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Abstract— This paper experimentally investigates and compares 

the performance of the free space optics system employing three 

different modulation schemes, on-off keying (OOK) with non-

return-to-zero (NRZ) and return-to-zero (RZ) and the binary 

phase shift keying (BPSK) operating under the turbulent 

atmosphere. The received average signal is measured and used to 

characterize the strength of the turbulence. The experiment is 

performed with a temperature gradient of 4 degrees at a wind 

velocity of 4 m/s. The temperature gradient within the controlled 

channel results in turbulence of a log irradiance variance of 

0.002, which is classified as a very weak turbulence. The received 

signal eye diagram and power histograms are presented and 

analyzed for performance evaluation of the selected modulation 

schemes in the weak turbulence model. 

Index Terms— FSO, atmospheric turbulence, Refractive Index 

I. INTRODUCTION 

Free space optics (FSO) communications offers an 
enormous unregulated bandwidth where a data rate in excess 
of 100 Gbit/s is achievable over a distance of 1-4 km [1]. The 
local  area network (LAN) based FSO system has the potential 
to solve the “last-mile” problem for the foreseeable future as a 
bandwidth in excess of 2 THz is readily available in optical 
wavelengths. Besides a high data transfer,  a direct line-of-
sight FSO link offer numerous advantages compared to the 
conventional wired and radio frequency (RF) wireless 
communications [2]. FSO links consume a relatively low 
power, offer a high security due to beam confinement within a 
very narrow area and are less sensitive to the electromagnetic 
interference [3].   

The fog, smoke and turbulence have a detrimental impact 
on FSO links performance. The severe attenuation of optical 
intensity is primarily caused by the absorption, the scattering 
and the refraction of optical waves by gas molecules, smoke, 
snow, rain and fog [4]. Fog has the largest impact on FSO 
links, limiting link range to a few hundred meters under heavy 
fog conditions [5]. However, when the link length exceeds 
several hundred meters, irradiance fluctuations of the received 
optical signal due to the turbulence present a severe problem 
[6]. The turbulence induced by the random fluctuation of 
temperature and pressure [7-10] results in random variation of 
the atmospheric refractive index. The variations in the 
refractive index along the optical path cause random 
fluctuations to the received optical irradiance, which can lead 
to severe system performance degradation. 

A number of methods can be used to combat the effect of 
turbulence such as the multiple input multiple output (MIMO) 
system, and the temporal and spatial diversity and aperture 
averaging. However, selecting a modulation format that is 
most immune to scintillation effect is also important. OOK-
NRZ and OOK-RZ modulation schemes are widely used in 
commercial FSO communication systems because of their 
ease of implementation, bandwidth efficiency and cost 
effectiveness [11]. From the view point of the receivers’ 
sensitivity, RZ offers improved performance over NRZ [12, 
13]. In the turbulent-induced atmosphere, data recovery using 
a fixed threshold level is not the optimum option when using 
OOK. Though the adaptive threshold detector can 
significantly improve the performance, the system is not 
practically feasible as it requires adaptive optical components 
as well as continuous monitoring of the atmospheric 
conditions. Alternatively, modulation techniques like the 
subcarrier intensity modulation (SIM) and the polarization 
shift keying (PoLSK), which are more immune to turbulence 
induced amplitude fluctuation, could be employed. The SIM 
binary phase-shift keying (SIM-BPSK), which does not 
requires an adaptive threshold, also benefits from a matured 
RF technology and a simple and low cost direct detection 
receiver design compared to the PoLSK. However, SIM-
BPSK requires a higher average transmitted power than OOK 
due to the DC bias requirement and the likelihood of signal 
distortion and the signal clipping [14].  

In this paper, we report the practical implementation of 
OOK-NRZ, OOK-RZ and BPSK based FSO link operated 
over a laboratory controlled turbulence channel. The aim of 
the experiment is to optimize the link performance for weak 
turbulence by increasing the transmission power of OOK-
NRZ, OOK-RZ and BPSK systems and comparing their 
performance. The paper is organized as follows: Experimental 
description is discussed in Section 2. In Section 3 
measurement of the turbulence is explained. Experiment 
results and analysis are discussed in Section 4. The conclusion 
and future work is presented in the final Section. 

II. EXPERIMENTAL DESCRIPTION  

A typical FSO link consists of a transmitter and a receiver 
separated by the atmospheric channel. The experimental set-
up for the controlled study of the scintillation effect on the 
FSO link for different modulation schemes is shown in Fig. 1. 
The transmitter uses a laser source with a maximum optical 
output power of 10 mW and a wavelength of 830 nm.           



  

 
                                             (a) 

 

 
                                            (b)  

Figure 1. (a) Block diagram of the experimental set-up and (b) FSO setup in 

the laboratory. 

The intensity of the output of a laser varied according to 
the modulating data format. To ensure system linearity, the 
laser is accurately biased and the peak-to-peak voltage of the 
input signal is kept within the specified values. The receiver 
front-end consists of an optical telescope (or lens) and a 
photo-detector. The electrical signal at the output of the PIN-
photo-detector is amplified using a trans-impedance amplifier. 
The complete set of parameters used in the experiment is 
given in Table I. 

Using a number of heaters and fans, we are able to 
generate and control temperature induced turbulence within 
the chamber. A pseudorandom binary sequence (PRBS) of 
1000-bit length generated is applied to all three modulation 
schemes prior to being transmitted along the chamber. For 
like-to-like comparisons, the wind velocity and the 
temperature within the chamber is kept almost identical.  The 
parameters used in the controlled turbulence environment are 
given in Table II. 

Table I.    MAIN PARAMETERS OF FSO USED IN THE EXPERIMENT 

Parameter Value 

Data source Modulation schemes used NRZ / RZ / BPSK 

Laser diode 

Laser type  Class IIIb 

Peak wavelength 830 nm 

Max. optical power 10mW 

Beam divergence 10 mrad 

Beam size at aperture 5mm × 2 mm 

Modulation bandwidth 75 MHz 

Photodetector 

Active area 1 mm2 

Full angle field of view 150 Deg 

Spectral range  750 - 1100 nm 

Max. wavelength 

sensitivity 

900 nm 

Spectral sensitivity 0.59 A/W 

Rise and fall time 5 ns 

Reversed bias voltage 50 V 

Lens 
Diameter 34 mm 

Focal length 200 mm 

Receiver Transamplifier (IC) AD8015 

 
Experiments were carried out for a range of signal 

amplitudes and temperatures were measured at the transmitter 
side, the centre of chamber and the receiver side, see Table III. 

  Table II.    MAIN PARAMETERS OF EXPERIMENTAL SET UP IN THE  

TURBULENCE CHAMBER 

Parameters Value 

Dimension 550×30×30 cm3 

Temperature range 20 - 80 oC 

Wind speed 4 - 5 m/s 

 
The emphasis of the experiment is on the effect of the 

scintillation, and hence less focus is given to data rates, though 
higher data rates can be achieved with the present 
experimental set-up. To achieve the same average optical 
power for all modulation schemes, the amplitude of OOK-RZ 
is made twice that of OOK-NRZ.  

Table III.   SYSTEM PARAMETERS FOR DIFFERENT MODULATIONS 

Modulation 

Technique 

Modulation 

Amplitude (mV) 

Temperature 

( degree Celsius) 

Data 

Rate 

OOK-NRZ 50, 150 45, 50, 55 5Mbps 

OOK-RZ 100, 300 46, 51, 55  5Mbps 

BPSK 50, 150 44, 49, 54 50Kbps 

    

III. MEASUREMENT OF THE TURBULENCE 

The most commonly reported model for describing the 
atmospheric turbulence in the weak range is the log-normal 
model, and is given by: [14-16].  

!"#$ % &'()*+ ,-. /0 123 4456788 9*(8
*: ;      (1) 

where y(I) is the power density function (pdf),  I0 and I are 
the average optical irradiance without and with turbulence 
respectively. <* is the log irradiance variance and it is 
considered as a Rytov parameter. Note, the value of <*=< 0.3 
for weak turbulence case [17]. 

In order to characterize the strength of turbulence 
generated within the chamber, we have measured the average 
received signal with and without the cold/hot air combination. 
From the data, we plot in Fig. 2(a) and (b) the signal 
distribution without and with scintillation, and fit them 
respectively to the Gaussian and log normal distributions 
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IV. EXPERIMENTAL RESULT
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without the turbulence see Table IV.  

V. CONCLUSION 

The motivation of the experiment was to fully understand 
the turbulence effect on the optical signal and also to 
demonstrate the performance of different modulation schemes 
for FSO links. The experimental results showed that the 
performance of the BPSK is far better than the OOK-NRZ and 
OOK-RZ albeit at the expense of bandwidth and power 
efficiencies. Therefore a suitable modulation scheme should 
be appropriately selected to adapt with the weather condition. 
This helps to maintain the link connectivity in very high 
turbulence conditions. 

APPENDIX A 

 
(a) (b) 

Figure A1. Received signal distribution for OOK-NRZ for a 50 mV p-p input 

signal: (a) without scintillation, and (b) with scintillation. 

 

(a) (b) 

Figure A2. Received signal distribution for OOK-NRZ for a 150 mV p-p input 
signal: (a) without scintillation, and (b) with scintillation. 

 
(a) (b) 

Figure A3. Received signal distribution for OOK-RZ for a 100 mV p-p input 
signal: (a) without scintillation, and (b) with scintillation. 

 

(a) (b) 

Figure A4. Received signal distribution for OOK-RZ for a 300 mV p-p input 
signal: (a) without scintillation, and (b) with scintillation. 

 

(a) (b) 

Figure A5. Received signal distribution for BPSK for a 50 mV p-p input 
signal: (a) without scintillation, and (b) with scintillation.   

 

(a) (b) 

Figure A6. Received signal distribution for BPSK for a 150 mV p-p input 

signal: (a) without scintillation, and (b) with scintillation. 

REFERENCES 

[1] H. Kuo, P. Rosenberg, R. Walmsley, S. Mathai, L. Kiyama, J. 
Straznicky, M. McLaren, M. Tan, and S.-Y. Wang, "Free-space 

optical links for board-to-board interconnects," Journal of Applied 

Physics, vol. 95, pp. 955-965, 2009. 
[2] H. S. O. Bouchet, C. Boisrobert, F. de Fornel, and P. Favennec, 

"Free-space optics, propagation and communication": IST Ltd 

London UK, 2006. 
[3] S. Arnon, "Optimization of urban optical wireless communication 

systems," IEEE Transactions on Wireless Communications, vol. 2, 

pp. 626-629, 2003. 
 [4] M. A. Naboulsi, H. Sizun, and F. de Fornel, "Fog attenuation 

prediction for optical and infrared waves," Journal of Optical 

Engineering, vol. 43, pp. 319-329, 2004. 
[5] K. Wakamori, K. Kazaura, and I. Oka, "Experiment on regional 

broadband network using free-space-optical communication 

systems," Journal of Lightwave Technology, vol. 25, pp. 3265-
3273, 2007. 

[6] H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, "Performance 

analysis of free-space optical communication systems over 
atmospheric turbulence channels," Journal of IET 

Communications, vol. 3, pp. 1402-1409, 2009. 

[7] Z. Xiaoming and J. M. Kahn, "Free-space optical communication 
through atmospheric turbulence channels," IEEE Transactions on 

Communications, vol. 50, pp. 1293-1300, 2002. 

[8] D. K. Borah and D. G. Voelz, "Pointing error effects on free-space 
optical communication links in the presence of atmospheric 

turbulence," Journal of Lightwave Technology, vol. 27, pp. 3965-

3973, 2009. 
[9] M. Cole and K. Kiasaleh, "Signal intensity estimators for free-

space optical communications through turbulent atmosphere," 

IEEE Photonics Technology Letters, vol. 16, pp. 2395-2397, 2004. 
[10] W. O. Popoola and Z. Ghassemlooy, "BPSK subcarrier intensity 

modulated free-space optical communications in atmospheric 

turbulence," Journal of Lightwave Technology, vol. 27, pp. 967-
973, 2009. 

[11] N. Liu, W. D. Zhong, Y. He, K. H. Heng, and T. H. Cheng, 
"Comparison of NRZ and RZ modulations in laser intersatellite 

communication systems," Proceedings of the 2008 International 

Conference on Advanced Infocomm Technology, Shenzhen China, 
p. 677, 2008. 

-0.2 -0.1 0 0.1 0.2
0

1

2

3

4

5
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

O
c

c
u

re
n

c
e

s

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

O
c

c
u

re
n

c
e

s

-1 -0.5 0 0.5 1
0

2

4

6

8
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

O
c

c
u

re
n

c
e

s

-0.1 -0.05 0 0.05 0.1
0

1

2

3
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

O
c

c
u

re
n

c
e

s

-0.2 0 0.2 0.4 0.6
0

2

4

6

8
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

O
c

c
u

re
n

c
e

s

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

0.5

1

1.5

2
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

O
c

c
u

re
n

c
e

s

-0.2 -0.1 0 0.1 0.2
0

2

4

6
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

O
c

c
u

re
n

c
e

s

-0.2 -0.1 0 0.1 0.2
0

0.5

1

1.5

2

2.5
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

O
c

c
u

re
n

c
e

s
-0.01 -0.005 0 0.005 0.01
0

1

2

3

4

5
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

o
c

c
u

rr
e

n
c

e

-0.01 -0.005 0 0.005 0.01
0

1

2

3

4

5
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

o
c

c
u

rr
e

n
c

e

-0.02 -0.01 0 0.01 0.02
0

2

4

6

8
x 10

4

Voltage (V)
N

u
m

b
e

r 
o

f 
o

c
c

u
rr

e
n

c
e

-0.02 -0.01 0 0.01 0.02
0

2

4

6

8
x 10

4

Voltage (V)

N
u

m
b

e
r 

o
f 

o
c

c
u

rr
e

n
c

e



  

[12] W. R. Leeb, P. J. Winter, and M. Pauer, "The potential of return-

to-zero coding in optically amplified lasercom systems " LEOS '99, 
vol. 1, pp. 224-225, 1999. 

[13] N. Chand, J. J. Loriz, A. J. Hunton, and B. M. Eteson, 

"Performance comparison of NRZ and RZ modulations with and 
without forward error corrections for free-space optical 

communication " in Proceedings of SPIE 58920U, 2005. 

[14] X. Tang, S. Rajbhandari, W. O. Popoola, Z. Ghassemlooy, E. 
Leitgeb, S. S. Muhammad, and G. Kandus, "Performance of BPSK 

Subcarrier Intensity modulation free-space optical communications 

using a log-normal atmospheric turbulence model," in Symposium 

on Photonics and Optoelectronic (SOPO), Chengdu, China.  pp. 

1-4, 2010. 

[15] J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, 

"Atmospheric channel effects on free-space laser communication," 
Journal of Optical and Fiber Communications Research, vol. 3, 

pp. 111-158, 2006. 

[16] W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. 
Gao, "Free-space optical communication employing subcarrier 

modulation and spatial diversity in atmospheric turbulence 

channel," Journal of Optoelectronics, IET, vol. 2, pp. 16-23, 2008. 
[17] L. C. Andrews and R. L. Phillips "Laser beam propagation through 

random media": Bellingham, WA: SPIE, 1998. 

 
 

 


