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Abstract—For the case of multiple-input multiple-output
(MIMO) free-space optical (FSO) communication systems,
we consider the suitability of the spatial multiplexing scheme
when on-off keying modulation is employed. We show that,
even with the optimal maximum likelihood detection at
the receiver, the performance is worse, compared to the
case of repetition coding (RC) under the condition of equal
transmission rate. This confirms the quasi-optimality of the
RC scheme for MIMO FSO systems.

I. INTRODUCTION

Free-space optical (FSO) communication is well known

for its advantages of license-free spectrum, high data-rate,

low energy consumption, and inherent security, compared

to radio frequency (RF) systems [1]. In near-ground

FSO systems, one of the principal channel impairments

is the atmospheric turbulence which induces intensity

fluctuations at the receiver that can considerably degrade

the system performance [2]. One solution for fading miti-

gation is aperture averaging [3]. However, when working

at long link distances, the required collecting lens for effi-

cient fading reduction becomes too large [4]. Under such

conditions, spatial diversity is a more suitable solution [5].

In particular, significant fading reduction can be obtained

through the use of multiple apertures at the receiver

and multiple beams at the transmitter [6], [7]. For these

multiple-input multiple-output (MIMO) systems, one im-

portant question is how to combine the information-

bearing symbols at the transmitter in order to optimize the

system performance, what is classically called space-time

(ST) coding. This is an extensively-developed subject in

RF systems. Here, we focus on the spatial multiplexing

(SMux) scheme, where the information bearing signals

are just multiplexed at the transmitter. The interest of

SMux is that it has the maximum transmission rate. Our

aim is to investigate the practical interest of this scheme

by taking into account the receiver performance and its

computational complexity.

In the remainder of the paper, we first present a state-of-

the-art on ST coding in MIMO FSO systems and explain

the idea behind this work. General assumptions on the

channel model and signal transmission are then described

in Section III. Then, we present some numerical results

on the performance comparison of different ST schemes

in Section IV. Finally, Section V concludes the paper.

II. SPACE-TIME CODING FOR MIMO FSO SYSTEMS

In fact, most of the proposed ST schemes for RF

applications use phase rotation and amplitude weighting

[8], [9], [10], requiring at least bipolar signaling when

applied to the FSO context. In general, the ST schemes

optimized for RF systems provide full diversity in FSO

systems but are not optimized concerning the coding

gain [11]. ST schemes can be classified into orthogonal

and non-orthogonal schemes. Orthogonal schemes, which

usually provide full diversity, have received more atten-

tion because of their low-complexity optimal detection

[9]. Non-orthogonal schemes are generally designed to

optimize both diversity and coding gains and have mostly

a better performance than their orthogonal counterparts

[12]. They have also shown to be more robust against

channel turbulence when using coherent modulations [13].

However, their optimal detection is of high computational

complexity. Also, they can not be used in the FSO systems

using intensity modulation with direct detection (IM/DD).

In classical MIMO FSO systems, one does not do any

ST coding at the transmitter and the same symbol is sent

over the multiple beams. This is usually referred to as

repetition coding (RC) [14]. On the other hand, most of

the orthogonal ST block codes (OSTBCs) can be modified

to be adapted to IM/DD FSO systems. For instance, for

the case of two transmitter beams, a modified Alamouti

scheme [15] is proposed in [16] which is adapted to

IM/DD optical systems by introducing a bias to overcome

unipolar signaling used in these systems. This idea is then

generalized in [17] to ON-OFF keying (OOK) modulation

with any pulse shape. In fact, Both RC and OSTBCs

provide full diversity but RC is shown to outperform the

latter, and the performance gap increases with increased

number of transmitter beams [18].

In fact, RC seems to be quasi-optimum, as explained

in [11]. However, it is of rate one and does not exploit

the MIMO channel to increase the transmission rate. On

the contrary, SMux maximizes the transmission rate but at

the expense of reduced diversity gain. Recently, a new ST

scheme, called optical spatial modulation (OSM) has been

proposed by which only one ON symbol is transmitted

from the M beams at a given channel use [19], [20]

so as to avoid inter-channel interference. The ST coding

rate of OSM is log2 M symbols per channel-use. At the

receiver, optimal maximum likelihood detection (MLD)

can be used to estimate the corresponding beam [21].

Here, we are specially interested to investigate the

usefulness of SMux in FSO systems. We know from

previous works on RF MIMO systems that the simple

linear detection methods like the minimum mean-square-



error (MMSE) detection do not provide a satisfying

performance. An interesting linear and low-complexity

receiver is the vertical BLAST (V-BLAST) architecture

[22]. This method uses successive interference cancelation

and signal detection based on zero-forcing (ZF) or MMSE

criterion and has been shown to have a significantly better

performance than the simple ZF or MMSE detectors.

It is not clear whether or not for OOK modulation

this method preserves its interest, however. Also, it is

known that forM transmitters andN receivers, V-BLAST

detection can benefit from a diversity of N − M + 1
[23], and consequently, it is practically interesting only

when N > M . This is not usually the case in most FSO

systems, however, as we have M = N in most systems.

To partially circumvent this problem, it is proposed in

[24] for M > 2 to consider pairwise Alamouti coded

transmitted symbols and to perform QR decomposition

of the fading channel at the receiver.

Our aim is to consider the SMux and OSM schemes at

the transmitter and to compare their performance with RC

and OSTBC. In order to make a fair comparison, we fix

the total data transmission rate for all cases. For this, we

reduce the symbol duration for RC, OSTBC, and OSM

schemes accordingly. For the case of SMux, we consider

different detection methods including the optimal MLD

to investigate the receiver performance, regardless of the

computational complexity issues.

III. CHANNEL MODEL AND ASSUMPTIONS

We consider the use of a Gaussian beam at the trans-

mitter and a PIN photodiode at the receiver and assume

that the dominant receiver noise is the thermal noise. This

is modeled as additive white Gaussian with the unilateral

power spectral density N0. We consider a single-beam

single-aperture system of aperture diameter 200mm as

reference and denote its receiver noise variance by σ2

n.

We denote this system by SISO (for single-input single-

output). When using multiple apertures, the noise variance

is considered the same at each receiver whatever its aper-

ture size is. For channel turbulence modeling, we consider

the Gamma-Gamma distribution by which the normalized

received intensity is considered as the product of two

independent random variables, representing the large- and

small-scale irradiance fluctuations, respectively [25]. For

(M ×N) MIMO structure, we assume that the spacings

between the transmitter beams and the receiver apertures

are large enough so as to ensure independent fading

between the underlying sub-channels. Also, we assume

we have perfect channel knowledge at the receiver.

We consider a diverging Gaussian beam at λ =
1550 nm of beam waist W0 = 1.59 cm and the curvature

radius of the phase front of F0 = −69.9m. Concerning
the channel turbulence, we set C2

n = 6.5× 10−14m−2/3

and the inner and outer scales of turbulence of l0 =
6.1mm and L0 = 1.3m. These parameters correspond to
the experimental works reported in [3]. The link distance

is given as L = 5 km for which the Rytov variance

σ2

R = 24.7. We use the uncoded OOK modulation and

fix the total receiver aperture diameter to Dr = 200mm.

To make a fair comparison between the performances

of different ST schemes, we fix the average transmit

optical power Pav . Considering OOK modulation, this

corresponds to a peak optical intensity of Pt = 2Pav

in On slots for the reference SISO system, for example.

For the case of MIMO systems, the peak intensity at

each transmitter is set to Pt/M , except for OSM where

it is set to Pt/(log2 M). Also, we set the diameter of

each aperture to Dr/
√
N so as to fix the total received

intensity. Furthermore, we fix the transmission rate for the

different systems and denote it by Rb. Accordingly, for

the MIMO case, we set the pulse duration to 1/Rb for the

cases of RC and OSTBC, and toM/Rb and (log2 M)/Rb

for the SMux and OSM cases, respectively.

IV. NUMERICAL RESULTS

Here we present some simulation results to compare

the performances of the different ST schemes. The per-

formance is considered as the bit-error-rate (BER) versus

the electrical signal-to-noise ratio (SNR) in the form

of Eb/N0, with Eb being the average total received

energy per information bit. We have Eb = P 2
t /2Rb,

N0 = 2σ2

n/Rb. For signal detection at the receiver, we

consider MLD for all schemes, as well as simple MMSE

and MMSE V-BLAST for SMux. We also present the

BER performance for the reference SISO system for the

sake of completeness. We consider two case studies of

M = N = 2 and M = N = 4 in the following.

A. Case of (2 × 2) FSO system

The performance of RC, OSTBC, OSM, and SMux

schemes are compared in Fig. 1. As OSTBC, we consider

the modified Alamouti scheme, proposed in [16]. We

notice that the RC scheme remains the best. For instance,

at BER= 10−4, MMSE V-BLAST detection provides 7 dB

gain in SNR, compared to simple MMSE. However,

the MMSE V-BLAST performs 30 dB worse than the

optimal MLD detection. We notice that the performances

of OSM and SMux with MLD are very close. On the

other hand, the rate-one schemes, i.e., RC and OSTBC,

perform much better than OSM and SMux with MLD

detection. Remember that for these schemes, we use half

the symbol duration of the SMux case so as to have the

same total transmission rate. In fact, although dividing the

symbol duration results in an increase of factor 2 in the

receiver thermal noise variance, compared to the SMux

case, the overall performance is still better than this latter

case. Another interesting point is that RC and OSTBC

outperform the reference SISO system only at low BER.

This is due to the trade-off between aperture averaging

and spatial diversity and also the increased total receiver

noise in MIMO systems.

B. Case of (4 × 4) FSO system

Figure 2 contrasts the performances of RC, OSTBC,

OSM, and SMux schemes. As OSTBC, we consider the

Jafarkhani’s scheme [26] that we modify in the same way

as it is done in [16] to adapt it to OOK modulation.

Note that this scheme is orthogonal for this case. We

notice again that RC is preferred to OSTBC and OSM,
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Fig. 1. Contrasting BER performance of different ST schemes for a
(2×2) MIMO FSO system. Z = 5Km, D = 200mm. Uncoded OOK,
thermal noise limited receiver.
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Fig. 2. Contrasting BER performance of different ST schemes for a
(4×4) MIMO FSO system. Z = 5Km, D = 200mm. Uncoded OOK,
thermal noise limited receiver.

and also to SMux even with MLD. Note that OSM here

outperforms SMux-MLD.

V. CONCLUSION

We investigated the interest of SMux in MIMO FSO

systems and compared its performance to those of RC,

OSTBC, and OSM. Our study confirmed the quasi-

optimality of the full-diversity RC scheme due to its lower

complexity and better performance, compared to the other

ST schemes. We conclude from our study that when a

higher data rate is required, it is preferable to directly

reduce the symbol duration instead of resorting to a higher

rate ST scheme like SMux.
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