for many practical fading mod-
els. A non-exhaustive list includes, for instance, the Rayleigh
fading environment where the CDF of the sum of correlated
(or even independent) Rayleigh RVs is not known to have
a closed-form expression. A similar observation also holds
for the independent Rician, the κ −μ, and the η−μ fading
models. Note that when GSC is combined with EGC, the
OP expression corresponds to the CDF of partial sums of
ordered fading channel amplitudes, i.e., the CDF of the sum
of the N largest fading channel amplitudes with 1 ≤ N ≤ L.

Naive MC simulations constitute a good alternative to
estimate the CDF of the sum of fading channel envelopes.
Let f (·) denote the joint PDF of the random vector containing
the L fading envelopes R = (R1,R2, . . . ,RL). Then, using
M independent replicants {R(k)}Mk=1 of the random vector
R sampled according to f (·), the naive MC estimator is
defined as

P̂out,MC = 1

M

M∑
k=1

1(∑L
i=1 R

(k)
i ≤γ0

), (4)

where 1(·) denotes the indicator function. However, the
high computational complexity incurred by this method, in
terms of required number of samples to ensure an accu-
rate estimate, makes it impractical for sophisticated wireless
communication systems where Pout is sufficiently small. To
illustrate such a point, the naive MC sampler requires a num-
ber of runs approximately equal to 100/Pout to estimate Pout
with a 20% relative error.
When appropriately used, IS can save a substantial amount

of computational gain compared to naive MC simulations.
The concept of IS is to rewrite Pout = Ef [1(

∑L
i=1 Ri≤γ0)

],
where Ef [·] is the expectation with respect to the PDF f (·),
as follows

Pout = Eg

[
1(∑L

i=1 Ri≤γ0

)L(R1, . . . ,RL)

]
, (5)

where g(·) is a new PDF named as IS PDF or biased PDF
and Eg[·] denotes the expectation operator with respect to
the PDF g(·). L is the likelihood ratio defined as the ratio
between the original and the new introduced PDFs

L(R1, . . . ,RL) = f (R1, . . . ,RL)

g(R1, . . . ,RL)
. (6)

Then, using M samples {R(k)}Mk=1 of the random vector R
sampled according to g(·), we construct the IS estimator as
follows

P̂out,IS = 1

M

M∑
k=1

1(∑L
i=1 R

(k)
i ≤γ0

)L(R(k)
1 , . . . ,R(k)

L

)
. (7)

The remaining step is the choice of biased PDF g(·) that
results in a variance reduction and hence in a computational
gain with respect to naive MC simulations. Before that, it is
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necessary to define some performance metrics that serve to
measure the goodness of an estimator. Among these criteria,
we focus on the bounded relative error property [43]. We
say that the estimator 1

(
∑L

i=1 Ri≤γ0)
L(R1, . . . ,RL) achieves

the bounded relative error property when

lim sup
γ0→0

varg

[
1(∑L

i=1 Ri≤γ0

)L(R1, . . . ,RL)

]
P2
out

< +∞. (8)

This property has been used, for instance, in [35] and implies
that, when it holds, the number of samples needed to meet
a certain accuracy requirement remains bounded regardless
of how small Pout is. In fact, we define the relative error as
the relative half-with confidence interval

ε =
C

√
varg

[
1(∑L

i=1 Ri≤γ0

)L(R1, . . . ,RL)

]

Pout
√
M

, (9)

where C is the confidence constant chosen to be equal to 1.96
(corresponding to 95% confidence interval). Hence, the num-
ber of samples needed to meet a fixed accuracy requirement
measured by the relative error ε is given be

M(ε) =
C2varg

[
1(∑L

i=1 Ri≤γ0

)L(R1, . . . ,RL)

]
ε2P2

out
. (10)

Thus, if the bounded relative error property (8) holds, then
the number of samples M(ε) is asymptotically bounded as
γ0 → 0. This is compared to the naive MC estimator which
needs a number of samples of the order of 1/Pout in order to
meet the same accuracy requirement. Hence, having an esti-
mator satisfying the bounded relative error is very practical
as this will ensure a substantial amount of computational
gain with respect to the naive sampler, a gain that keeps
increasing as the value of Pout is smaller and smaller.

III. SAMPLE REJECTION IS ESTIMATOR
Before presenting our choice of the biased PDF g(·), we
describe the optimal IS density which is defined as the
truncation of f (·) over the rare set {∑L

i=1 ri ≤ γ0, ri ≥ 0}

g∗(r1, . . . , rL) =
f (r1, . . . , rL)1(∑L

i=1 ri≤γ0

)
Pout

. (11)

The above optimal IS density, known also as the zero vari-
ance measure, is impractical since it involves the unknown
quantity Pout. However, this measure provides some insights
on how the IS density may be selected in order to yield a sub-
stantial amount of variance reduction. In fact, the optimal
IS density encourages samples that belong to the rare set
and maintains over it the likelihood ratio constant. To this
end, we propose a biased PDF that is the truncation of the
underlying PDF f (·) over a set S:

g(r1, . . . , rL) = f (r1, . . . , rL)1(R∈S)
P̃out

, (12)

where S is any set that contains the set of interest
{(r1, . . . , rL),∑L

i=1 ri ≤ γ0, ri ≥ 0} and P̃out is the probabil-
ity that the random vector R is in S. It is important to mention
that the closer is S to the rare set {∑L

i=1 ri ≤ γ0, ri ≥ 0}, the
better is the performance of the importance sampling algo-
rithm with the biased PDF that is given in (12). Obviously,
in order to be able to implement the proposed IS approach
with the above biased PDF, the quantity P̃out must be known
in closed-form.
Using the biased PDF in (12), the proposed estimator may

be equivalently thought as expressing Pout as the product of
a known quantity P̃out times the conditional probability of
being in the rare set {(r1, . . . , rL),∑L

i=1 ri ≤ γ0, ri ≥ 0}
given that R ∈ S. The latter quantity is then estimated using
the naive MC sampler.
Our choice of S follows from the following observation.

For many fading models with MRC receivers, the OP, which
is given in this case by the CDF of the sum of squared
fading envelopes, is known in a closed-form expression.
This is the case for independent Rayleigh and Nakagami-m
fading envelopes in which the CDFs of the sum of channel
gains, which correspond in this case to the CDFs of the sum
of independent exponentials and Gamma RVs respectively,
are known in closed-from expressions [37], [44]. A similar
observation can be deduced for the i.i.d κ − μ and η − μ

fading channels since the sum of i.i.d squared κ − μ and
η − μ is again a squared κ − μ and a squared η − μ,
respectively [39]. Moreover, for the correlated Rayleigh
fading channels, the CDF of the sum of correlated expo-
nential RVs can be obtained explicitly, see [38]. A further
interesting example is for GSC/EGC receivers under inde-
pendent Rayleigh fading channels in which the CDF of the
partial sum of ordered independent exponential RVs can be
shown to admit a closed-form expression [40]. Therefore,
using the above observation and the fact that{

L∑
i=1

ri ≤ γ0, ri ≥ 0

}
⊂
{

L∑
i=1

r2
i ≤ γ 2

0 , ri ≥ 0

}
, (13)

the set S is chosen as follows

S =
{

(r1, . . . , rL),
L∑
i=1

r2
i ≤ γ 2

0 , ri ≥ 0

}
, (14)

and thus P̃out is the OP at the output of MRC receivers
which is given by

P̃out = P

(
L∑
i=1

R2
i ≤ γ 2

0

)
. (15)

In other words, based on the knowledge of a closed-form
expression of the OP at the output of MRC receivers, we
construct an IS estimator of OP values at the output of
EGC diversity receivers. In the next section, we provide
more details on the implementation of the above IS scheme
for the case of independent Rayleigh, correlated Rayleigh
and i.i.d Rice fading channels. Furthermore, we extend our
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approach to the case of GSC/EGC receivers under the inde-
pendent Rayleigh fading channels. We perform for each case
a theoretical study of the proposed estimator and show that
it achieves the bounded relative error property. We note
here that the considered scenarios are illustrations of our
approach that can be applicable to other scenarios such as
Nakagami-m, κ − μ, and η − μ fading channels.

The squared coefficient of variation, defined as the ratio
between the variance of an estimator to its squared mean,
of the proposed IS estimator is given by

varg

[
1(∑L

i=1 Ri≤γ0

)L(R1, . . . ,RL)

]
P2
out

= P̃out
Pout
− 1. (16)

Therefore, the closer P̃out is to Pout, the smaller the coef-
ficient of variation is, and hence the more efficient the
proposed estimator is. Particularly, the bounded relative error
holds when P̃out/Pout is bounded for a sufficiently small
threshold.

A. INDEPENDENT RAYLEIGH FADING CHANNELS
We consider the first case study where Ri, i = 1, 2, . . . ,L,
have independent Rayleigh distributions. Hence, the PDF
f (·) is given by

f (r1, . . . , rL) =
L∏
i=1

fRi(ri), (17)

where the univariate PDF of Ri is given by

fRi(r) =
2r

�i
exp

(
−r2/�i

)
, r ≥ 0. (18)

Next, in order to apply our proposed IS approach, it is
essential to provide a closed-form expression of the quantity
P̃out. This expression is obtained from [4], [37] as follows

P̃out = 1− (1, 0, . . . , 0) exp
(
γ 2

0 A(�)
)
(1, 1, . . . , 1)t, (19)

with � = (�1, . . . , �L)
t, exp(γ 2

0 A(�)) denotes the matrix
exponential of γ 2

0 A(�) and

A(�) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1/�1 1/�1 0 · · · 0
0 −1/�2 1/�2 · · · 0
...

...
. . .

. . .
...

0 · · · 0 −1/�N−1 1/�N−1

0 · · · 0 0 −1/�N

⎞
⎟⎟⎟⎟⎟⎟⎠

(20)

In the implementation of the proposed IS estimator, one has
to be able to efficiently sample from the biased PDF g(·)
given in (12), that is, the truncation of the underlying PDF
f (·) over the set S given in (14). To do that, we denote
by Gi = R2

i /γ
2
0 , i = 1, 2, . . . ,L, and thus our problem

reduces to sampling G1, . . . ,GL according to their under-
lying PDF truncated over the set {∑L

i=1 Gi ≤ 1}. To this
end, we propose to use the acceptance-rejection technique
with proposal PDF the uniform distribution over the unit

Algorithm 1 Samples for the Independent Rayleigh Case

1: Inputs: {�i}Li=1 and γ0.
2: Outputs: {Ri}Li=1.

3: while U > exp
(
−γ 2

0

∑N
i=1 Ui/�i

)
do

4: Generate {Ui}Ni=1 from the uniform distribution over
the set {ui ≥ 0,

∑N
i=1 ui ≤ 1}, see [28, Algorithm

3.23].
5: Generate a sample U from the uniform distribution

over [0, 1].
6: end while
7: G← U.
8: Set Ri← γ0

√
Gi.

simplex {∑L
i=1 Gi ≤ 1}. The whole procedure is described

in Algorithm 1.
We now provide a theoretical efficiency result of the

proposed IS estimator. In fact, we show in the following
proposition that it has a bounded relative error.
Proposition 1: In the case of independent Rayleigh fading

channels, the proposed IS estimator of Pout achieves the
bounded relative error property, that is

lim sup
γ0→0

P̃out
Pout

<∞. (21)

Proof: We first upper bound the quantity P̃out as follows

P̃out = P

(
L∑
i=1

R2
i ≤ γ 2

0

)

≤ P(R1 ≤ γ0, . . . ,RL ≤ γ0)

=
L∏
i=1

(
1− exp

(
−γ 2

0 /�i

))
. (22)

Then, we lower bound Pout

Pout = P

(
L∑
i=1

Ri ≤ γ0

)
(23)

≥ P(R1 ≤ γ0/L, . . . ,RL ≤ γ0/L)

=
L∏
i=1

(
1− exp

(
−γ 2

0 /L2�i

))
. (24)

Therefore, we obtain the following result

P̃out
Pout
≤

∏L
i=1

(
1− exp

(−γ 2
0 /�i

))
∏L

i=1

(
1− exp

(−γ 2
0 /L2�i

)) . (25)

Applying the limit superior on both side, it follows

lim sup
γ0→0

P̃out
Pout
≤ L2L, (26)

and hence the proof is concluded.
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B. CORRELATED RAYLEIGH FADING CHANNELS
Here we consider the case where the Rayleigh fading chan-
nels are correlated. The correlation model that we adopt is
presented in [38], where the correlated Rayleigh RVs are gen-
erated from the correlated Gaussian RVs. More specifically,
we consider two L dimensional Gaussian random vectors X
and Y with zero means and same covariance matrices �. We
assume for simplicity that E[XYT ] = 0 (the cross covariance
matrix is zero). We define the random vector R as follows

Ri =
√
X2
i + Y2

i , i = 1, . . . ,L. (27)

Thus, we can see that R is a multivariate Rayleigh random
vector with correlated components. We settle for a particular
structure of the covariance matrix �. In fact, we assume that
� is a matrix of exponential correlations, that is

�ij =
{

σ 2, if i = j
ρ|i−j|σ 2, if i �= j.

(28)

With this structure of the covariance matrix, the multivariate
Rayleigh PDF is given by [38]

f (r1, . . . , rL)

=
∏L

i=1 ri

σ 2L
(
1− ρ2

)L−1

× exp

(
− 1

2
(
1− ρ2

)
σ 2

[
r2

1 + r2
L +

(
1+ ρ2

) L−1∑
i=2

r2
i

])

×
L−1∏
i=1

I0

(
ρ(

1− ρ2
)
σ 2
riri+1

)
, r1, r2, . . . , rL ≥ 0, (29)

where I0(·) denotes the zero order modified Bessel function
of the first kind [45]. Now, we aim to obtain a closed-
form expression of P̃out. In our settings, it was proven
in [38, eq. 104] that the moment generating function of∑L

i=1 R
2
i is given by

M∑L
i=1 R

2
i
(s) = 1∏L

i=1 (1− 2sλi)
, s <

1

2λi
for all i (30)

where λi, i = 1, . . . ,L, are the eigenvalues of the Gaussian
covariance matrix �. Therefore, we deduce that

∑L
i=1 R

2
i

has the same distribution as the sum of L independent expo-
nential RVs with means 2λi, i = 1, 2, . . . ,L. Hence, the
quantity P̃out is expressed as

P̃out = 1− (1, 0, . . . , 0) exp
(
γ 2

0 A(2λ)
)
(1, 1, . . . , 1)′, (31)

with λ = (λ1, . . . , λL)
T . The remaining step is then to pro-

vide an algorithm in order to sample from the biased PDF
g(·). To do that, we proceed as in the previous example
by applying the acceptance-rejection technique with a uni-
form distribution over the unit simplex {∑L

i=1 Gi ≤ 1} as
a proposal. The following algorithm provides the necessary
details to perform the sampling.
Next, we study the efficiency of the proposed estimator

and investigate whether the bounded relative error property
holds for this scenario as well.

Proposition 2: In the case of correlated Rayleigh fading
channels, the proposed IS estimator of Pout achieves the
bounded relative error property

lim sup
γ0→0

P̃out
Pout

<∞. (32)

Proof: We follow the same steps as in the proof of
Proposition 1. In fact, we have

P̃out

Pout
≤ P(R1 ≤ γ0, . . . ,RL ≤ γ0)

P(R1 ≤ γ0/L, . . . ,RL ≤ γ0/L)
. (33)

Then, we use the following asymptotic result of the multi-
variate CDF of the Rayleigh random vector which is given
in [46]

P(R1 ≤ γ0, . . . ,RL ≤ γ0) ∼ aγ 2L
0 , as γ0 → 0. (34)

This result concludes the proof.

C. I.I,D RICIAN FADING CHANNELS
Here, we explore the case where Ri, i = 1, . . . ,L, are i.i.d
Rician fading channels with a common PDF

fRi(r) =
2r(K + 1)

�
exp

(
−K − K + 1

�
r2
)

× I0

(
2r

√
K(K + 1)

�

)
, r ≥ 0, (35)

where K is the Rice factor and � = E[R2
i ], for all i ∈

{1, 2, . . . ,L}.
In order to obtain an expression of P̃out, we use the fact

that the sum of i.i.d squared Rician (equivalently the sum of
i.i.d non centered Chi squared RVs) is a squared κ −μ RV
with parameters κ = K and μ = L and average power equal
to �̃ = L� [39], [47]. More precisely, the PDF of

∑L
i=1 R

2
i

is given by

f∑L
i=1 R

2
i
(r) = L(1+ K)

L+1
2 r

L−1
2

�̃
L+1

2 K
L−1

2 exp(LK)
exp

(
− (1+ K)Lr

�̃

)

× IL−1

⎛
⎝2L

√
K(K + 1)r

�̃

⎞
⎠, r ≥ 0. (36)

Therefore, the quantity P̃out is expressed as

P̃out = 1− QL
⎛
⎝√2KL,

√
2(K + 1)L

�̃
γ0

⎞
⎠, (37)

where Qμ(·, ·) is the generalized Marcum Q function [48].
Similarly to the previous cases, sampling according to the

biased PDF g(·) is easily performed using the acceptance-
rejection approach.
Next we show that the bounded relative error holds again

for the case of i.i.d Rician fading channels.
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Algorithm 2 Samples for the Correlated Rayleigh Case
1: Inputs: σ , ρ and γ0.
2: Outputs: {Ri}Li=1.

3: while U > exp

(
− γ 2

0

[
U1+UL+(1+ρ2)

∑L−1
i=2 Ui

]
2(1−ρ2)σ 2

)

×∏L−1
i=1

I0

(
ργ 2

0
√
UiUi+1

(1−ρ2)σ2

)

I0

(
ργ 2

0
(1−ρ2)σ2

) do

4: Generate {Ui}Ni=1 from the uniform distribution over
the set {ui ≥ 0,

∑N
i=1 ui ≤ 1}.

5: Generate a sample U from the uniform distribution
over [0, 1].

6: end while
7: G← U.
8: Set Ri← γ0

√
Gi.

Algorithm 3 Samples for the i.i.d Rice Case
1: Inputs: K, � and γ0.
2: Outputs: {Ri}Li=1.

3: while U > exp
(
− (K+1)

�
γ 2

0

∑L
i=1 Gi

)
∏L

i=1

I0

(
2

√
K(K+1)γ 2

0 Gi
�

)

I0

(
2

√
K(K+1)γ 2

0
�

) do

4: Generate {Ui}Ni=1 from the uniform distribution over
the set {ui ≥ 0,

∑N
i=1 ui ≤ 1}.

5: Generate a sample U from the uniform distribution
over [0, 1].

6: end while
7: G← U.
8: Set Ri← γ0

√
Gi.

Proposition 3: In the case of i.i.d Rice fading channels, the
proposed IS estimator of Pout achieves the bounded relative
error property

lim sup
γ0→0

P̃out
Pout

<∞. (38)

Proof: First, the CDF of the Rice fading envelope is
given by

P(Ri ≤ γ0) = 1− Q1

(√
2K,

√
2(K + 1)

�
γ0

)
. (39)

Then, the proof is based on the following asymptotic which
is obtained from [48]

P(Ri ≤ γ0) ∼ (K + 1) exp(−K)

�
γ 2

0 , γ0 → 0. (40)

In fact, similarly to the previous proofs, we have from (33)
that

P̃out
Pout
≤ (P(R1 ≤ γ0))

L

(P(R1 ≤ γ0/L))L
. (41)

Using the asymptotic expression in (40), it follows that

lim sup
γ0→0

P̃out
Pout
≤ L2L, (42)

and hence the proof is concluded.

D. INDEPENDENT ORDERED RAYLEIGH RVS
The fading channel amplitudes Ri, i = 1, . . . ,L are indepen-
dent Rayleigh with PDF given in (18). In this section, we
aim to efficiently estimate OP values when GSC is combined
with EGC

Pout = P

(
N∑
i=1

R(i) ≤ γ0

)
, (43)

where N satisfies 1 ≤ N ≤ L and denotes the number
of selected branches, and R(i) denotes the ith order statis-
tic such that R(1) ≥ R(2) ≥ · · · ≥ R(L). Note that γ0 is
given in this case by

√
γthNN0/Es. There are few existing

works that have computed the above probability when the
RVs Ri, i = 1, . . . ,L are either exponentials or Gamma
distributed [49], [50]. These results can help to compute OP
values at the output of GSC/MRC receivers. An approximate
approach to determine the statistics of ordered independent
η − μ variates has been proposed in [51]. When GSC is
combined with EGC, a competitor of the present work is
in [4] where the authors proposed two variance reduction
techniques based on IS and conditional MC (another type
of variance reduction technique). However, the conditional
MC estimator described in [4] is only applicable when the
Rayleigh RVs are i.i.d. Moreover, the construction of the
IS estimator in [4] is based on a choice of S given by
S = {(r1, . . . , rL), max1≤i≤L ri ≤ γ0, ri ≥ 0}. Therefore,
given that this choice contains our choice of S in (14), we
conclude that our proposed estimator is more efficient than
the IS estimator proposed in [4]. We verify this conclusion
in the numerical results section.
We now show how we can use our proposed IS approach

for the present case as well. Let hi = R2
i , i = 1, . . . ,L, be the

channel gains which are independent exponential RVs with
means �i. Then, the quantity P̃out is given by the partial
sum of the ordered exponential RVs

P̃out = P

(
N∑
i=1

h(i) ≤ γ 2
0

)
. (44)

In order to compute P̃out, we introduce the following RVs

Xi = h(i) − h(i+1), i = 1, 2, . . . ,L− 1, XL = h(L) (45)

Thus, with this representation, we get

P̃out = P

(
L∑
i=1

αiXi ≤ γ 2
0

)
, (46)

with

αi =
{
i, i = 1, . . . ,N
N, i = N + 1, . . . ,L.

(47)
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Algorithm 4 Samples for the Independent Ordered Rayleigh

1: Inputs: γ0, and {�i}Li=1.
2: Outputs: {h(i)}Ni=1.
3: Sample a permutation (i1, · · · , iL) from the dis-

crete distribution with probability p(i1, · · · , iL) =
P̃out,i1,··· ,iL

P̃out

∏L
�=1

1
�i�

∑�
k=1

1
�ik

4: while U > exp
(
−γ 2

0

∑L
�=1

U�

α�

∑�
k=1

1
�ik

)
do

5: Generate {Ui}Ni=1 from the uniform distribution over
the set {ui ≥ 0,

∑N
i=1 ui ≤ 1}.

6: Generate a sample U from the uniform distribution
over [0, 1].

7: end while
8: G← U.
9: Set Xi← γ 2

0 Gi/αi.
10: Compute {h(i)}Ni=1 from (45).

Moreover, it was shown in [40] that the joint PDF of X =
(X1, . . . ,XL)t is given as follows

fX(x1, . . . , xL) =
L∑

i1,i2,...,iL=1
i1 �=i2 �=···�=iL

L∏
�=1

1

�i�
exp

(
−x�

�∑
k=1

1

�ik

)
.

(48)

Interestingly, we observe that while the components of X are
dependent, their joint PDF is given by the sum of products of
independent exponentials. Therefore, by using the formula of
the CDF of the sum of independent exponentials, we easily
obtain a closed-form expression of P̃out:

P̃out =
L∏

�=1

1

��

L∑
i1,i2,...,iL=1
i1 �=i2 �=···�=iL

⎛
⎝ L∏

�=1

1∑�
k=1

1
�ik

⎞
⎠P̃out,i1,...,iL (49)

P̃out,i1,...,iL = 1 − (1, 0, . . . , 0) exp(γ 2
0 A(α̃))(1, . . . , 1)t and

α̃i = αi∑i
k=1

1
�ik

, i = 1, 2, . . . ,L.

Next, we show how sampling according to the biased
PDF is performed. We exploit the representation (45) and
sample from X1, . . . ,XL truncated over {∑L

i=1 αiXi ≤ γ 2
0 }.

By letting Gi = αiXi/γ 2
0 , i = 1, . . . ,L, we construct the

following algorithm.
In this case, we can also show that the bounded relative

error property holds.
Proposition 4: In the case of independent Rayleigh fading

channels at the output of GSC/EGC receivers, the proposed
IS estimator of Pout achieves the bounded relative error
property

lim sup
γ0→0

P̃out
Pout

<∞. (50)

Proof: First, we upper bound P̃out as follows

P̃out = P

(
N∑
i=1

h(i) ≤ γ 2
0

)

≤ P

(
h(1) ≤ γ 2

0

)
=

L∏
i=1

(
1− exp

(
−γ 2

0 /�i

))
. (51)

On the other hand, we have

Pout = P

(
N∑
i=1

R(i) ≤ γ0

)

≥ P

(
R(1) ≤ γ0/N, . . . ,R(N) ≤ γ0/N

)

=
L∏
i=1

(
1− exp

(
− γ 2

0

N2�i

))
. (52)

Thus, we obtain

P̃out
Pout
≤ N2L, (53)

and hence the proof is concluded.

IV. SIMULATION RESULTS
In this section, we present some simulations to illustrate
our theoretical results. Furthermore, we study the efficiency
of the proposed estimator with respect to other estimators
including the naive MC one. Before showing the results, we
define a performance metric that will serve as a measure of
efficiency of an estimator. Using (9), we define the relative
error of the naive MC estimator

εMC = C
√
Pout(1− Pout)
Pout
√
M

, (54)

The relative error of the proposed estimator is given using
a similar argument by

εIS =
C
√

P̃out
Pout
− 1

√
M

. (55)

We performed the comparison between different estimators
in terms of the necessary number of simulation runs in order
to meet a fixed accuracy requirement measured by the above
quantities, see the expression of M(ε) in (10). More specifi-
cally, we set εMC and εIS equal to a fixed value and use (54)
and (55) to find the number of simulation runs needed to
meet this fixed accuracy requirement.
In the first experiment, we consider the i.i.d Rayleigh

fading channels and we evaluate the OP under EGC using
the proposed estimator as well the second estimator of [35],
which is based on the use of the hazard rate twisting (HRT)
technique. Then we investigate the efficiency of both esti-
mators using the number of simulation runs required to meet
a fixed accuracy level. The same steps are repeated for two
other experiments; the correlated Rayleigh with exponential
correlation and the ordered independent Rayleigh scenar-
ios. In the former experiment, we make the comparison
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FIGURE 1. Outage Probability for L = 4, 5, 6 branch EGC receiver with i.i.d Rayleigh
fading channels as a function of γth . L = 4 (solid line), L = 5 (dashed line), and L = 6
(dotted line). The system parameters are Es/N0 = 1 dB, � = 10 dB, and M = 5 × 105.

FIGURE 2. Number of simulation runs for L = 4, 5, 6 branch EGC receiver with i.i.d
Rayleigh fading channels as a function of γth . L = 4 (solid line), L = 5 (dashed line),
and L = 6 (dotted line). The system parameters are Es/N0 = 1 dB and � = 10 dB.

with respect to the naive MC estimator since, to the best
of our knowledge, this problem has not been investigated
by existing estimators. In the latter case, i.e., in the ordered
independent Rayleigh case, we perform the comparison with
the universal IS estimator of [4], as well as with the naive
MC estimator.

A. I.I.D RAYLEIGH FADING CHANNELS
In Fig. 1, we plot the estimated value of Pout given by
naive MC simulations, the HRT method and the proposed
estimator for the case of i.i.d Rayleigh fading channels. The
plot is a function of the threshold value γth and for three
different values of the number of diversity branches L.

This figure reveals the failure of naive MC simulations.
In fact, the naive estimator loses its accuracy when the value
of Pout decreases, i.e., in the region of rare events. Thus,
more than 5×105 samples are required in order for the naive
sampler to retrieve a good level of accuracy. The opposite

observation can be easily deduced regarding the accuracy of
the proposed estimator and the HRT method. In fact, using
the same number of simulation runs, these two estimators
coincide perfectly and yield very accurate estimates of Pout
in the considered range of OP values.
We now investigate the efficiency of these estimators in

terms of the number of simulation runs needed to meet
a fixed accuracy requirement. More precisely, we compute
from (54) and (55) the number of simulation runs needed
to ensure that εMC = εIS = εHRT = 5%. Note that εHRT is
given by a similar expression as in (54) and (55). In Fig. 2,
we plot the number of samples needed by the naive MC
simulation, the proposed method, and the HRT technique as
a function of γth and for the three values of L as in Fig. 1.
We first observe the high computational effort needed by

naive MC simulations in order to achieve a 5% relative error.
In fact, the corresponding number of samples is increasing
as we decrease the probability of interest Pout. On the other
hand, the computational savings achieved by the proposed
IS estimator and the HRT method is obvious and is clearly
increasing as we decrease Pout. More specifically, while the
number of samples needed by the naive sampler is increas-
ing as we decrease γth, the proposed IS approach and the
HRT method require numbers of runs that remain bounded
independently of how small Pout is. This observation is in
accordance with Proposition 1 and the result proven in [35]
that show that both estimators have bounded relative errors.
For the sake of illustration, for L = 4 and γth = −9 dB, the
number of runs needed by naive MC simulation is approxi-
mately 1.5×1012, whereas 1.5×105 and 5×104 samples are
required by the proposed approach and the HRT estimator,
respectively, to ensure 5% relative error.

Note also that the HRT approach performs better than
our proposed scheme for the considered values of L and
γth. Moreover, Fig. 2 shows that increasing L has negative
effects on the performances of the proposed approach as
well as the HRT method. However, this negative effect is
more important for the former than the latter. For instance,
the HRT approach requires 3.5 (respectively 15) times less
number of samples than the proposed IS scheme when Pout
is of the order of 10−9 and L = 4 (respectively L = 6).

Note however that the outperformance of the HRT
approach over our proposed method does not tell the whole
story and does not necessarily exclude our proposed esti-
mator from being a useful technique. In fact, the scope
of applicability of our proposed estimator includes the
interesting scenario of sums of correlated Rayleigh fading
channels with exponential correlation that, to the best of our
knowledge, has not been considered by other existing esti-
mators. Moreover, the sum of i.i.d Rice constitutes another
argument that shows the relevance of the proposed estimator.
In fact, while the HRT estimator is proven to have bounded
relative error for the sum of i.i.d Rice variates, it is not
clear how sampling according to the HRT biased PDF is
performed. On the other hand, we show in Section III-C
how our approach can be easily implemented for the i.i.d
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FIGURE 3. Outage Probability for L = 4, 5, 6 branch EGC receiver with exponentially
correlated Rayleigh fading channels as a function of γth . L = 4 (solid line), L = 5
(dashed line), and L = 6 (dotted line). The system parameters are Es/N0 = 1 dB,
σ = √

5, ρ = 0.5, and M = 5 × 105.

Rice setting. The same argument holds for the sum of κ−μ

RVs as well. Furthermore, our approach is applicable to the
case of ordered sum of independent Rayleigh RVs which
has rarely been investigated. In the following subsections,
we apply our proposed estimator to the case of the sum of
exponentially correlated Rayleighs and the partial sum of
ordered independent Rayleighs and determine their compu-
tational efficiencies. Note that we do not include simulations
for the i.i.d Rician case to avoid redundant information and
conclusions.

B. CORRELATED RAYLEIGH FADING CHANNELS
Here we consider the case of exponentially correlated
Rayleigh fading channels and we aim to perform the same
experiment as above. Note that we compare our estimator to
only the naive MC method since we are not aware of any
other existing estimator for the sum of correlated Rayleigh
RVs. In Fig. 3, we plot the estimated value of Pout given
by the proposed estimator as well as the naive MC method
as a function of the threshold and for three different values
of L.
The same conclusions can be drawn, as in the previous

experiment, on the inability of naive MC simulations using
5 × 105 samples to yield a precise estimate in the region
of small values of Pout. On the other side, this number of
samples is sufficient for our estimator to provide an estimate
of Pout with a good level of accuracy.
Next, we quantify the efficiency of the proposed approach

with respect to naive MC simulations in terms of necessary
number of simulation runs required to ensure a 5% relative
error. We plot this number in Fig. 4 as a function of γth
using the three values of L.
We observe the clear outperformance of our proposed esti-

mator compared to the naive MC sampler. In fact, contrary to
the naive MC sampler, which requires a number of runs that
keeps increasing as we decrease the OP values, the number

FIGURE 4. Number of simulation runs for L = 4, 5, 6 branch EGC receiver with
exponentially correlated Rayleigh fading channels as a function of γth . L = 4 (solid
line), L = 5 (dashed line), and L = 6 (dotted line). The system parameters are
Es/N0 = 1 dB, σ = √

5, and ρ = 0.5.

of runs needed by our proposed estimator remains bounded,
regardless of how much smaller Pout is. This is in agree-
ment with the result we have proven in Proposition 2. For
example, approximately 106 simulation runs are needed by
our proposed IS estimator when L = 5 and γth is less than
−2 dB. On the other hand, the naive MC sampler requires
approximately 1011 runs (respectively more than 1012) for
the same value of L and when γth = −2 dB (respectively
when γth = −5 dB).

We further our analysis by investigating whether the use of
the acceptance-rejection algorithm described in Algorithm 2
can deteriorate the efficiency of the proposed estimator com-
pared to the naive MC sampler. The answer to this question
depends obviously on the value of the acceptance probability
(when this value is small, the acceptance-rejection algorithm
described in Algorithm 2 becomes expensive). In order to
count for the complexity of Algorithm 2, we define the
Work Normalized Relative Variance (WNRV) metric of the
IS estimator as

WIS = ε2
IS × computing time in seconds,

where εIS is the relative error of the IS estimator defined
in (55). With same manner, we define the WNRV corre-
sponding to the naive MC estimator as

WMC = ε2
MC × computing time in seconds,

where the relative error εMC is defined in (54). The WNRV
not only measures the efficiency in terms of amount of vari-
ance reduction but also takes into account the computational
complexity in terms of computing time. More precisely,
when comparing the efficiency of two estimators, the one
with smaller WNRV is more efficient than the other since it
exhibits smaller relative error for a given computing time or
equivalently it requires less computing time for a fixed accu-
racy requirement. We plot in Fig. 5 the values of WIS and
WMC as a function of the threshold value for the three values
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FIGURE 5. WNRV for L = 4, 5, 6 branch EGC receiver with exponentially correlated
Rayleigh fading channels as a function of γth . L = 4 (solid line), L = 5 (dashed line),
and L = 6 (dotted line). The system parameters are Es/N0 = 1 dB, σ = √

5, and ρ = 0.5.

of L. From this figure, we distinguish two regimes. First, the
naive MC estimator exhibits better performance in terms of
WNRV when the value of Pout is not sufficiently small. More
precisely, despite of the outperformance of the proposed esti-
mator in terms of amount of variance reduction (see Fig. 4),
the large computing time of Algorithm 2 in the region of
moderate values of Pout makes the naive MC more efficient
than our approach. However, by decreasing the threshold val-
ues (i.e., the value of Pout becomes smaller and smaller which
corresponds to the region of interest) the efficiency of the
proposed estimator becomes clear (the efficiency increases
as we decreases the threshold value). This behaviour of the
WNRV can be explained by investigating the acceptance
probability. In fact, a close look at Algorithm 2 shows that
the acceptance probability approaches 1 as the value of Pout
gets smaller and smaller. Hence, the computing time corre-
sponding to the proposed estimator is getting smaller and
smaller as we decrease the threshold values. That being said,
we conclude that in the region of rare events (the regime of
interest in this work), the outperformance of the proposed
approach compared to the naive MC estimator is not sen-
sitive to the value of the computing time. Finally, we also
point out that increasing the value of L affects negatively
the efficiency of the proposed estimator.

C. INDEPENDENT ORDERED RAYLEIGH FADING
CHANNELS
In the last experiment, we aim to estimate the OP values
at the output of GSC/EGC receivers when operating over
independent Rayleigh fading channels. In Fig. 6, we plot
the values of Pout as a function of the threshold for different
values of N and L.
Our proposed estimator and the universal estimator yield

precise estimates of Pout for all values of γth using 105

samples, whereas the failure of the naive MC sampler is
evident because it is unable to provide a non-zero estimate
when the event is rare.

FIGURE 6. Outage Probability at the output of GSC/EGC receiver with independent
Rayleigh fading channels as a function of γth . (N, L) = (2, 4) (solid line) with
� = (5, 5, 8, 8)t dB. (N, L ) = (2, 5) (dashed line) with � = (5, 5, 5, 8, 8)t dB. The system
parameters are Es/N0 = 1 dB, and M = 105.

FIGURE 7. Number of simulation runs for GSC/EGC receiver with independent
Rayleigh fading channels as a function of γth . (N, L) = (2, 4) (solid line) with
� = (5, 5, 8, 8)t dB. (N, L) = (2, 5) (dashed line) with � = (5, 5, 5, 8, 8)t dB. The system
parameters are Es/N0 = 1 dB.

We investigate the efficiency of these estimators in Fig. 7
using the necessary number of runs needed in order to obtain
5% relative error. As the event of interest becomes rarer and
rarer, the number of samples needed by the naive sampler
rapidly increases (Fig. 7). However, the bounded relative
error property that our proposed estimator and the univer-
sal estimators enjoy is validated in Fig. 7. As expected,
our proposed estimator outperforms the universal estima-
tor. Note also that the efficiency of our proposed estimator
increases with increasing L, unlike the universal estimator.
For example, our estimator requires approximately 8 (respec-
tively 8×107) times less number of simulations compared to
the universal estimator (respectively the naive MC sampler)
when (N,L) = (2, 4) and γth = −13 dB. However, when
(N,L) = (2, 5) and γth = −9 dB, our proposed estimator
is approximately 15 times more efficient than the universal
estimator.
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V. CONCLUSION
We developed an importance sampling estimator for the esti-
mation of the outage probability at the output of equal gain
combining receivers. Our proposed biased probability den-
sity function is the truncation of the underlying one over the
multidimensional sphere with a radius given by the speci-
fied threshold. Our method is based on the perfect knowledge
of a closed-form expression of the outage probability with
maximum ratio combining receivers. This assumption is not
restrictive since it holds for various challenging fading mod-
els. We extended our approach to the case of generalised
selection combining receivers combined with equal gain
combining technique for independent Rayleigh fading chan-
nels. We proved that our proposed estimator has bounded
relative error for four interesting fading channels. This study
represents a valuable contribution to the field of variance
reduction techniques. Finally, we tested the performance of
our proposed estimator through various simulations.
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