272 research outputs found

    Adaptive EDCF: Enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks

    Get PDF
    This paper describes an adaptive service differentiation scheme for QoS enhancement in IEEE 802.11 wireless ad-hoc networks. Our approach, called adaptive enhanced distributed coordination function (AEDCF), is derived from the new EDCF introduced in the upcoming IEEE 802.11e standard. Our scheme aims to share the transmission channel efficiently. Relative priorities are provisioned by adjusting the size of the contention window (CW) of each traffic class taking into account both applications requirements and network conditions. We evaluate through simulations the performance of AEDCF and compare it with the EDCF scheme proposed in the 802.11e. Results show that AEDCF outperforms the basic EDCF, especially at high traffic load conditions. Indeed, our scheme increases the medium utilization ratio and reduces for more than 50% the collision rate. While achieving delay differentiation, the overall goodput obtained is up to 25% higher than EDCF. Moreover, the complexity of AEDCF remains similar to the EDCF scheme, enabling the design of cheap implementations

    Adaptive fair channel allocation for QoS enhancement in IEEE 802.11 wireless LANs

    Get PDF
    The emerging widespread use of real-time multimedia applications over wireless networks makes the support of quality of service (QoS) a key problem. In this paper, we focus on QoS support mechanisms for IEEE 802.11 wireless ad-hoc networks. First, we review limitations of the upcoming IEEE 802.11e enhanced DCF (EDCF) and other enhanced MAC schemes that have been proposed to support QoS for 802.11 ad-hoc networks. Then, we describe a new scheme called adaptive fair EDCF that extends EDCF, by increasing the contention window during deferring periods when the channel is busy, and by using an adaptive fast backoff mechanism when the channel is idle. Our scheme computes an adaptive backoff threshold for each priority level by taking into account the channel load. The new scheme significantly improves the quality of multimedia applications. Moreover, it increases the overall throughput obtained both in medium and high load cases. Simulution results show that our new scheme outperforms EDCF and other enhanced schemes. Finally, we show that the adaptive fair EDCF scheme achieves a high degree of fairness among applications of the same priority level

    Management of services differentiation and guarantee in IEEE 802.11e wireless LANs

    Get PDF

    Quality of Service Issues for Reinforcement Learning Based Routing Algorithm for Ad-Hoc Networks

    Get PDF
    Mobile ad-hoc networks are dynamic networks which are decentralized and autonomous in nature. Many routing algorithms have been proposed for these dynamic networks. It is an important problem to model Quality of Service requirements on these types of algorithms which traditionally have certain limitations. To model this scenario we have considered a reinforcement learning algorithm SAMPLE. SAMPLE promises to deal effectively with congestion and under high traffic load. As it is natural for ad-hoc networks to move in groups, we have considered the various group mobility models. The Pursue Mobility Model with its superiormobilitymetrics exhibits better performance. At the data link layer we have considered IEEE 802.11e, a MAC layer which has provisions to support QoS. As mobile ad-hoc networks are constrained by resources like energy and bandwidth, it is imperative for them to cooperate in a reasonably selfish manner. Thus, in this paper we propose cooperation with a moderately punishing algorithm based on game theory. The proposed algorithm in synchronization with SAMPLE yields better results on IEEE 802.11e

    WLAN 802.11e evaluation performance using OPNET

    Get PDF
    The low cost and easy deployment of Wireless LAN 802.11 standard means it becomes more and more popular, but it has a vital drawback with regard to Quality of Service (QoS). QoS defines the ability of network to introduce consistent services for data transmission, and is evaluated in terms of specific parameters such as jitter, delay, and packet loss. These parameters describe data traffic quality over a network. Service differentiation should be offered to let higher priority multimedia traffic to get a preferred treatment. This deficiency of Wireless LAN 802.11 MAC mechanisms in offering QoS support is a major obstacle in the adaptation of modern multimedia applications in Wireless LAN 802.11 networks. This paper aims to build different scenarios to evaluate QoS characteristics and to examine the effect of enhancement on the QoS. The evaluation, implemented using the OPNET simulator, will contain the different parameters of Wireless LAN 802.11e to see how this enhancement in distributed channel access increases the performance over the Wireless LAN 802.11 standard. The results give a clear picture that the enhanced standard offers a very effective service mechanism to provide QoS support

    Analysis of Packet Throughput and Delay in IEEE 802.11 WLANs with TCP Traffic

    Get PDF
    The IEEE 802.11 standard is a successfulwireless local area networks (WLAN) technology,because of its easy deployment. With WLAN, theability of the IEEE802.11 standard to supportmultimedia applications with high quality of service(QoS) requirements has increased. This paperevaluates the capability of QoS support in EnhancedDistributed Channel Access (EDCA) mechanism of theIEEE 802.11e standard using TCP protocol. TheEDCA is an enhancement for QoS support in 802.11.EDCA mechanisms allow prioritized medium accessfor applications with high QoS requirements byassigning different priorities to the access categories.The current work discusses the performanceevaluation of 802.11 and 802.11e by simulations usingTCP protocol. A comparative discussion between DCFund EDCA with TCP protocol is reported for differentservices, such as voice, video, best-effort andbackground traffic. Results and simulations show thatthe TCP protocol is usable for transferring audio andvideo data within special programs and applications.Moreover, it is shown that the UDP protocol with itshigher performance is more suitable for this task

    A New Buffer and Energy Based Scheduling Scheme for Supporting QoS in MANETs

    Get PDF
    Today, the original IEEE 802.11 standard has several problems in providing Quality of Service in MANETs. A single FIFO queue is used in best effort manner and it does not support QoS. The upcoming IEEE 802.11e was drafted to overcome these drawbacks. In this paper we describe a new multiple queuing system with an adaptive scheduling taking into account the states of buffers and energy consumption in a mobile ad hoc network. The proposed scheduling scheme uses dynamic weights for each queue. We study the performance of this scheme and compare it with the original IEEE 802.11b and the upcoming IEEE 802.11e. We show through simulations that the proposed buffer and energy based scheduling scheme improves overall end-to-end throughput, and gives better results than the original 802.11b and the Enhanced Distributed Coordination Function (EDCF), in terms of delay and total received and lost packets, as well as support service differentiation over multi-hop ad hoc networks

    Towards End-to-End QoS in Ad Hoc Networks

    Get PDF
    http://citi.insa-lyon.fr/wons2006/index.htmlIn this paper, we address the problem of supporting adaptive QoS resource management in mobile ad hoc networks, by proposing an efficient model for providing proportional endto- end QoS between classes. The effectiveness of our proposed solution in meeting desired QoS differentiation at a specific node and from end-to-end are assessed by simulation using a queueing network model implemented in QNAP. The experiments results show that the proposed solution provides consistent proportional differentiation for any service class and validates our claim even under bursty traffic and fading channel conditions

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN
    • …
    corecore