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Constrained Overcomplete Analysis Operator Learning for

Cosparse Signal Modelling
Mehrdad Yaghoobi, Sangnam Nam, Rémi Gribonval and Mike E. Davies

Abstract—We consider the problem of learning a low-dimensional

signal model from a collection of training samples. The mainstream
approach would be to learn an overcomplete dictionary to provide good

approximations of the training samples using sparse synthesis coefficients.

This famous sparse model has a less well known counterpart, in analysis

form, called the cosparse analysis model. In this new model, signals are
characterised by their parsimony in a transformed domain using an

overcomplete (linear) analysis operator. We propose to learn an analysis

operator from a training corpus using a constrained optimisation frame-
work based on L1 optimisation. The reason for introducing a constraint

in the optimisation framework is to exclude trivial solutions. Although

there is no final answer here for which constraint is the most relevant

constraint, we investigate some conventional constraints in the model
adaptation field and use the uniformly normalised tight frame (UNTF)

for this purpose. We then derive a practical learning algorithm, based

on projected subgradients and Douglas-Rachford splitting technique,

and demonstrate its ability to robustly recover a ground truth analysis
operator, when provided with a clean training set, of sufficient size. We

also find an analysis operator for images, using some noisy cosparse

signals, which is indeed a more realistic experiment. As the derived
optimisation problem is not a convex program, we often find a local

minimum using such variational methods. For two different settings,

we provide preliminary theoretical support for the well-posedness of

the learning problem, which can be practically used to test the local
identifiability conditions of learnt operators.

Index Terms—Sparse Representations, Low-dimensional Signal Model,
Analysis Sparsity, Cosparsity, Dictionary Learning

I. INTRODUCTION

M
ANY natural signals can be modelled using low-dimensional

structures. This means, although the investigated signals are

distributed in a high dimensional space, they can be represented using

just a few parameters in an appropriate model [1]. This is made

possible by the fact that few parameters are actually involved in gen-

erating/describing such signals. Examples include polyphonic music,

speech signals, cartoon images (where some lines/edges describe the

images) and standard videos, where the scenes change slightly frame

to frame. In modern signal processing, low-dimensional modelling

is one of the most effective approaches to clarify the ambiguities in

inverse problems, regularise the signals and overcome some conven-

tional physical, temporal and computational barriers. This model has

been heavily investigated in the last decade and many remarkable

results achieved in almost all signal processing applications, see for

example [2], [3].

A natural and crucial question immediately arises. Given a class

of signals that we are interested in, how can we model its low-

dimensional structures? As an abstract answer, one could imagine

that if X ⊂ R
n is the signal class with low-dimensional structures,

then there must be a map T : R
n → R

a such that T (x) is sparse for
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all x ∈ X . Unfortunately, finding such T out of all possible maps

would be too complex, and one would have to restrict admissible

class of maps. A simple option is to consider the class of linear

maps. Hence, we ask: is there Ω ∈ R
a×n such that Ωx is sparse

for x ∈ X ? This is the type of problem we focus on in this paper.

Before getting to the nitty-gritty, we review relevant results to give

some contexts to our approach.

A. Sparse Signal Models

The most familiar type of low-dimensional structure is the sparse

synthesis model [4], [5].

In this setting, if a signal x ∈ R
n can approximately be generated

by adding just a few elementary vectors {di}, called atoms, from an

overcomplete set, called a dictionary, as follows,

x ≈
X

i∈I
vi "=0

vidi = Dv, (1)

where D ∈ R
n×p is the dictionary (matrix) and I is an index set

with small cardinality, i.e. |I| % n, it is called (approximately) sparse
in D. From the signal processing perspective, it is then important to

identify the support I. However, this is not an easy task [6], [7]: when
the signals are at most k-sparse—this means |I| ≤ k—in model (1),

they live in a union of subspaces (UoS) model [8], [9], [10] where

each subspace has a dimension of at most k, and the number of

such subspaces is exponential. A popular and practical approach to

find a sparse v is the ℓ1-minimisation [5] in which one looks for

v that minimises ‖v‖1 among the ones that satisfy x ≈ Dv. The

attractiveness of the ℓ1-objective comes from the fact that it promotes

sparsity and is convex—good in computational aspects—at the same

time.

An alternative form of ℓ1-minimisation has been used in practice.

In this form, one looks for x that minimises ‖Ωx‖1 among the

signals that matches available (linear) information. Here, Ω ∈ R
a×n

is some known linear operator. Note that a solution of this ℓ1-

minimisation necessarily leads to many zeros in Ωx and hence is

orthogonal to many rows of Ω (see Figure 1.a). This observation is

not exactly compatible with the synthesis interpretation above, and the

corresponding low-dimensional model is called the cosparse analysis

model [11]. A signal x in this model is called cosparse. Ω is referred

to as the analysis operator in this paper. Although this model is

also an instance of the UoS model and relies on the vector form

of parsimony, it has many structural differences with the synthesis

sparsity model [12], [11]. Very recently the signal recovery using

analysis sparsity model has been investigated [13], [11], [14]. As can

be deduced from the expression Ωx, the cosparse analysis model is

intimately related to our work.

B. Model Adaptation

As can be seen from the synthesis model description, the dictionary

D plays an important role. When we deal with the natural signals,

one can then naturally ask, how good we can choose such a

dictionary? Generally, we can use some signal exemplars [15], [16]
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for learning a dictionary or some domain knowledge for designing

a suitable dictionary [17], [18]. The readers can refer to [19] and

[20] as some surveys on the dictionary selection approaches. It has

been shown that the learned dictionaries usually out perform the

canonical dictionaries, e.g. DCT and Wavelet, in practice. Online

dictionary learning methods [21] have also been introduced to adapt

the generative model to a large set of data or a time-varying system.

In the exemplar based dictionary learning methods, a set of training

signals X ∈ R
n×l is given. Similar to sparse approximations, the ℓ1

norm is often preferred as the sparsity-promoting objective [16], [22],

and the dictionary learning with this objective can be formulated as

follows:

min
V,D∈D

‖V‖1 +
λ

2
‖X − DV‖2

F , (2)

where ‖ · ‖1 =
P

i,j
|{·}i,j | and D is an admissible set. Here,

D ∈ R
n×p is the dictionary we want to learn and V ∈ R

p×l is the

coefficient matrix which is expected to be sparse column-wise. The

reason for D is to exclude trivial solutions, such as X = DV, with

V → 0 and D → ∞. This type of problem is called the scale ambi-

guity of the signal modelling. Various constraints for the resolution

of scale ambiguity have been proposed for dictionaries: fixed atom

norms [23], [15], fixed Frobenius norm [24] and convex balls made

using these norms [25], [26], [21]. Note that the optimisation (2) is

no longer convex and can be difficult to solve. Different techniques

have been proposed to find a sensible solution for (2), where they are

often based on alternating optimisations of the objective based upon

V and D. See [19] and [20] for a review on state of the art methods.

Designing (overcomplete) linear transforms to map some classes

of signals to another space with a few significant elements, is not

a new subject. It has actually been investigated for almost a decade

and many harmonic/wavelet type transforms have been designed with

some guarantees on fast decay of coefficients in the transform domain

(See for example [27] and [28]). These transforms are designed

such that the perfect reconstructions of the signals are possible, i.e.

bijective mapping.

Relatively few research results have been reported in the exemplar

based adaptation of analysis operators. This is an important part of

data modelling, which has the potential to improve the performance

of many current signal processing applications.

C. Contributions

This paper investigates the problem of learning an analysis operator

from a set of exemplars, for cosparse signal modelling. Our approach

to analysis operator learning can be viewed as the counterpart to the

optimisation (2) in the analysis model setting. Here is the summary

of our contributions in this work:

1) We propose to formulate analysis operator learning (AOL)

as a constrained optimisation problem. Perhaps surprisingly,

in contrast to its synthesis equivalent—the dictionary learn-

ing problem—the natural formulation of the analysis operator

learning problem as an optimisation problem has trivial solu-

tions even when scaling issues are dealt with. The constraints

presented in this report exclude such trivial solutions but are

also compatible with a number of conventional analysis oper-

ators, e.g. curvelets [27] and wave-atoms [28], giving further

support for our proposal.

2) We provide a practical optimisation approach for AOL prob-

lem, based upon projected subgradient method. Clearly, an

AOL principle which does not permit computationally feasible

algorithm is of limited value. By implementing a practical

algorithm, we also open the possibility to cope with large scale

problems.

3) We give preliminary theoretical results toward a character-

isation of the local optimality conditions in the proposed

constrained optimisation problem. This helps us to better un-

derstand the nature of the admissible operator set. It also has

potential use in the initialisation of our AOL problem.

Our approach is developed from the idea that was primarily

suggested in [29] and [30].

D. Related Work

Remarkably, even though the concept of cosparse analysis mod-

elling has only been very recently pointed out as distinct from

the more standard synthesis sparse model [11], [31], it is already

gaining momentum and a few other approaches have already been

proposed to learn analysis operators. The most important challenge

in formulation of the AOL as an optimisation problem is to avoid

various trivial solutions. Ophir et al. used a random cycling approach

to statistically avoiding the optimisation problem becoming trapped

in a trivial solution [32]. Peyré et al. used a geometric constraint,

using a linearisation approach, in the operator update step, to get a

sensible local optimum for the problem [33]. In a recent approach,

Elad et al. have introduced a K-SVD type approach to update each

row of the operator at a time [34], [35]. While these approaches

have shown promising empirical results, a specificity of our approach

is its explicit expression as an optimisation problem.1 We expect

that this will open the door to a better understanding of the AOL

problem, through mathematical characterisations of the optima of the

considered cost function.

E. Notation and Terminology

In this paper we generally use bold letters for vectors and bold cap-

ital letters for matrices. We have presented a list of the most frequent

parameters in Table I. We have also presented the corresponding

parameters and their range-spaces, used in the related papers, in the

same table. The notation ( · )i,j , or simply subscript i,j , has been

used to specify the element locating in the ith row and jth column

of the operand matrix. ‖ · ‖1, ‖ · ‖2 and ‖ · ‖F are respectively ℓ1, ℓ2
and Frobenius norms. With an abuse of notations, we will use ‖ · ‖1

for the norm defined by the entrywise sum of absolute values of the

operand matrix, which is different from the ℓ1 operator norm for

matrices. The notation 〈 , 〉 represents the canonical inner-product of
two operands for, respectively, ℓ2 and Frobenius norms, in the vector-

valued and matrix-valued vector spaces. tr{·} denotes the trace of

the operand matrix. The notation P will be used to represent the

orthogonal projection whose range is specified by the subscript, e.g.

PUN . Sub- and super- scripts in braces are used to indicate iteration

number in the algorithm section.

The sparsity of x in D is noted here by k, which is the cardinality

of the support of v, where v is the sparse representation of x. We can

similarly define the cosparsity of x [31], with respect to Ω, and note it

by q, which is the cardinality of its co-support, i.e. co-support(x) =
{i : 1 ≤ i ≤ a, {Ωx}i = 0}.

Following the notation of [36], a sub-indexed vector or matrix

will be determined using a subscript for the original parameter, e.g.

ΩΛ. Here, ΩΛ has the dimension of Ω, identical values as Ω in its

support Λ and zeros elsewhere. We also use “bar”, e.g. Λ̄, to denote

a complement of the index set Λ in this context.

1Peyré and Fadili [33] use a similar type of expression to learn an analysis
operator in the context of signal denoising, with exemplars of noisy and clean
signals.
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TABLE I
THE NOTATION OF CURRENT AND THEIR CORRESPONDING NOTATIONS IN

RELATED PAPERS.

This paper PF[33]
RFE [35]

(OEBP[32])

Observation y ∈ R
n y ∈ R

N y ∈ R
d

Signal x ∈ R
n x ∈ R

N x ∈ R
d

Analysis vector z ∈ R
a - -

Dictionary D ∈ R
n×p D ∈ R

N×P D ∈ R
d×n

Synthesis vector v ∈ R
p u ∈ R

P z ∈ R
n

Analysis operator Ω ∈ R
a×n D∗

∈ R
P×N

Ω ∈ R
p×d

Training size l n R (N )
Cosparsity q - l

Sparsity k - k

F. Organisation of the Paper

In the following section, we formulate the analysis operator

learning problem as a constrained optimisation problem. We briefly

review some of canonical constraints for the exemplar based learning

frameworks and explain why they are not enough. we introduce a

new constraint to make the problem ‘well-posed’ in II-B4. After

the formulation of the AOL optimisation problem, we introduce a

practical algorithm to find a sub-optimal solution for the problem in

section III. Following the algorithm, in Section IV, we will present

some simulation results for analysis operator learning with different

settings. The simulations are essentially based on two scenarios,

synthetic operators and operators for image patches. In the appendix,

we will investigate the local optimality conditions of operators for

the proposed learning framework.

II. ANALYSIS OPERATOR LEARNING FORMULATION

The aim of analysis operator learning is to find an operator Ω

adapted to a set of observations of the signals yi := M(xi), where
xi is an element (column) of sample data X ∈ R

n×l and M(xi)
denotes the information available for the learning algorithm. For our

purposes, we set M(xi) := xi + ni, where ni ∈ R
m denotes the

(potential) noise. The data X is assumed to be of full rank n since

otherwise, we can reduce the dimension of the problem with a suitable

orthogonal transform and solve the operator learning in the new low

dimension space.

A standard approach for these types of model adaptation problems,

is to define a relevant optimisation problem such that its optimal

solution promotes maximal sparsity of Z := ΩX. The penalty ‖ ·
‖p :=

P

| · |p, 0 < p ≤ 1 can be used as the sparsity promoting

cost function. As hinted in the introduction, we will use the convex

ℓ1 penalty. The extension to an ℓp, p < 1, AOL is left for a future

work.

A. Constrained Analysis Operator Learning (CAOL)

Momentarily assume that we know X. Unconstrained minimisation

of ‖ΩX‖1, based on Ω, has some trivial solutions. A solution for

such a minimisation problem is Ω = 0! A suggestion to exclude

such trivial solutions is to restrict the solution set to an admissible

set C.
Not assuming that X is known any more, AOL can thus be

formulated as,

min
Ω,X

‖ΩX‖1, s. t. Ω ∈ C, ‖Y − X‖F ≤ σ (3)

where σ is the parameter corresponding to the noise. We call the

AOL to be a noiseless operator learning when σ = 0.

!"# !$#

!%# !&#

Fig. 1. Data clouds around some union of subspaces and possible analysis
operators: a) an ideal operator, b) the optimal (rank-one) operator using a
row norm constraint, c) the optimal operator using the full-rank, row norm
constraint and d) the optimal operator using tight frame constraint.

We prefer to use an alternative, regularised version of (3), using a

Lagrangian multiplier λ, to simplify its optimisation. The reformu-

lated AOL is the following problem,

min
Ω,X

‖ΩX‖1 +
λ

2
‖Y − X‖2

F , s. t. Ω ∈ C (4)

If λ → ∞, problem (4) is similar to the noiseless case. In the

following section, we explore some candidates for C.

B. Constraints for the Analysis Operators

A suitable admissible set should exclude undesired solutions of

AOL while minimally affecting the rest of the search space. We name

Ω = 0 and Rank{Ω} = 1 as some undesired solutions of (3).

These operators clearly do not reveal low-dimensional structures of

the signals of interest. For simplicity, we again assume that X is

given, i.e σ = 0.
Here, we intially propose some constraints for the problem (3)

and explain why some of them can not individually exclude undesired

solutions. A combined constraint C, which is the Uniform Normalised

Tight Frame (UNTF), will be introduced subsequently. The proposed

constraint is smooth and differentiable.

1) Row norm constraints are insufficient: The first constraint is

on the norms of rows of Ω, i.e. ‖ωi‖ = c for the ith row. We can

find the solution of the optimisation by first finding ω∗ ∈ R
n that

minimises ‖ωT X‖1. Then, the optimum is obtained by repeating ω∗,

i.e., Ω∗
1 := [ωi = ω]Ti∈[1,a] is the minimum. Of course, Rank{Ω∗

1} =
1 (see Figure 1.b), and the solution is not interesting enough.

2) Row norm + full rank constraints are insufficient: The set CF

of full rank operators is not closed, and the operator Ω
∗
1 belongs to

its closure. As a result, the problem (3) with σ = 0 does not admit

a minimiser but there is a sequence of operators, arbitrarily close to

Ω
∗
1, that yield an objective function arbitrarily close to its infimum

value.

3) Tight frame constraints are insufficient: In a complete setting

a = n, an orthonormality constraint can resolve the ill-conditioning

of the problem. The rows of Ω are geometrically as separated as
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possible. Letting a > n, the orthonormality constraint is not further

applicable, i.e. more rows than the dimension of space. In this case,

the orthonormality constraint in the ambient space, ∀i -= j, ωi⊥ωj

and ‖ωi‖2 = ‖ωj‖2 = 1, where ωi and ωj ∈ R
a are respectively

the ith and jth columns of Ω, is possible. The admissible set of

this constraint is the set of tight frames in R
a×n, i.e. Ω

T
Ω = I,

where I is the identity operator in R
n. The admissible set C = {Ω ∈

R
a×n : Ω

T
Ω = I} is smooth and differentiable, which is a useful

property for optimisation over this set. Such a constraint actually

constructs a manifold in the space of R
a×n, called the (orthogonal)

Stiefel manifold St(a, n) [37].

Although the tight frame constraint may look appropriate to

avoid “trivial” solutions to (3), preliminary empirical and theoretical

investigations indicate that the analysis operator minimising (3),

using this constraint, is always an orthonormal basis completed

by zero columns (see Figure 1.d). This is possibly caused by the

fact that the zero elements in such operators, are orthogonal to all

finite signals, without giving any insight about their directions, and

the operators can thus be truncated to produce complete operators.

Therefore, this constraint does not bring anything new compared to

the orthonormality constraint.

4) Proposed constraint: Uniform Normalised Tight Frame: This

motivates us to apply an extra constraint. Here, we choose to combine

the uniformly normalised rows and the tight frame constraints,

yielding the UNTF constraint set. This constraint will be used in

the rest of paper and the analysis of Appendix A is based on this

admissible set.

The UNTF’s are actually in the intersection of two manifolds,

uniform normalised (UN) frames manifold and tight frames (TF)

manifold. There exist some results that guarantee the existence of

such tight frames, i.e. non-emptiness of the intersection of two

manifolds, for any arbitrary dimensions n and a [38]. This is indeed

an important fact, as the optimisation with such a constraint is then

always feasible.

This constraint can be written as follows,

C = {Ω ∈ R
a×n : Ω

T
Ω = I, ∀i ‖ωi‖2 = c}, (5)

and ωi is the ith row of Ω. Since C is not convex, (4) may have many

separate local optima. Finding a global optima of (4) is not easy

and we often find a local optima using variational methods. Using

variational analysis techniques, we can also check if an operator Ω

is a local optimum. Details are presented in Appendix A.

The exact recovery, using a variational analysis, in this setting, is

essentially based on the following property,

Definition 1 (Locally Identifiable): An operator Ω is locally iden-

tifiable from some (possibly noisy) training cosparse signals Y, if

it is a local minimum of an optimisation problem with a continuous

objective and locally connected constraint.

This definition of local identifiability is a generalisation of the

(global) identifiability as here we can not find the global solution.

Such a property has been previously investigated in the context of

dictionary learning in [36] and [39].

C. Extension of UNTF Constraints

In some situations, we may not necessarily want to require that

Ω form a frame for the whole of R
n. The inspiration for such

a case comes from the finite difference operators which is closely

tied to the popular TV-norm. When we model cartoon-like piece-

wise constant images, an analysis operator Ω need only to detect

transitions in neighboring pixel values. Therefore, all the rows of Ω

can be orthogonal to the DC component.

We can facilitate learning similar rank-deficient operators by ex-

tending the UNTF constraints. Here, we know that Ω ⊥ N , where N
is the known null-space. We can modify (5) to construct the following

constraint,

CN = {Ω ∈ R
a×n : Ω

T
Ω = PN⊥ , ∀i ‖ωi‖2 = c}, (6)

where PN⊥ is the orthogonal projection operator onto the span of

N⊥.

In the following, we introduce a practical algorithm to find a

suboptimal solution of (4), constrained to C or CN , using a projected

subgradient based algorithm.

III. CONSTRAINED ANALYSIS OPERATOR LEARNING

ALGORITHM

Cosparse signals, by definition, have a large number of zero ele-

ments in the analysis space. In this framework, a convex formulation

for recovering a signal x from its (noisy) observation is to minimise

the following convex program,

min
x

‖Ωx‖1 +
λ

2
‖y − x‖2

2, (7)

where Ω is a fixed analysis operator. As (7) is a convex problem,

many algorithms have been proposed to solve this program very

efficiently (see [40],[41] and [42] as some examples of the latest

methods). These methods can easily be extended to the matrix form

to find X given Y. Unfortunately, the AOL problem (4), due to the

freedom to also change Ω ∈ C in this formulation, is very difficult.

This difficulty is similar to what we face in the dictionary learning

for synthesis sparse approximation. In the dictionary learning prob-

lem, we have also a joint optimisation problem (2) that, in a simple

setting, can be minimised in an alternating optimisation approach [43]

as follows,

Dictionary Learning:

initialisation: D[0], V[0] = 0, i = 0,
while not converged do

V[i+1] = argmin
V
‖V‖1 + λ

2
‖X − D[i]V‖2

F ,

D[i+1] = argmin
D∈D ‖X − DV[i+1]‖2

F

i = i + 1
end while.

An alternating minimisation technique can also be used for the

AOL problem to seek a local minimum. In this framework we

first keep X fixed and update the operator Ω. We then update the

cosparse approximations of the signals while keeping the operator

fixed. Such an alternating update continues while the new pair

(X,Ω) is very similar to the previous (X,Ω) or is repeated for

a predetermined number of iterations. A pseudocode for such an

alternating minimisation AOL is presented in Algorithm 1, Analysis

Operator Learning Algorithm (AOLA). Each subproblem, i.e line 3

or line 4, of AOLA can be solved separately based upon a single

parameter. Although the problem in line 4 is convex and it can thus

be solved in a polynomial time, the problem in line 3 is not a convex

problem due to the UNTF constraint C.
Note that when the cosparse matrix X is given, i.e. in a noiseless

scenario σ = 0, the algorithm only has the operator update step,

which we need to repeat until convergence. This step is also called

noiseless AOL[29].

A. Analysis Operator Update

We use a projected subgradient type algorithm to solve the operator

update subproblem in line 3 of the AOLA. The subgradient of the
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Algorithm 1 Analysis Operator Learning Algorithm (AOLA)

1: initialisation: Ω
[0], X[0] = Y, i = 0,

2: while not converged do

3: Ω
[i+1] = argmin

Ω∈C ‖ΩX[i]‖1,

4: X[i+1] = argmin
X
‖Ω[i+1]X‖1 + λ

2
‖Y −X‖2

F

5: i = i + 1
6: end while.

objective is ∂f(Ω) = sgn(ΩX[i])X[i]T , where sgn is an extended

set-valued sign function defined as follows,

{sgn(A)}i j =sgn(Ai j)

sgn(a) =

8

>

<

>

:

1 a > 0,

[−1, 1] a = 0,

−1 a < 0.

In the projected subgradient methods, we have to choose a value in

the set of subgradients. We randomly choose a value in [−1, 1], when
the corresponding element is zero.

After the subgradient descent step, the modified analysis operator

is no longer UNTF and needs to be projected onto the UNTF

set. Unfortunately, to the authors’ knowledge, there is no analytical

method to find the projection of a point onto this set. Many attempts

have been done to find such an (approximate) projection, see for

example [44] for an alternating projections and [45] for an ordinary

differential equations based method. We rely on an alternating pro-

jections approach.

Projection of an operator with non-zero rows, onto the space of

fixed row norm frames is easy and can be done by scaling each row

to have norm c. We use PUN to denote this projection. If a row is

zero, we set the row to a normalised random vector. This means that

PUN is not uniquely defined. This is due to the fact that the set of

uniformly normalised vectors is not convex. The projection can be

found by,

PUN{Ω} = [PUN{ωi}]i,

PUN{ω} :=

(

ω
‖ω‖2

‖ω‖2 -= 0

ν otherwise,

where ν is a random vector on the unit sphere.

Projection of a full rank matrix onto the tight frame manifold is

possible by calculating a singular value decomposition of the linear

operator [44]. Let Ω ∈ R
a×n be the given point and Ω = UΣVT be

a singular value decomposition of Ω and Ia×n be a diagonal matrix

with identity on the main diagonal. The projection of Ω can be found

using,

PTF {Ω} = U Ia×n V
T .

Note that, although there is no guarantee to converge to a UNTF

using this method, this technique practically works very well [44].

As the projected subgradient continuously changes the current point,

which needs to be projected onto UNTF’s, we only use a single

pair of projections at each iteration of the algorithm, to reduce the

complexity of the algorithm, where the algorithm now asymptotically

converges to a UNTF fixed point. To guarantee a uniform reduction

of the objective f(Ω), we can use a simple line search technique to

adaptively reduce the stepsize. It indeed prevents any large update,

which increases f 2 . A pseudocode of this algorithm is presented in

Algorithm 2, where Kmax is the maximum number of iterations.

2The stability of algorithm is guaranteed in a Lyapunov sense, i.e. the
operator Ω[k] is enforced to remain bounded, when k → ∞.

Algorithm 2 Projected Subgradient Based Analysis Operator Update

Input: X[i], Kmax, Ω
[i], η, ε % 1, ρ < 1,

initialisation: k = 1, Ω[0] = 0, Ω[1] = Ω
[i]

while ε ≤ ‖Ω[k] − Ω[k−1]‖F and k ≤ Kmax do

ΩG ∈ ∂f(Ω[k]) = sgn(Ω[k]X
[i])X[i]T

Ω[k+1] = PUN {PTF {Ω[k] − η ΩG}}
while f(Ω[k+1]) > f(Ω[k]) do

η = ρ.η
Ω[k+1] = PUN {PTF {Ω[k] − η ΩG}}

end while

k = k + 1
end while

output: Ω
[i+1] = Ω[k−1]

For the constraint set CN mentioned in Section II-C, we present

a simple modification to the previous algorithm in order to constrain

the operator to have a specific null-space. Here, we need to find a

method to (approximately) project an operator onto CN . Following

the alternating projection technique, which was used earlier to project

onto C, we only need to find the projection onto the set {Ω ∈ R
a×n :

Ω
T
Ω = PN⊥}, as we already know how to project onto UN, i.e.

PUN . To project an Ω onto the set of TF’s in N⊥, we need to

compute the singular value decomposition of Ω, projected into the

orthogonal complement space of N . The projection onto N⊥, PN⊥ ,

can be found using an arbitrary orthonormal basis for N and simply

subtracting the projection onto this basis, from the original Ω. We

can then rewrite the decomposition as PN⊥{Ω} = U Σ VT . If the

dimension of N is r, only n − r singular values of PN⊥{Ω} can

be non-zero. We find the constrained projection as follows,

PTF⊥N {Ω} = U Ira×n V
T ,

where matrix Ira×n is a diagonal matrix in R
a×n, with identity

values on the first n−r diagonal positions, while the last r elements

are set to zero.

We therefore need to alternatingly use PTF⊥N and PUN to find

a point in the intersection of these two constraint sets. In Algorithm

2, we only need to replace PTF with PTF⊥N to consider the new

constraint CN .

B. Cosparse Signal Update

When Ω is known or given by line 3 of AOLA, a convex program

based on X needs to be solved. Although this program is a matrix

valued optimisation problem, it can easily be decoupled to some

vector valued subproblems based upon the columns of X. One

approach is to individually solve each subproblem. Here we present

an efficient approach to solve this program in the original matrix-

valued form, despite the challenging nature of it, due to its large

size.

The main difficulties are, a) ℓ1 is not differentiable and b) Ω inside

the ℓ1 penalty, does not allow us to use conventional methods for

solving similar ℓ1 penalised problems. We here use the Douglas-

Rachford Splitting (DRS) technique to efficiently solve the cosparse

signal approximation of the AOLA. It is also called the alternating

direction method of multipliers (ADMM) in this setting, see [46] for

a brief overview. This technique has indeed been used for the Total

Variation (TV) and analysis sparse approximations in [40][47]3. We

here only present a simple version of the DRS technique, carefully

3[47] derives the formulation by incorporating the Bregman distance.
However, it has been shown that the new method, called Alternating Bregman
Splitting method, is the same as DRS, applied to the dual problems [48].
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Algorithm 3 DRS Based Cosparse Signal Update

Input: i, Ω[i+1], Kmax, X
[i], γ, λ, ε % 1, λ, γ

1: initialisation: k = 1, X[k] = X[i], Ω = Ω
[i+1], B[k] = 0,

Z[k] = ΩX[k]

2: while ε ≤ ‖X[k] − X[k−1]‖F and k ≤ Kmax do

3: X[k+1] = (λI + γΩ
T
Ω)−1(λY + γΩ

T (Z[k] − B[k]))
4: Z[k+1] = S 1

γ

˘

ΩX[k+1] + B[k]

¯

5: B[k+1] = B[k] + (ΩX[k+1] − Z[k+1])
6: k = k + 1
7: end while

8: output: X[i+1] = X[k−1]

tailored for this problem. The problem is a constrained convex

program with two parameters Z = Ω
[i+1]X and X as follows,

min
X,Z

‖Z‖1 +
λ

2
‖Y −X‖2

F s. t. Z = Ω
[i+1]

X. (8)

The Augmented Lagrangian (AL) [49] method is applied to solve

(8). In the Lagrangian multiplier method we use the dual parameter

B ∈ R
a×l and add a penalty term,

D

B,Ω[i+1]X− Z
E

. In the AL,

we also add an extra quadratic penalty related to the constraint and

derive the new objective g(X,Z,B) as follows,

g(X,Z,B) =‖Z‖1 +
λ

2
‖Y − X‖2

F + γ
D

B,Ω[i+1]
X − Z

E

+
γ

2
‖Ω[i+1]

X − Z‖2
F

=‖Z‖1 +
λ

2
‖Y − X‖2

F +
γ

2
‖B + Ω

[i+1]
X − Z‖2

F

− γ

2
‖B‖2

F ,

where 0 < γ ∈ R
+ is a constant parameter. According to the

duality property, the solution of maxB minX,Z g(X,Z,B) coincides
with the solution of (8). Using the DRS method, we iteratively

optimise a convex/concave surrogate objective gs(X,Z,B,B[k]) =
g(X,Z,B)−‖B−B[k]‖2

F , where B[k] is the current estimation of B.

The fixed points of the iterative updates of gs(X,Z,B,B[k]) are the
same as g(X,Z,B), as the extra term ‖B−B[k]‖2

F vanishes in any

fixed points. gs(X,Z,B,B[k]) is convex with respect to Z and X and

concave with respect to B. We can thus iteratively update each of the

parameters, while keeping the rest fixed, see Algorithm 3. In this al-

gorithm, Sα, with an α > 0 , is the entrywise soft-threshold operator

defined by Sα(β) = β −α sgn(β) if |β| ≥ α and 0 otherwise [50].

Note that the update formula for X in Algorithm 3, line 3, involves a

matrix inversion, which is computationally expensive. As Ω is a tight

frame here, the matrix inversion is significantly simplified using the

fact that ΩT
Ω is identity. In this case, the operator (λI+γ Ω

T
Ω)−1

is simply a scaling with 1
λ+γ

.

We iterate Algorithm 3 for a number of iterations Kmax or until the

parameters cease to change significantly. Although the convergence of

the iterative updates of this algorithm can separately be investigated,

it can also be deduced using the fact that it is a particular case of

DRS, which converges under mild conditions [46].

IV. SIMULATIONS

We present two categories of simulation results in this section.

The first part is concerned with empirical demonstration of (almost)

exact recovery of the reference analysis operators. An astute reader

might ask: why should we care about exact recovery at all? Is it not

enough to show that learned operators are good? This is, of course,

true. However, when the signals are generated to be cosparse with

respect to a reference operator or they are known to be cosparse
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Fig. 2. The average percentage of operator recovery for different γ’s, where
γ controls how far is the starting point Ωin form Ω0. The x-axis presents
the cosparsity of the synthetic data.

with respect to a known analysis operator, the recovery of those

operators is a good demonstration of the effectiveness of our method.

Going further, one may imagine situations where the rows of the

reference analysis operators explain certain properties/dynamics of

the signals; for example, finite differences for piecewise constant

images detect edges. Obviously, the recovery of reference operators

in these contexts is significant.

In the second part, we are interested in demonstrating the effective-

ness of learned operators in a practical task, namely, image denoising.

A. Exact recovery of analysis operators

For the first experiment, the reference operators and the cosparse

signal data set were generated as follows: A random operator Ω0− ∈
R

24×16 was generated using i.i.d. zero mean, unit variance normal

random variables4. The reference analysis operator Ω0 is made by

alternatingly projecting Ω0− onto the sets of UN ’s and TF ’s. A

set of training samples was generated, with different cosparsities, by

randomly selecting a normal vector in the orthogonal complement

space of a randomly selected q rows of Ω0. Such a vector yi has (at

least) q zero components in Ω0yi, and it is, thus, q cosparse.

To initialise the proposed algorithm, we used a linear model to

generate the initial Ω by combining the reference operator Ω0 and

a normalised random matrix N, i.e. Ωin = Ω0 + γ N, and then

alternatingly projecting onto UN and TF . It is clear that when γ is

zero, we actually initialise Ω with the reference model Ω0 and when

γ → ∞, the initial Ωin will be random.

First, we chose a set of size l = 768 of such training corpus and

used the noiseless formulation (3), where σ = 0. The AOL algorithm

in this setting is just the projected subgradient base algorithm,

Algorithm 2, which was iterated 50000 times. To check the local

optimality of the operator and the size of basin of attraction, we

chose γ = 0, 1, 10 and∞. The average percentage of operator (rows)

recovery, i.e. the maximum ℓ2 distance of any recovered row and

the closest row of the reference operator, is not more than
√

.001,
for different cosparsity and 100 trials, are plotted in Figure 2. We

practically observe that the operator is the local optimum even when

the cosparsity of the signal is as low as 3. We also see that the

average recovery reduces by starting from a point far from the the

actual reference operator or a random operator, which is the case

γ → ∞.

4Ω
0−

is not necessarily a UNTF and needs to be projected onto the set of
UNTF’s.
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Fig. 3. The average percentage of operator recovery with different training
set population size l. The x-axis presents the cosparsity of the signals.
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Fig. 4. The local-identifiability check by randomly generating vectors in the
admissible set of Lemma 3 of Appendix A and checking the credibility of
the inequality in (a) Lemma 3- Equation (17); and (b) Theorem 1- Equation
(18).

We now investigate the role of l on the average operator recovery

by some simulations. We kept the previous experiment settings and

repeated the simulations for two new training sets, with populations

of l = 384 and 1536, which are 1/2 and 2 times of the population in

the previous experiments. We show the average operator recovery for

γ = 0, 1, 10 in Figure 3. The simulation results show not only that

Ω0 can be locally identified with even less cosparse signals, smaller

q, but the basin of attraction is also extended and now the reference

operator can be recovered by starting from a distant initial point, even

using 2 cosparse signals.

In the next two experiments, we show that if the cosparsity is

low, i.e. small q, then the analysis operator cannot be “recovered”:

it is not a solution of the proposed optimization problem (3). One

way to demonstrate it would consist in solving the large scale convex

optimisation program (15) expressed in Proposition 2 of the Appendix

A. Alternatively, we can use Lemma 3 (respectively Theorem 1) of the

Fig. 5. A 512 by 512 Shepp-Logan phantom image which was used as the
training image.

2−times Overcomplete
Haar Operator

Full−rank
Learned Operator

Rank−deficient
Learned Operator

Fig. 6. The rows of the full-rank learned operator (left panel), the rank-
deficient learned operator (middle panel) and a two-times oevrcomplete Haar
operator (right panel), in the form of 8 by 8 blocks.

appendix, to possibly find a matrix ∆z , which violates the conditions.

Here, we randomly generated 1000 ∆z in TCs , and checked whether

the inequality (17) (respectively (18)) was satisfied. We repeated this

process for 10 different pseudo-randomly generated Ω and plotted the

percentages of ∆z satisfying the inequality in Figure 4, respectively

in the left column (a) and the right column (b). We have also

mentioned the training size, i.e. l on each row of this figure. From left

column, we can see that with 1-cosparse signals, there are operators

which are not local minimum of the program (3) (σ = 0). We can

also see that the relaxation used to derive Theorem 1, makes the result

of this Theorem very conservative, i.e. there are many cases which

do not satisfy this theorem, but they still can be locally-identifiable.

For the last experiment, we chose the Shepp Logan Phantom, a

well-known piecewise constant image in the Magnetic Resonance

Imaging (MRI) community (see Figure 5). We used l = 16384 blocks

of size 8 by 8, randomly selected from the image, such that, except

one DC training sample, all the training images contain some edges.

We learned a 128 × 64 operator for the vectorised training image

patches, by initialising the (noise-less) AOL algorithm with a pseudo-

random UNTF operator. We used two different constraints C and CN

for the learning operator Ω, i.e. (5) and (6), where the null space

was selected to be constant images. We chose the second constraint

to see if we would find a different operator by enforcing a similar

null-space to the Finite Difference (FD) operator.

The learned operators are shown in Figure 6. We found operators

which have many FD type elements. The operator which we learned

using C in (6) seems to have more FD type elements. We also compare
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Fig. 8. Signals in the analysis space R
N , N = 128. The coefficients

with almost zero magnitude, i.e. less than 0.01, are indicated with stars. The
cosparsity in each case is: (a) p = 0, (b) p = 1, and (c) p = 27.

the level of objective value for the learned operator, using C in (5),

and a reference operator. As a two dimensional FD operator is not

a UNTF, we chose a two-times overcomplete Haar wavelet—see the

right panel of Figure 6—which has some similarities with the FD, in

the fine scale. The objective of (4) for the learned operator in different

steps of training and the Haar based operator are shown in Figure 7.

This shows that the learned operator finally outperforms the baseline

operator in the objective value. Note that if we initialise the algorithm

with the Haar based operator, the AOL algorithm does not provide

a new operator. This empirically shows that the reference operator

is a local optimum for the problem (4), where λ → ∞. This fact

can be investigated using the analysis provided in Appendix A, i.e.

randomly generating admissible vectors and checking (17) or (18).

B. Image denoising with learned analysis operators

For the next experiments we used a set of face images which

are centred and cropped [51]. Such images can be modelled as ap-

proximately piecewise smooth signals. A pseudo-random admissible

Ω
[0] ∈ R

128×64 has been used as an initial analysis operator and

a training set of size l = 16384 of 8 × 8 image patches from 13

different faces, after normalised to have mean zero, have been used

to learn the operators (a = 128).

We applied both of the noiseless AOL Algorithm and the noise-

aware AOL Algorithm to demonstrate how much the cosparsities

of the training samples increase using the noise aware formulation.

(NL)AOL algorithm was iterated Kmax = 100000 times and NAAOL

0 50 100 150 200 250

0

10

20

30

40

50

60

70

80

Sample number

C
o
sp

a
rs

ity

 

 

Cosparsity with operator learned with AOL

Cosparsity with operator learned with NAAOL

Fig. 9. The cosparsities of y (bottom plot) and by (top plot) respectively
with the operators learned with (NL)AOL and NAAOL.

algorithm iterated for Kmax = 10 iterations with λ = γ = 0.5, while
the inner-loop, i.e. Algorithm 2, was iterated 100000 times.

A plot of the analysis coefficients for a selected y along with its

corresponding cosparsities, with three different Ω’s, are presented in

Figure 8. The initial operator Ω0 = Ω
[0] has been applied to y in

(a). Not surprisingly, the signal is not cosparse with this arbitrary

operator (q = 0). In (b), the same plot is drawn using the learned

operator with (NL)AOL. Although some coefficients are small, most

are not zero, and q = 1. In the last plot, we have shown the analysis

coefficients for x using the learned operator with NAAOL. It is clear

that the cosparsity has been increased significantly (from q = 1 to

q = 27). We have further plotted the cosparsities of the first 256
training samples y’s using the learned operator found by (NL)AOL

and corresponding approximations x’s, which are found by NAAOL,

in Figure 9. This figure also shows, the operator learning using

the noise aware formulation (4), where λ is finite, results in much

greater cosparsity. We show the learned operator found using NAAOL

algorithm in Figure 10. This experiment suggests that a harmonic

type operator should perform better than FD based operators for such

images. This is an interesting observation which should be explored

in the future in more detail.

The aim of next experiment is to compare denoising performance

of an image using a learned operator and a FD operator [52] which

is similar to the analysis operator in the TV denoising formulation

and is shown in the right panel of Figure 10). We keep the previous

experiment settings. The learned operator and the FD operator can

now be used to denoise a corrupted version of another face from

the database, using (7). The original face is shown in Figure 11 (a)

and the noisy version, with additive i.i.d Gaussian noise, is shown in

(b), with PSNR = 26.8720 dB. Denoising was performed using two

different regularisation settings: (λ = γ) = 0.3, 0.1. The bottom two

rows show the denoised images using the FD operator and the learned

operator. We can visually conclude that the two operators successfully

denoise the corrupted images with some slight differences. The results

with the learned operators are smoother (this is mostly visible on a

screen rather than a printed copy of the paper). The average PSNR’s

of the denoised images over 100 trials are presented in Table II.

Although we get a marginally better average PSNR using the learned

operator instead of FD when λ = 0.3, we get a noticeably better

average PSNR, i.e., 1 dB, when λ = 0.1.

As the initial goal was to increase the cosparsities of signals,

we have also shown the cosparsities of different patches of the

selected face image (see Figure 12). The horizontal axis presents

the index number of the patches. To compare the cosparsity using

these operators, we have plotted their differences and its average in
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TABLE II
AVERAGE PSNR (DB) OF THE DENOISED FACE IMAGES (100 TRIALS)
USING, A) FD AND B) THE LEARNED OPERATORS, WHEN THE AVERAGE

PSNR OF THE GIVEN NOISY IMAGES WAS 26.8720 DB

λ = 0.3 λ = 0.1

Finite Difference 28.9643 31.5775
Learned Operators 29.0254 32.5202

TABLE III
AVERAGE PSNR (DB) OF THE DENOISED FACE IMAGES (5 TRIALS), WHEN

THE AVERAGE PSNR OF THE GIVEN NOISY IMAGES WAS APPROXIMATELY

26.6 DB (VARIES SLIGHTLY IN DIFFERENT EXPERIMENTS)

Synthesis (OMP) Analysis (ℓ1)

DCT 34.63 31.6

Learned 34.87 34.22

the bottom plot. Positive values here demonstrate the cases when

the learned operator is a better operator than the FD operator. The

average, which is indeed positive, is plotted as a horizontal line.

As a result, the learned operator here performs much better (15%

improvement) than the FD operator.

The synthesis framework has been used for different applications

with some very promising results. In the last experiment, we have a

comparative study between the two frameworks, for denoising face

images. We chose the settings of the previous experiment and used

the patch based learning. For the reference, we used a two times

overcomplete DCT, which is a standard selection for the sparsity

based denoising [53]. For the synthesis sparse representation, we

used OMP method, and for the analysis sparse recovery, we used a

convex formulation similar to the previous experiment. The optimum

value of λ in the ℓ1 analysis was 0.04. The OMP was running

to achieve an approximation error equal to 1.15σ, where σ is the

standard deviation of the additive noise. This setting has been used

in [53], for denoising with the learned synthesis dictionary using K-

SVD method. We used another technique, which has also been used in

the mentioned reference, to average out over the overlapping-blocks

of images to reduce the blocking effect. The average PSNR’s of the

denoised face images over 5 trials, for the DCT dictionary/operator

are shown in the first row of Table III.

This experiment demonstrates that the synthesis framework works

better in the denoising of face images. We already have techniques

to learn dictionaries/operators for each of these three cases. For the

OMP and analysis based denoisings, we respectively chose K-SVD

[54] and the proposed CAOL methods. The Lagrange multiplier for

the analysis based denoising was λ = 0.09, while we used the

operator learned in the previous experiment. The average PSNR’s

of the denoised face images over 5 trials are presented in the second

row of Table III.

By comparing the synthesis denoising techniques, with the over-

complete DCT and K-SVD dictionaries, we find a slight improvement

(+0.2 dB) in the PSNR of the denoised images, using the learned

dictionary. This improvement is more significant in the analysis

denoising framework, as we achieved more than 2.5 dB improvement

in the PSNR of the denoised image. In comparison between two

frameworks, although the PSNR of the denoised image using the

learned operator is significantly improved, it is marginally behind

the synthesis competitor. However, we found these results very

promising, since this is only the beginning of the field “denoising

with the learned analysis operators”. More experiments are necessary

to find a reason for such a behaviour, which we leave it for the future

work.

Fig. 10. The learned analysis operator in a noisy setting, λ = 0.1 (left
panel) and the finite difference operator (right panel).

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Face image denoising. Top row: original face (left), noisy face
(right). Denoising results using (7). Middle row: λ = 0.3 using the learned
analysis operator (left) and the finite difference operator (right). Bottom row:
same as middle row with λ = 0.1.

V. SUMMARY AND CONCLUSION

In this paper, we presented a new concept for learning linear

analysis operators, called constrained analysis operator learning. The

need for a constraint in the learning process comes from the fact

that we have various trivial solutions, which we want to avoid by

selecting an appropriate constraint. A suitable constraint for this

problem was introduced after briefly explaining why some of the
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Fig. 12. Cosparsities of image patches (a)-(b) and a comparison (c).

canonical constraints in model learning problems are not sufficient for

this task. Although there is no claim that the introduced constraint is

the most suitable selection, we practically observed very good results

with the introduced algorithm.

In the simulation part, we showed some results to support our

statements about the relevance of the constraint and the learning

algorithm. We actually demonstrated that the learning framework can

recover a synthetic analysis operator, when the signals are cosparse

and enough training signals are given. By applying the algorithm

on two different types of image classes, i.e. piecewise constant and

approximately piecewise smooth images, we learned operators which

have respectively similarities with the finite difference and harmonic

type operators. This observation emphasises the fact that we benefit

from selecting the most appropriate analysis operator for image

processing tasks. The Matlab code of proposed simulations will be

available, as a part of the dictionary learning toolbox SMALLbox

[55], later.

The proposed constrained optimisation problem is a non-convex

program, for which we can often find a local optimum using

variational optimisation methods. In the appendix, we characterise the

local optima of such programs. This can be useful to avoid initialising

the algorithm with a local minima, and also for empirically checking

when an operator can be a local minima. The latter emphasises the

fact that we can recover such an operator, by starting the algorithm

with a point in a close neighbourhood of the operator, which we do

not know a priori.

APPENDIX A

THEORETICAL ANALYSIS OF THE CAOL

If we rewrite the optimisation program (4), using the UNTF

admissible set, we find the following program,

min
Ω,X

‖ΩX‖1 +
λ

2
‖Y − X‖2

F s. t. Ω
T
Ω = I

∀i ‖ωi‖2 = c.
(9)

The variational analysis [56] of the objective, near to a given pair

(Ω0,X0), provides the following proposition.

Proposition 1: A given pair (Ω0,X0) is a local minimum for (9)

if and only if ∆ = 0 and Σ = 0 are the only solutions of the

following convex program,

min
∆,Σ

Lλ(∆,Σ)
z }| {

‖Ω0X0 + ∆X0 + Ω0Σ‖1 + λ tr{ΣT (X0 − Y)}

s. t. ∆
T
Ω0 + Ω

T
0 ∆ = 0

∀i 〈ω0i
, δi〉 = 0.

(10)

Proposition 1 is actually checking the local optimality of a pair,

using the first-order approximation of the objective, which can be

achieved using X ← X0 + Σ and Ω ← Ω0 + ∆. The constraint of

(10) is the tangent space of the constraint of (9) at Ω0,

TC := {∆ : ∆
T
Ω0 + Ω

T
0 ∆ = 0 & ∀i 〈ω0i

, δi〉 = 0},

which is a linear subspace of R
a×n.

This proposition will be used in the next two subsections to

investigate the conditions for the local optimality of a point in two

different scenarios: (NA)AOL and NLAOL.

A. Noise Aware Analysis Operator Learning

The tightest condition for the local optimality of pair (Ω0,X0), is
the following necessary and sufficient condition.

Lemma 1: A pair (Ω0, X0) is a local optimum of (9) if and only

if the following inequality holds,

‖(∆X0 + Ω0Σ)Λ̄‖1 > | 〈∆X0 + Ω0Σ, sgn(Ω0X0)〉
+ λ tr{ΣT (X0 − Y)}|,

(11)

for all non-zero (∆, Σ) ∈ TC × R
n×l.

Proof: According to the proposition 1, we can check the optimal-

ity of (Ω0,X0) by checking that (∆, Σ) = (0,0) is the only solution

of (10). The proof here is formed by showing that the objective of

(10) increases if (Ω0,X0) is replaced with (Ω0 + ∆,X0 + Σ), or
equivalently, limt↓0

1
t
(Lλ(t∆, tΣ)−Lλ(0,0)) > 0, ∀Σ,∀∆ ∈ TC

5,

when (11) is assured. From the definitions of Lλ(∆, Σ) in (10) and

‖A‖1 = 〈A, sgnA〉, we have,

Lλ(t∆, tΣ) − Lλ(0,0)

=‖Ω0X0 + t(∆X0 + Ω0Σ)‖1 − ‖Ω0X0‖1 + tλ tr{ΣT
E}

= 〈Ω0X0 + t(∆X0 + Ω0Σ), sgn(Ω0X0 + t(∆X0 + Ω0Σ))〉
− 〈Ω0X0, sgn(Ω0X0)〉 + tλ tr{ΣT

E}
t↓0
= t 〈∆X0 + Ω0Σ, sgn(Ω0X0)〉
+t 〈∆X0 + Ω0Σ, sgn((∆X0 + Ω0Σ)Λ̄)〉 + tλ tr{ΣT

E}

=t 〈∆X0 + Ω0Σ, sgn(Ω0X0)〉
+t‖(∆X0 + Ω0Σ)Λ̄‖1 + tλ tr{ΣT

E}
(12)

where E := X0 −Y. The positivity of (12) is assured when

‖(∆X0 + Ω0Σ)Λ̄‖1 > | 〈∆X0 + Ω0Σ, sgn(Ω0X0)〉
+ λ tr{ΣT

E}|.

This completes the sufficiency of (11) for the optimality.

If (11) is violated, ∃(∆, Σ) ∈ TC × R
m×L such that

| 〈∆X0 + Ω0Σ, sgn(Ω0X0)〉 + λ tr{ΣT E}| is greater than

‖(∆X0 + Ω0Σ)Λ̄‖1. As the constraint TC , is a linear space, when

∆ and Σ are admissible, ±∆ and ±Σ are also admissible. If we

set s = sgn(〈∆X0 + Ω0Σ, sgn(Ω0X0)〉 + λ tr{ΣT E}) ∈ {−1, 1}
and (∆wc, Σwc) = (s∆, sΣ) ∈ TC × R

n×l, it is easy to show that

〈∆wcX0 + Ω0Σwc, sgn(Ω0X0)〉 + λ tr{ΣT

wcE}

+ 〈∆wcX0 + Ω0Σwc, sgn((∆wcX0 + Ω0Σwc)Λ̄)〉 < 0,

5This condition for the (local) optimality is related to the positivity
condition of directional derivative of Lλ for any admissible ∆ and Σ in
the tangent cone(s) of the constraint(s), see for example [56].
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which contradicts the optimality of (Ω0,X0), i.e. ∃(∆, Σ) ∈ TC ×
R

n×l, limt↓0
1
t
(Lλ(t∆, tΣ) − Lλ(0,0)) > 0. This completes the

necessary part of the lemma.

Remark 1: As lemma 1 is valid for any non-zero admissible pair

(∆, Σ), we can choose (∆,0) and (0, Σ) and get the following

necessary conditions for optimality,

‖(∆X0)Λ̄‖1 > | 〈∆X0, sgn(Ω0X0)〉 |, ∀∆ ∈ TC ,

‖(Ω0Σ)Λ̄‖1 > | 〈Ω0Σ, sgn(Ω0X0)〉 + λ tr{ΣT
E}|.

Lemma 2: A sufficient condition for the local optimality of a pair

(Ω0,X0) for (9) is,

‖(∆X0 + Ω0Σ)Λ̄‖1 > ‖(∆X0 + Ω0Σ)Λ‖1

+ λ| tr{ΣT (X0 − Y)}|,
(13)

for all (∆, Σ) ∈ TC × R
n×l.

Proof: The proof is based on finding an upper bound

for the right hand side of (11). Note that the maximum of

〈∆X0 + Ω0Σ, sgn(Ω0X0)〉 may be achieved when sgn(∆X0 +
Ω0Σ) is equal to sgn(Ω0X0) on Λ. Thus,

〈∆X0 + Ω0Σ, sgn(Ω0X0)〉 ≤ ‖(∆X0 + Ω0Σ)Λ‖1.

This means that condition (13) implies the condition of Lemma 1

and (Ω0,X0) is thus a local minimum for (9).

Remark 2: Note that lemma 2 only presents a sufficient condition,

as the sign pattern match may not happen, i.e. sgn(∆X0 +Ω0Σ) -=
sgn(Ω0X0), ∀∆ ∈ TC , Σ.

Remark 3: Although the recovery condition here has some simi-

larities with the dictionary recovery conditions [36], [39], the analysis

learning formulation is slightly more involved as it is not possible

to check the local optimality based on each parameter, Ω or X,

separately. This is caused by the fact that the non-differentiable term,

i.e ℓ1, is a function of both parameters. Here, it makes the problem

non-separable and the joint optimality condition is needed to be

checked.

B. Noiseless Analysis Operator Learning

When the noise and model mismatch does not exist, we can solve

(9) with λ → ∞. This case may be considered as an ideal operator

learning form, as Y is here exactly cosparse. This formulation can

be used as a benchmark for the operator recovery, very similar to the

framework in [36], [39] for dictionary recovery. In this setting we

have X = Y ∈ R
n×l, we can simplify the problem as follows,

min
Ω

‖ΩX‖1 s. t. Ω
T
Ω = I

∀i ‖ωi‖2 = c.
(14)

As this formulation has a single parameter Ω, the analysis is

significantly easier. (14) has n × a, i.e. Ωa×n, unknown parameters

and n2 + a constraints. For a full rank X, the system of equations is

underdetermined if na > n2+a. As we assume X is rich enough and

therefore full rank, minimising the objective ‖ΩX‖1 is reasonable if

a > n2/(n − 1).

We use formulation (14) to recover operator Ω0, while X is

cosparse with Ω0. The following proposition investigate the local

optimality conditions of a point Ω0 for (14), which is actually

equivalent to Proposition 1, when λ → ∞. This proposition has a

flavor similar to those obtained in the context of dictionary learning

for the synthesis model [36], as well as in hybrid synthesis/analysis

framework [57].

Proposition 2: An operator Ω0 is locally identifiable using (14),

if and only if ∆ = 0 is the only solution of the following program,

min
∆

‖(Ω0 + ∆)X‖1 s. t. ∆
T
Ω0 + Ω

T
0 ∆ = 0

∀i 〈ω0i
, δi〉 = 0.

(15)

Note that (15) has a convex objective with a linear constraint. This

matrix valued convex problem has a close relation to the analysis

parsimony problems investigated in [12], [13], [11], [14], where XT

acts as the analysis operator of the columns of (Ω0+∆)T . We present

some conditions for locally identifiability of a Ω0 using variational

analysis. A similar technique for the analysis parsimony problems

have already been used in [11], [14].

The kernel of the matrix X has an important role in the identi-

fiability of the analysis operator. Let Xn×l = Un×nΣn×lV
T
l×l be

a singular value decomposition of X. We can now partition V into

two parts, i.e. one part VT
1 is multiplied to Σ1 = diag(σi) ∈ R

n×n,

which is the non-zero diagonal part of Σ, and V0, a basis for the

kernel of X, and find X = UΣ1V
T
1 and X† = V1Σ

−1

1 UT . Let two

new parameters be defined as Z0 := Ω0X , ∆z := ∆X ,∈ R
a×l.

We can now reformulate (15) based on the new parameters as follows,

min
∆z

‖Z0 + ∆z‖1 s. t. V
T

1

`

∆
T

z Z0 + Z
T

0 ∆z

´

V1 = 0

∆z

`

V1Σ
−2

1 V
T

1

´

Z
T

0 ◦ I = 0

∆zV0 = 0

(16)

where ◦ is the Hadamard product. The constraint of (16) is linear,

which it means, we can represent it based on a linear operator Ψ :

R
al → R

n2+a+a(l−n) and the vector version of ∆z , δv
z = vect(∆z)

as Ψδv
z = 0. Such an operator is derived in Appendix B. Ψ has a

nontrivial kernel when a > n2/(n−1). We can now characterise the

kernel subspace of the constraint of (16), TCs , as follows,

TCs = {∆ ∈ R
a×l : Ψδ

v = 0, δv = vect(∆)}

Lemma 3: An operator Ω0 is identifiable using the cosparse train-

ing samples X, where ∀i : supp(Ωxi) = λi, and (14), if and only

if for all ∆z ∈ TCs ,

| 〈sgn(Ω0X), ∆z〉 | < ‖(∆z)Λ̄‖1 (17)

where Λ̄ is the cosupport of X, i.e. Λ̄ = {(i, j) : (Ω0X)i j = 0}.
Proof: As (15) is a convex problem, ∆ = 0 is the only solution

iff ‖(Ω0 + t∆)X0‖1 −‖Ω0X0‖1 > 0, ∀∆ ∈ TCs and t ↓ 0. This is
equivalent to the statement based on (16) as follows, ∆ = ∆zX

† = 0

is the only solution of (15) iff ‖Z0+t∆z‖1−‖Z0‖1 > 0, ∀∆z ∈ TCs

and t ↓ 0. We can now find the necessary and sufficient condition

for the subject as follow,

‖Z0+ t∆z‖1− ‖Z0‖1 = 〈Z0+ t∆z, sgn(Z0+ t∆z)〉− ‖Z0‖1

t↓0
= 〈Z0 + t∆z, sgn(Z0)〉

+ t 〈∆z, sgn(∆z)〉− ‖Z0‖1

= t 〈∆z, sgn(Z0)〉 + t‖(∆z)Λ̄‖1

As t > 0, positivity of ‖Z0 + t∆z‖1− ‖Z0‖1 is equivalent to the

positivity of 〈∆z, sgn(Z0)〉 + ‖(∆z)Λ̄‖1. TCs is a linear space and

therefore if ∆z ∈ TCs , −∆z ∈ TCs too. This freedom in choosing

the sign of ∆z , lets us have 〈∆′
z, sgn(Z0)〉 = −| 〈∆z, sgn(Z0)〉 |

for any given ∆z , such that | 〈∆z, sgn(Z0)〉 | = | 〈∆′
z, sgn(Z0)〉 |.

Therefore, the necessary and sufficient condition for ∆ = 0 to be

the only solution of (15) is ∀∆z ∈ TCs , | 〈∆z, sgn(Ω0X)〉 | <
‖(∆z)Λ̄‖1

Theorem 1: Any analysis operator Ω0 : R
n → R

a is identifiable

by (14), where X = [xi]i∈[1,l], such that ∀i : supp(Ωxi) = λi, a−
|λi| ≥ q, is a training q-cosparse matrix, if ∀∆z ∈ TCs ,

‖(∆z)Λ‖1 < ‖(∆z)Λ̄‖1 (18)
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where Λ̄ = Λ
c.

Proof: This theorem is a generalisation of lemma 3. The proof is

based on, firstly, finding a lower-bound for the left-hand side of (17)

and, secondly, generalising the lemma using any possible cosparsity

pattern Λ̄.

〈sgn(Ω0X), ∆z〉 is never greater than 〈sgn(∆z), ∆z〉, as,

〈sgn(Ω0X), ∆z〉 =
X

(i,j)∈Λ

|(∆z)i,j | sgn(∆z)i,j sgn(Ω0X)i,j

≤
X

(i,j)∈Λ

|(∆z)i,j |

=
X

(i,j)∈Λ

(∆z)i,j sgn(∆z)i,j

= 〈sgn(∆z)Λ, ∆z〉

This assures that 〈sgn(Ω0X), ∆z〉 ≤ ‖(∆z)Λ‖1. For any Ω0, it

assures that if ‖(∆z)Λ‖1 < ‖(∆z)Λ̄‖1, Ω0 is identifiable based on

lemma 3. Now, if we consider all Ω0 providing q-cosparse training

samples, with some possible cosparsity Λ̄, the inequality (18) assures

the identifiability of Ω0.

Remark 4: Note that, not all index sets of cardinality q can produce

cosparsity patterns Λ̄, given Ω0 [11]. Similarly, not all sign patterns

are feasible as sgn(Ω0X), when X is a variable matrix. As a result,

the inequality condition of Theorem 1, i.e. (18), is just a sufficient

condition for the local identifiability of any Ω0’s, providing some q-
cosparse training signals. While (17) is the necessary and sufficient

condition for the local identifiability, we can empirically show that

(18) is not tight, see Figure 4.

APPENDIX B

DERIVING A SIMPLE LINEAR REPRESENTATION OF THE

CONSTRAINTS

The optimisation problem (16) has three constraints, where the last

two are clearly linear, and they can be represented as,

X

k

(∆z)i k (V0)k j = 0, ∀i ∈ [1, n], j ∈ [1, l − m]

X

k

∆z i k Q k i = 0, ∀i ∈ [1, n],
(19)

where Q := V1Σ
−2
1 VT

1 ZT
0 . Let A := Z0V1. The first constraint

can now be reformulated as, VT
1 ∆

T
z A + AT

∆zV1 = 0. To derive

this equation in a similar form to (19), we reformulate ∆zV1, then

right-multiply (∆zV1)
T with A.

`

V
T

1 ∆
T

z

´

i j
=
X

1≤r≤l

(∆z)j r (V1)r i

((VT

1 ∆
T

z )A)i j =
X

1≤k≤n

 

X

1≤r≤l

(∆z)k r (V1)r i

!

Ak j

=
X

1≤k≤n

X

1≤r≤l

(V1)r i Ak j (∆z)k r

We now reformulate the first constraint as,

X

1≤k≤n

X

1≤r≤l

((V1)r i Ak j + (V1)r j Ak i)(∆z)k r = 0

∀i, j ∈ [1, m]

(20)

We can now generate Ψ(a+a(l−n)+n2)×al using the weights in (19)

and (20), corresponding to ∆z, and make a linear presentation as

Ψδv
z = 0, δv

z = vect(∆z).
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