54 research outputs found

    Semi-persistent RRC protocol for machine-type communication devices in LTE networks

    Get PDF
    In this paper, we investigate the design of a radio resource control (RRC) protocol in the framework of long-term evolution (LTE) of the 3rd Generation Partnership Project regarding provision of low cost/complexity and low energy consumption machine-type communication (MTC), which is an enabling technology for the emerging paradigm of the Internet of Things. Due to the nature and envisaged battery-operated long-life operation of MTC devices without human intervention, energy efficiency becomes extremely important. This paper elaborates the state-of-the-art approaches toward addressing the challenge in relation to the low energy consumption operation of MTC devices, and proposes a novel RRC protocol design, namely, semi-persistent RRC state transition (SPRST), where the RRC state transition is no longer triggered by incoming traffic but depends on pre-determined parameters based on the traffic pattern obtained by exploiting the network memory. The proposed RRC protocol can easily co-exist with the legacy RRC protocol in the LTE. The design criterion of SPRST is derived and the signalling procedure is investigated accordingly. Based upon the simulation results, it is shown that the SPRST significantly reduces both the energy consumption and the signalling overhead while at the same time guarantees the quality of service requirements

    System-level analysis of the tradeoffs between power saving and capacity/QoS with DRX in LTE

    Get PDF
    In an LTE cell, Discontinuous Reception (DRX) allows the central base station to configure User Equipment for periodic wake/sleep cycles, so as to save energy. Several parameters are associated to DRX operations, thus allowing for optimal performance with different traffic profiles (i.e., CBR-like, bursty, periodic arrivals of variable-sized packets, etc.). This work investigates how to configure these parameters and explores the tradeoff between power saving, on one side, and per-user QoS and cell capacity, on the other. Unlike previous work, mostly based on analytical models neglecting key aspects of LTE, our evaluation is carried out using a fully-fledged packet simulator. This allows us to discover previously unknown relationships and to propose configuration guidelines for operators

    Power Saving Techniques in 5G Technology for Multiple-Beam Communications

    Get PDF
    The evolution of mobile technology and computation systems enables User Equipment (UE) to manage tremendous amounts of data transmission. As a result of current 5G technology, several types of wireless traffic in millimeter wave bands can be transmitted at high data rates with ultra-reliable and small latency communications. The 5G networks rely on directional beamforming and mmWave uses to overcome propagation and losses during penetration. To align the best beam pairs and achieve high data rates, beam-search operations are used in 5G. This combined with multibeam reception and high-order modulation techniques deteriorates the battery power of the UE. In the previous 4G radio mobile system, Discontinuous Reception (DRX) techniques were successfully used to save energy. To reduce the energy consumption and latency of multiple-beam 5G radio communications, we will propose in this paper the DRX Beam Measurement technique (DRX-BM). Based on the power-saving factor analysis and the delayed response, we will model DRX-BM into a semi-Markov process to reduce the tracking time. Simulations in MATLAB are used to assess the effectiveness of the proposed model and avoid unnecessary time spent on beam search. Furthermore, the simulation indicates that our proposed technique makes an improvement and saves 14% on energy with a minimum delay

    A comprehensive simulation analysis of LTE Discontinuous Reception (DRX)

    Get PDF
    In an LTE cell, Discontinuous Reception (DRX) allows the central base station to configure User Equipments for periodic wake/sleep cycles, so as to save energy. DRX operations depend on several parameters, which can be tuned to achieve optimal performance with different traffic profiles (i.e., CBR vs. bursty, periodic vs. sporadic, etc.). This work investigates how to configure these parameters and explores the trade-off between power saving, on one side, and per-user QoS, on the other. Unlike previous work, chiefly based on analytical models neglecting key aspects of LTE, our evaluation is carried out via simulation. We use a fully-fledged packet simulator, which includes models of all the protocol stack, the applications and the relevant QoS metrics, and employ factorial analysis to assess the impact of the many simulation factors in a statistically rigorous way. This allows us to analyze a wider spectrum of scenarios, assessing the interplay of the LTE mechanisms and DRX, and to derive configuration guidelines

    QoE Power-Efficient Multimedia Delivery Method for LTE-A

    Full text link

    Discontinuous Reception for Multiple-Beam Communication

    Get PDF
    This is the final version. Available from IEEE via the DOI in this recordDiscontinuous reception (DRX) techniques have successfully been proposed for energy savings in 4G radio access systems, which are deployed on legacy 2GHz spectrum bands with signal features of omni-directional propagation. In upcoming 5G systems, higher frequency spectrum bands will also be utilized. Unfortunately higher frequency bands encounter more significant path loss, thus requiring directional beamforming to aggregate the radiant signal in a certain direction. We, therefore, propose a DRX scheme for multiple beam (DRXB) communication scenarios. The proposed DRXB scheme is designed to avoid unnecessary energy-and-time-consuming beam-training procedures, which enables longer sleep periods and shorter wake-up latency. We provide an analytical model to investigate the receiver-side energy efficiency and transmission latency of the proposed scheme. Through simulations, our approach is shown to have clear performance improvements over the conventional DRX scheme where beam training is conducted in each DRX cycle.Swedish Research CouncilNational Natural Science Foundation of ChinaEuropean Union Horizon 202

    A Flexible 5G Frame Structure Design for Frequency-Division Duplex Cases

    Get PDF

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure
    corecore