190 research outputs found

    Sampling in the Analysis Transform Domain

    Full text link
    Many signal and image processing applications have benefited remarkably from the fact that the underlying signals reside in a low dimensional subspace. One of the main models for such a low dimensionality is the sparsity one. Within this framework there are two main options for the sparse modeling: the synthesis and the analysis ones, where the first is considered the standard paradigm for which much more research has been dedicated. In it the signals are assumed to have a sparse representation under a given dictionary. On the other hand, in the analysis approach the sparsity is measured in the coefficients of the signal after applying a certain transformation, the analysis dictionary, on it. Though several algorithms with some theory have been developed for this framework, they are outnumbered by the ones proposed for the synthesis methodology. Given that the analysis dictionary is either a frame or the two dimensional finite difference operator, we propose a new sampling scheme for signals from the analysis model that allows to recover them from their samples using any existing algorithm from the synthesis model. The advantage of this new sampling strategy is that it makes the existing synthesis methods with their theory also available for signals from the analysis framework.Comment: 13 Pages, 2 figure

    Compressed Sensing with General Frames via Optimal-dual-based â„“1\ell_1-analysis

    Full text link
    Compressed sensing with sparse frame representations is seen to have much greater range of practical applications than that with orthonormal bases. In such settings, one approach to recover the signal is known as â„“1\ell_1-analysis. We expand in this article the performance analysis of this approach by providing a weaker recovery condition than existing results in the literature. Our analysis is also broadly based on general frames and alternative dual frames (as analysis operators). As one application to such a general-dual-based approach and performance analysis, an optimal-dual-based technique is proposed to demonstrate the effectiveness of using alternative dual frames as analysis operators. An iterative algorithm is outlined for solving the optimal-dual-based â„“1\ell_1-analysis problem. The effectiveness of the proposed method and algorithm is demonstrated through several experiments.Comment: 34 pages, 8 figures. To appear in IEEE Transactions on Information Theor

    Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling

    Get PDF
    We consider the problem of learning a low-dimensional signal model from a collection of training samples. The mainstream approach would be to learn an overcomplete dictionary to provide good approximations of the training samples using sparse synthesis coefficients. This famous sparse model has a less well known counterpart, in analysis form, called the cosparse analysis model. In this new model, signals are characterised by their parsimony in a transformed domain using an overcomplete (linear) analysis operator. We propose to learn an analysis operator from a training corpus using a constrained optimisation framework based on L1 optimisation. The reason for introducing a constraint in the optimisation framework is to exclude trivial solutions. Although there is no final answer here for which constraint is the most relevant constraint, we investigate some conventional constraints in the model adaptation field and use the uniformly normalised tight frame (UNTF) for this purpose. We then derive a practical learning algorithm, based on projected subgradients and Douglas-Rachford splitting technique, and demonstrate its ability to robustly recover a ground truth analysis operator, when provided with a clean training set, of sufficient size. We also find an analysis operator for images, using some noisy cosparse signals, which is indeed a more realistic experiment. As the derived optimisation problem is not a convex program, we often find a local minimum using such variational methods. Some local optimality conditions are derived for two different settings, providing preliminary theoretical support for the well-posedness of the learning problem under appropriate conditions.Comment: 29 pages, 13 figures, accepted to be published in TS

    On the Effective Measure of Dimension in the Analysis Cosparse Model

    Full text link
    Many applications have benefited remarkably from low-dimensional models in the recent decade. The fact that many signals, though high dimensional, are intrinsically low dimensional has given the possibility to recover them stably from a relatively small number of their measurements. For example, in compressed sensing with the standard (synthesis) sparsity prior and in matrix completion, the number of measurements needed is proportional (up to a logarithmic factor) to the signal's manifold dimension. Recently, a new natural low-dimensional signal model has been proposed: the cosparse analysis prior. In the noiseless case, it is possible to recover signals from this model, using a combinatorial search, from a number of measurements proportional to the signal's manifold dimension. However, if we ask for stability to noise or an efficient (polynomial complexity) solver, all the existing results demand a number of measurements which is far removed from the manifold dimension, sometimes far greater. Thus, it is natural to ask whether this gap is a deficiency of the theory and the solvers, or if there exists a real barrier in recovering the cosparse signals by relying only on their manifold dimension. Is there an algorithm which, in the presence of noise, can accurately recover a cosparse signal from a number of measurements proportional to the manifold dimension? In this work, we prove that there is no such algorithm. Further, we show through numerical simulations that even in the noiseless case convex relaxations fail when the number of measurements is comparable to the manifold dimension. This gives a practical counter-example to the growing literature on compressed acquisition of signals based on manifold dimension.Comment: 19 pages, 6 figure
    • …
    corecore