295 research outputs found

    Performance analysis of FSO using relays and spatial diversity under log-normal fading channel

    Full text link
    The performance analysis of free space optical communication (FSO) system using relays and spatial diversity at the source is studied in this paper. The effect of atmospheric turbulence and attenuation, caused by different weather conditions and geometric losses, has also been considered for analysis. The exact closed-form expressions are presented for bit error rate (BER) of M-ary quadrature amplitude modulation (M-QAM) technique for multi-hop multiple-input single-output (MISO) FSO system under log-normal fading channel. Furthermore, the link performance of multi-hop MISO and multi-hop single-input and single-output (SISO) FSO systems are compared to the different systems using on-off keying (OOK), repetition codes (RCs) and M-ary pulse amplitude modulation (M-PAM) techniques. A significant performance enhancement in terms of BER analysis and SNR gains is shown for multi-hop MISO and multi-hop SISO FSO systems with M-QAM over other existing systems with different modulation schemes. Moreover, Monte-Carlo simulations are used to validate the accuracy and consistency of the derived analytical results. Numerical results show that M-QAM modulated multi-hop MISO and multi-hop SISO FSO system with relays and spatial diversity outperforms other systems while having the same spectral efficiency of each system.Comment: 4 pages, 4 figures, 4th International Conference on Electrical Energy Systems (ICEES), Feb. 7-9, 2018, SSNCE, Chennai, TN, INDI

    BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence

    Get PDF
    Free-space optical communications (FSO) propagated over a clear atmosphere suffers from irradiance fluctuation caused by small but random atmospheric temperature fluctuations. This results in decreased signal-to-noise ratio (SNR) and consequently impaired performance. In this paper, the error performance of the FSO using a subcarrier intensity modulation (SIM) based on a binary phase shift keying (BPSK) scheme in a clear but turbulent atmosphere is presented. To evaluate the system error performance in turbulence regimes from weak to strong, the probability density function (pdf) of the received irradiance after traversing the atmosphere is modelled using the gamma-gamma distribution while the negative exponential distribution is used to model turbulence in the saturation region and beyond. The effect of turbulence induced irradiance fluctuation is mitigated using spatial diversity at the receiver. With reference to the single photodetector case, up to 12 dB gain in the electrical SNR is predicted with two direct detection PIN photodetectors in strong atmospheric turbulence

    MIMO free-space optical communication employing subcarrier intensity modulation in atmospheric turbulence channels

    Get PDF
    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects

    Experimental investigation of the performance of different modulation techniques under controlled FSO turbulence channel

    Get PDF
    This paper experimentally investigates and compares the performance of the free space optics system employing three different modulation schemes, on-off keying (OOK) with nonreturn- to-zero (NRZ) and return-to-zero (RZ) and the binary phase shift keying (BPSK) operating under the turbulent atmosphere. The received average signal is measured and used to characterize the strength of the turbulence. The experiment is performed with a temperature gradient of 4 degrees at a wind velocity of 4 m/s. The temperature gradient within the controlled channel results in turbulence of a log irradiance variance of 0.002, which is classified as a very weak turbulence. The received signal eye diagram and power histograms are presented and analyzed for performance evaluation of the selected modulation schemes in the weak turbulence model

    BER Performance of IM/DD FSO System with OOK using APD Receiver

    Get PDF
    In this paper, the performance of intensity-modulated with direct detection (IM/DD) free space optical (FSO) system using the on-off keying (OOK) and avalanche photodiode (APD) receiver is observed. The gamma-gamma model is used to describe the effect of atmospheric turbulence since it provides good agreement in the wide range of atmospheric conditions. In addition, the same FSO system with equal gain combining applied at the reception is analyzed. After theoretical derivation of the expression for the bit error rate (BER), the numerical integration with previously specified relative calculation error is performed. Numerical results are presented and confirmed by Monte Carlo simulations. The effects of the FSO link and receiver parameters on the BER performance are discussed. The results illustrate that the optimal APD gain in the minimum BER sense depends considerably on the link distance, atmospheric turbulence strength and receiver temperature. In addition, the value of this optimal gain is slightly different in the case of spatial diversity application compared with single channel reception
    corecore