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Wasan Pattara-Atikom

University of Pittsburgh, 2005

Wireless Local Area Networks (WLANs) are gaining popularity at an unprecedented rate, at

home, at work, and in public hot spot locations. As these networks become ubiquitous and

an integral part of the infrastructure, they will be increasingly used for multi-media applica-

tions. The heart of the current 802.11 WLANs mechanism is the Distributed Coordination

Function (DCF) which does not have any Quality of Service (QoS) support. The emergence

of multimedia applications, such as the local services in WLANs hot-spots and distributions

of entertainment in residential WLANs, has prompted research in QoS support for WLANs.

The absence of QoS support results in applications with drastically different requirements

receiving the same (yet potentially unsatisfactory) service. Without absolute throughput

support, the performance of applications with stringent throughput requirements will not

be met. Without relative throughput support, heterogeneous types of applications will be

treated unfairly and their performance will be poor. Without delay constraint support,

time-sensitive applications will not even be possible. The objective of this dissertation is,

therefore, to develop a comprehensive and integrated solution to provide effective and efficient

QoS support in WLANs in a distributed, fair, scalable, and robust manner.

In this dissertation, we present a novel distributed QoS mechanism called Distributed

Relative/Absolute Fair Throughput with Delay Support (DRAFT+D). DRAFT+D is de-

signed specifically to provide integrated QoS support in IEEE 802.11 WLANs. Unlike any

other distributed QoS mechanism, DRAFT+D supports two QoS metrics (throughput and

delay) with two QoS models (absolute and relative) under two fairness constraints (utili-

tarian and temporal fairness) in the same mechanism at the same time a fully distributed
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manner. DRAFT+D is also equipped with safeguards against excessive traffic injection.

DRAFT+D operates as a fair-queuing mechanism that controls packet transmissions (a) by

using a distributed deficit round robin mechanism and (b) by modifying the way Backoff

Interval (BI) are calculated for packets of different traffic classes. Fair relative through-

put support is achieved by calculating BI based on the throughput requirements. Absolute

throughput and delay support are achieved by allocating sufficient shares of bandwidth to

these types of traffic.
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1.0 INTRODUCTION

Wireless Local Area Networks (WLANs) have emerged as an untethered alternative for access

networks. As the price of WLAN’s Network Interface Cards (NICs) dropped from $695 in

1999 to $24.99 in 2004 [1], WLANs have rapidly become the networks of choice. The strong

and growing demand for WLANs in both consumer markets such as residential networks

[2, 3] and industrial markets such as retail, education, health care and wireless hot-spots in

hotels, airports, and restaurants [1, 4] has been documented repeatedly in business, industry,

and education.

One of the many reasons for the widespread popularity of WLANs is that WLANs

allow users to access networks without physically being attached to them. Users can work

wherever, in their offices, warehouses or backyards, and whenever they want without being

constrained by a physical tethered network connection. Other advantages of WLANs [1]

are reduced errors in health-care facility, improved profitability, flexibility, time savings, and

cost savings. Increased productivity by as much as 22% was also reported in [5]. The author

in [1] suggested that pervasive high-speed wireless data services are both compelling and

inevitable. It is just a question of how and when. And if we know the answer to how, then

it is only a matter of time until WLANs will become a ubiquitous reality.

Recent statistics from Business Communications Review [6] reported that the worldwide

WLAN market grew more than 200 percent from 2000 to 2002. Infonetics Research [7]

reported that the worldwide market revenue of WLAN is expected to grow to $786.2 million

by 2Q05. WLAN revenues are expected to grow to $2.6 billion in 2005 [8]. This number is

estimated to reach $8.6 billion in 2008 [9]. According to Infonetics Research, the worldwide

units will grow at 131% per annum [7]. It reported that there were 39 million WLAN users

at the end of 2004, compared to 1.185 billion fixed lines and 1.5 billion mobile phones. The
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number of WLAN users is expected to grow threefold and reach 120 million by 2008 [9].

International Data Corp (IDC) [10] also reported that the market for hotspots grew 13

times in term subscribers during the year of 2002 and 2003 and it is also expected to reach 7

million subscribers by 2008 with total revenues of $600 million. In-Stat/MDR [11] reported

that WLAN segment is the fastest growing segment of the networking products industry.

The explosive growth in WLANs in the past few years has put Atheros Communications,

Inc., a leading developer of WLAN chipsets, as the fastest growing private company in Silicon

Valley [12].

In addition to data applications, WLANs has begun to attract attention from the cellular

community. Cellular service providers now perceive WLANs and Third-Generation (3G) cel-

lular technologies as complementary rather than competitive. The cellular service provides

seamless coverage and mobility, while WLANs provide high speed connections in selected

areas [13, 14]. Integrated WLAN mobile handsets have been introduced by many leading

companies, such as SyChip [15], NEC [16], and Cisco [17]. The first WLAN/cellular handsets

are already available since the last quarter of 2004. The adoption of WLAN/cellular hand-

sets is expected to grow dramatically by 2009 [18]. Using 802.11 WLANs as the last mile

alternative has also been suggested in [19]. Several market forecasts [4, 13, 20, 21] report

that the WLANs market will continue to grow tremendously in the next decade.

1.1 BACKGROUND TO THE STUDY

Applications that have been traditionally used in wired-LANs are also gradually and increas-

ingly being used in WLANs. The benefits of WLANs are not limited to data networking

among computers. As home networking begins to gain popularity, home entertainment (au-

dio/video) will become an important application making the need to unwire the living room

as the next target. In the years ahead, residential wireless networks will become integral parts

of digital homes and will bridge the data network interconnecting desktop PCs, mobile lap-

tops and handhelds, and the consumer electronics network handling multimedia distribution

among High-Definition TVs (HDTVs), DVD payers, digital cameras, camcorders, videogame
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consoles, cellphones and emerging Internet appliances [22]. There is recent interest in using

Voice over WLAN (VoWLAN) [23, 24] as a low cost alternative for voice communications,

or as extension to cellular networks, e.g. Voice over IP (VoIP) over WLANs [25, 26]. Some

applications such as email, web access, and data transfer can tolerate high loss and delay,

but other applications such as multimedia and Quality of Service (QoS)-sensitive (delay-

constraint or throughput-specific) applications cannot. The recent survey in [1] confirmed

that Quality of Service (QoS) support is among the top 10 most important features of

WLANs. This has created an urgent need for QoS support in WLAN.

In the past decade, there have been tremendous efforts to enhance and incorporate QoS

over the Internet. Specifically, two main approaches have been proposed, namely Integrated

Service (IntServ) [27] and Differentiated Service (DiffServ) [28]. While the main idea of

IntServ is to provide end-to-end per-flow QoS guarantees, the main idea behind DiffServ is

to provide simple service differentiation according to specified service types. Since we have

potential QoS support at the IP layer, one might question why we still need QoS support

mechanisms at the MAC layer. Although, IntServ can potentially provide the QoS support

without a need for QoS mechanisms at the MAC layer, the interest in using IntServ has

subsided due to issues of scalability, complexity, and practicality. In contrast, DiffServ is

simple and does not require end-to-end signaling. However, it is only applicable within the

core IP networks. In its present form, DiffServ does not address the issue of QoS in edge

networks, such WLANs[29].

The bandwidth of WLANs is typically orders of magnitude lower than traditional wired-

LANs (54 Mbps compared to 10 Gbps). Due to the significantly limited bandwidth, con-

gestion is more likely in WLANs. Although there is no QoS support in widely adopted

wired-LANs (such as Ethernet, Fast Ethernet, and Gigabit Ethernet), the emerging local

services, particularly multimedia services, both in WLANs hotspots and residential net-

works make limited use of the wired backbone and hence QoS support over the wireless link

becomes important. Even though end-to-end QoS may not be available, several services in

WLANs have local traffic (e.g., from a DVD player in a living room to an HDTV set in

the bedroom). This traffic may not depend on wired-QoS since they may never leave the

wireless portion of the network. However, this traffic will require QoS support in the WLAN.
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Without QoS support, the performance of multimedia and QoS-sensitive applications will

be severely degraded and eventually become jeopardized. The next generation killer appli-

cations are not yet determined but they are expected to be multimedia based. The provision

of QoS support in WLANs is the focus of this research study.

1.2 DESIRED PROPERTIES OF QOS MECHANISMS IN WLANs

Based on our observations of the current mechanisms available in the state of the art and

proposed in the literature, we compiled the following list of desired properties for any QoS

support mechanism in WLAN. Often, there is a trade-off between these properties. While

some properties are achieved in some mechanisms, other properties are sacrificed. We believe

a balance of these properties is required to achieve full benefits of QoS support is one of the

most crucial research tasks to effectively and efficiently deliver QoS support in WLANs.

• The mechanism should provide QoS support with a high degree of fairness, particularly

when it provides relative throughput support. Without fairness, traffic classes may suffer

unfair bandwidth allocation at minimum to more serious problems like starvation.

• The mechanism should provide QoS support with no changes or minimum changes to the

IEEE 802.11 MAC mechanism, i.e., the Distributed Coordination Function (DCF) mode

of IEEE 802.11. More specifically, rather than coming up with a completely brand new

MAC mechanism, a new way in which parameters of DCF are calculated and selected is

a better alternative. These parameters are discussed in chapter 2. With this approach,

no changes or minimum changes to the underlying mechanism should be needed. The

benefit of this approach is that the proposed mechanism is likely to be compatible with

the current mechanism and easier to implement and adopt.

• The mechanism should provide QoS support with high scalability. By scalability, we

mean that the QoS support will not degrade even for a high number of connections

with different data rates from a large number of Mobile Stations (MSs) active at the

same time. As the data rate of WLANs continue to increase (e.g., 156 Mbps WLAN

has already been proposed in [30] and 100-500 Mbps WLAN is being standardized under

4



IEEE 802.11n [31]), we expect a high number of connections and MSs to exist in a WLAN.

In particular, revenue-critical low data rate connections such as voice connections from

cellular networks or Voice over WLAN (VoWLAN) connections within the WLANs are

likely to be numerous. Therefore, the ability of the proposed mechanism to maintain a

good performance as the number of participant MSs or connections increases is a vital

feature to the success and continuing adoption of WLANs.

• The mechanism should provide QoS support with very low variation of throughput. The

performance of most multimedia applications depends largely on the stability and low

variation of the available bandwidth. Without low throughput variation, the performance

of multimedia and real-time applications will be compromised.

• The mechanism should provide QoS support with minimum requirements of admission

control. To provide absolute throughput support, a simple admission control and resource

reservation mechanism to partition and allocate the available bandwidth is needed. How-

ever, admission control adds overhead and complexity and it should only be needed when

it is absolutely necessary, e.g. for partitioning bandwidth between absolute and relative

throughput classes.

• The mechanism should provide QoS support with ease of user requirement translation. In

most QoS support mechanisms in the current literature, the relationship between the user

requirements, such as throughput or delay, and QoS parameters has not been addressed.

This relationship can be complicated making it difficult to translate from the user’s QoS

requirements to the network QoS parameters. Without a proper translation between the

user’s QoS requirement and the network QoS parameters, the QoS mechanism in the

network or Medium Access Control (MAC) layers may not understand the demand of

the user correctly; therefore, the demand from the user may not be fulfilled adequately.

In our mechanism, we will consider the user requirement translation as an important

issue. The mechanism should provide QoS support with a direct and easy translation

from the user’s requirement.

• The mechanism should provide QoS support in a highly distributed manner. By dis-

tributed manner, we mean the mechanism should not require a central control. Rather,

the mechanism should reside in the MS and operate independently from the mechanisms
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in other MSs. As the history of Ethernet and 802.11 suggest, a highly distributed nature

is one of the most attractive features. Many researchers believe that being distributed

in nature was the key to the success and wide adoption of Ethernet and current WLAN

technologies.

• The mechanism should provide QoS support with the ability to adapt to unexpected

network loads. Two scenarios of network load are under-loaded and overloaded. In

the under-loaded scenario, the total throughput requirements are less than the effective

channel capacity. In this case, the requested throughput of a traffic class that demands

only relative throughput1 should be fully satisfied. However, in the overloaded scenario,

the total requirement from all traffic streams is higher than the effective channel capacity.

In this scenario, the mechanism should adapt so that the throughput provided to traffic

classes demanding relative throughput remains fair while the throughput of traffic classes

demanding absolute throughput should be fully satisfied in spite of the network load.

• The mechanism should provide QoS support with minimum computational complexity. In

the past, many QoS mechanisms were proposed and promised a hard guaranteed service;

however these mechanisms usually suffered from high computational complexity and

became impractical to implement. History suggests that the lack of simplicity inhibits the

wide adoption of these mechanisms. Therefore, it is important to keep the computational

complexity of the proposed mechanism to be as low as possible.

• The mechanism should provide QoS support with robustness. In the future, hetero-

geneous applications ranging from those with low bandwidth requirements and high

tolerance to loss and delay, e.g. email, to those with high bandwidth requirement and

sensitivity to delay, e.g. VoIP and real-time video, are to be proliferated in WLANs. The

performance of the mechanism under various scenarios such as the presence of hidden

nodes and usage of request-to-send/clear-to-send (RTS/CTS - discussed in Chapter 2)

and heterogeneous traffic types, should be maintained equally well.

• The mechanism should be an integrated solution. By integrated solution, we mean the

1Throughput support can be classified into two flavors: relative throughput and absolute throughput. By
relative throughput support, we mean the ability to allocate different bandwidths to different traffic classes in
proportion to their requirements. By absolute throughput support, we mean the ability to deliver a specific
throughput. Media distribution and voice telephony are the examples for applications that requires absolute
throughput support.
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mechanism should support several QoS objectives (throughput, variation of throughput,

delay constraint), throughput requirements (absolute or relative), and priorities (low,

medium, or high) at the same time in the same mechanism.

Research on distributed QoS support mechanisms for 802.11 networks is a relatively

new area of study, motivated by emerging applications requiring QoS support. The current

mechanisms use well known QoS schemes (based on priority and fair queuing) from wired

networks and map QoS requirements onto 802.11 MAC parameters. However, it remains

unclear what are the right set of MAC parameters for priority-based mechanisms like En-

hanced Distributed Channel Access (EDCA) to achieve a satisfactory QoS support. Most

schemes in the research literature have focused on only throughput delivery; however other

QoS metrics, such as delay, need more attention. The majority of current mechanisms pro-

vide only QoS differentiation, but not specific QoS support. The future applications are

expected to be multimedia-based and used commonly in WLANs. These applications are

time-sensitive and will require stringent QoS support. The next generation QoS mechanism

in WLANs, therefore, should be designed to provide QoS to support both throughput and

delay assurance.

Without QoS support, applications with drastically different requirements may receive

the same yet potentially unsatisfied service. Without absolute throughput support, the per-

formance of applications with stringent throughput requirement such as VoIP will not be

met and eventually will be jeopardized. Without relative throughput support, heterogeneous

types of applications will be treated unfairly and their performance may be poor. Without

delay constraint support, time-sensitive applications will not even be possible. We argue that

these QoS features should be all supported. The criteria to evaluate how well a mechanism

can provide these services was given in the desired properties discussed above. These prop-

erties include fairness, scalability, robustness, integration, and other important requirements

such as changes needs from based mechanism, user’s translation, and distributed control. To

the best of our knowledge, there is no distributed mechanism that addresses and achieves

these goals.
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1.3 RESEARCH CONTRIBUTIONS

Three objectives of this study are to 1) review and identify the deficiencies of the existing

distributed QoS mechanisms in WLANs, 2) implement and compare the performance of

selected priority-based and fair-schedule-based mechanisms, 3) develop and evaluate a novel

QoS mechanism in WLANs. According to the review of literature, we found that QoS

support in WLANs can be classified into: a) priority-based and b) fair-scheduling-based

approaches. Most research efforts were invested in priority-based approaches and focused

only on throughput delivery. Other issues, such as delay support, throughput variation,

and QoS translation, remain largely unaddressed. Performance comparison of four QoS

mechanisms in WLANs showed that it remains unclear what the right set of MAC parameters

to achieve a robust QoS support in EDCA are. While, the existing fair-scheduled-based

mechanisms provide only fair throughput support, they also suffer from complicated QoS

translation, high variation of throughput and delay, and performance degradation in certain

scenarios, e.g., without employing RTS/CTS.

The main contribution of this dissertation is to a novel distributed QoS mechanism

in WLANs, called Distributed Relative/Absolute Fair Throughput with Delay Support

(DRAFT+D). DRAFT+D provides integrated QoS support and exhibits several desired

properties. The main features of DRAFT+D include:

• Integrated QoS Support: DRAFT+D supports two QoS metrics (throughput and de-

lay) with two QoS models (absolute and relative) under two fairness constraints (utilitar-

ian and temporal fairness) with safeguard against excessive traffic in the same mechanism

at the same time.

• Fully Distributed in Nature: All QoS support including relative throughput, absolute

throughput, absolute delay, and safeguard support are achieved in a fully distributed

manner without requiring the exchange or collection of any information from other MSs.

• Several Desired Properties: With modification of only one WLAN parameter, DRAFT+D

achieved QoS support with high degree of fairness, high scalability, low variation of

throughput and delay, ease of QoS translation, and high robustness in various and di-

verse scenarios.
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1.4 ORGANIZATION

The remainder of this dissertation is organized as follows. Chapter 2 presents a review of the

available literature in the field of QoS in WLANs. A hierarchical taxonomy of distributed

MAC mechanisms in IEEE 802.11 WLANs is presented. The review is organized according to

the classification presented in [32]. The goal is to provide the reader with an overview of the

state-of-the-art in the field, and to identify the major shortcomings in the existing work. The

research problems raised in this chapter will be used to propose a novel QoS support solution

in Chapter 3. We will present baseline performance and sensitivity analysis in Chapter 4 and

comprehensive simulation results in Chapter 5. We will show that DRAFT+D can provide

three types of QoS support: a) relative throughput support, b) absolute throughput support,

and c) absolute delay support, in a robust manner under several conditions. Finally, we will

summarize the contribution and discuss future work in Chapter 6.
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2.0 BACKGROUND AND LITERATURE REVIEW

In this chapter, state-of-the-art approaches to provide Quality of Service (QoS) support in

Wireless Local Area Networks (WLANs) are presented. Although centralized protocols, such

as Point Coordination function (PCF) and HIgh PErformance Radio Local Area Network

(HIPERLAN)/2, promised precise QoS guarantee, their adoption has been limited. On the

contrary, distributed protocols such as the Distributed Coordination Function (DCF) of

IEEE 802.11 that is not equipped with any QoS support have been widely and continuously

adopted. The reasons are that these distributed protocols are easier to implement, require

smaller overheads, incur less complexity, and more robust than the centralized ones. From

the evolution in data networks, it is clear that distributed protocols are more favored. We

believe that they will continue to dominate data networks compared to centralized protocols.

For the purpose of this study, we will only address distributed QoS mechanisms based on

IEEE 802.11 at the Medium Access Control (MAC) level in WLANs. We will illustrate the

overview, taxonomy, essential concepts, and difficulties in providing QoS support in WLANs.

Despite research attention, the literature survey suggests that most research efforts were

invested in priority-based approaches, largely due to the standardization of Enhanced Dis-

tributed Channel Access (EDCA) of IEEE 802.11. However, the current mechanisms often

provide only QoS differentiation or only throughput support, while other important issues,

such as throughput variation, delay, and QoS translation, remain largely unaddressed. To

date, no mechanism has an integrated solution to the problem of multidimensional QoS sup-

port in WLANs. We believe that what we need is an integrated mechanism that can provide

both fair and specific QoS support, for both throughput and delay requirements, under dif-

ferent fairness criteria with small overhead, high robustness, scalability, and is distributed

in nature.
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2.1 NOTION OF QUALITY OF SERVICE

Quality of Service (QoS) is the ability to provide a level of assurance for data delivery over the

network. For example, traffic of different classes or traffic with different requirements receive

different levels of QoS assurance. Therefore, we will use the term QoS support mechanism to

refer to any mechanism that is equipped by any kind of QoS support. The term QoS guar-

antee will be refereed to a mechanism that can provide guaranteed support. A QoS system

has several components including the QoS mechanism, QoS mapping, admission control, and

resource allocation. QoS mapping refers to the translation of the QoS representation from

one layer to the next. Admission Control is used to determine whether a network is able

to support the requested traffic with the requested network level QoS parameter. Resource

allocation involves the allocation of suitable network resources according to the requested

QoS.

Concurrent with the gradual migration of traditional applications from wired-networks

to WLANs is an increasing use of multimedia-based applications in WLANs. Multimedia-

based applications are time-sensitive and require specific QoS support with small variation.

Based on anticipated future applications in WLANs, we can categorize the objectives and the

approaches to accomplish QoS in this network as follows. The objectives of QoS provision

can be categorized into: a) prioritized QoS support and b) parameterized QoS support [33].

Prioritized QoS support aims at providing “different” level of QoS support for different

classes of traffic, e.g., high priority traffic receives better throughput and delay than low

priority class traffic. Prioritized QoS support is also known as differentiated QoS support.

Parameterized QoS support aims at providing a “specific” level of QoS support, e.g., at

least 64 Kbps and delay less than 30 ms, on average. Parameterized QoS support is also

known as specific QoS support. Under prioritized QoS support, scheduling mechanisms

classify packets into different priority classes. Under parameterized QoS support, scheduling

mechanisms consider the requirement of a particular packet and provide the appropriate

treatment .

Approaches to accomplish QoS support can be categorized into: a) priority-based schedul-

ing and b) fair scheduling. Priority-based scheduling provides “better” performance for high
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priority traffic while fair-scheduling provides “proportionally fair” performance based on a

weight. We will discuss these two approaches in more detail in Section 2.5 - 2.6. It is

important to note that, without admission control, only prioritized QoS can be supported,

either “differently” via prioritized-based scheduling or “fairly” via fair scheduling. Admission

control is inevitably required for any parameterized QoS support.

2.1.1 QoS Metrics

The important QoS metrics for multimedia applications are delay, jitter, and throughput.

End-to-end delay is the time between the arrival of a packet and its successful delivery

to the receiver. Jitter is the variation of delay and is an important metric for multimedia

applications. Jitter is measured by the difference between the previous delay and the current

delay. Throughput is the amount of data successfully transmitted and received in unit time.

In this study, throughput support is further classified into two flavors, i.e. relative throughput

and absolute throughput support. Relative throughput support is the term used to describe

the ability to allocate different bandwidths to different traffic classes in proportion to their

requirements. Web access and files sharing are examples of applications that require relative

throughput support. All best-effort applications can take advantage of relative throughput

support. Absolute throughput support is the term used to describe the ability to deliver

a specific throughput. Media distribution and voice telephony are examples of applications

that require absolute throughput support. In WLANs, a higher bandwidth may be needed

to achieve a particular throughput due to the error in the wireless channel.

Because the wireless channel is time-varying, two types of scheduling can be consider in

wireless network: a) non-opportunistic scheduling and b) opportunistic scheduling. In non-

opportunistic scheduling, such decisions do not consider the time-varying characteristics of

the wireless channel. The network resources are considered constant and do not change with

time. By opportunistic, we mean the ability of scheduler to allow packet transmission based

on favorable channel conditions [34] . In opportunistic scheduling, such decisions depend on

the conditions of the wireless channel since the characteristics of channel wireless change with

time and each user may perceive the quality of the channel differently. For opportunistic
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scheduling, two types of fairness constraints were suggested [34]: a) temporal fairness and

b) utilitarian fairness. In the temporal fairness scheme, time is used as the criterion to

maintain fairness among Mobile Stations (MSs). In utilitarian fairness scheme, the achieved

performance values, e.g. throughput, are used as the criterion to maintain the fairness among

MSs. Therefore, the advantage of utilitarian fairness is that it ensures that a certain level

of performance. However, a user with an extremely poor channel could have a detrimental

impact on the overall system performance. A review of opportunistic scheduling in wireless

networks and multi-rate ad hoc networks can be found in [34] and [35], respectively. In this

study, we will focus on a non-opportunistic scheduler where both temporal and utilitarian

fairness will be supported.

2.2 DISTRIBUTED MAC PROTOCOLS

Centralized protocols, such as reservation Time Division Multiple Access (TDMA) or polling

and scheduling schemes have received much attention from the research community, since

they promise precise QoS guarantees. Examples of centralized protocols are the PCF

of IEEE 802.11 [36], HIPERLAN/2 of European Telecommunications Standards Institute

(ETSI) [37], numerous wireless Asynchronous Transfer Mode (ATM) [38] and Hybrid Coor-

dination Function (HCF) which is an extension of IEEE 802.11 [39]. Comprehensive reviews

of centralized protocols can be found in [40, 38, 41]. With centralized protocols, each MS

requests the right to access the channel from a single point of coordination. The coordination

point, usually called Base Station (BS) or Access Point (AP), performs admission control,

bandwidth and parameters assignment, and channel access control. The major advantage of

these centralized protocols is that they can guarantee QoS assurance once admitted to the

network. However, history shows that the adoption of these mechanisms has been limited

due to several disadvantages such as high overhead [42], high cost/complexity [43] and issues

in scalability, practicality [43] and flexibility [44].

In contrast to centralized protocols, distributed protocols, which are the focus of this

study, do not require a central control, are simple to implement, require smaller overhead,
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and incur less complexity. Examples of distributed protocols are the DCF of IEEE 802.11

and the elimination-yield mechanism in HIPERLAN/1. All distributed protocols are based

on the principles of Carrier Sense Multiple Access (CSMA). Carrier sensing refers to MSs

listening to the physical channel to detect any ongoing transmissions and backing off in case

it detects any transmission. Although, these protocols are currently not equipped with QoS

support, i.e., no priority mechanisms [44] and no delay-bounds or throughput support [45],

they are widely adopted. To address this limitation, there are several schemes proposed

to incorporate QoS mechanisms in distributed protocols. Next, we will present a detail

description of the DCF mechanism and demonstrate the lack of QoS support. Then, we will

present existing QoS support mechanisms that have been proposed for 802.11 WLANs over

DCF. Their advantages, disadvantages, and limitations will be discussed.

2.3 DISTRIBUTED COORDINATION FUNCTION (DCF) OF IEEE 802.11

The DCF mode of IEEE 802.11 was designed for data applications [46] and is based on

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) [36]. The channel

contention procedure begins when an MS senses the channel to determine whether or not

another MS is transmitting. The collision avoidance mechanism employs two techniques:

InterFrame Space (IFS) and backoff mechanism. The IFS is the period of time an MS is

required to wait after it senses an idle channel and enters the transmission process. If the

channel is idle for a time equal to DCF IFS (DIFS), the MS can transmit a packet (Fig. 2.1).

If the channel is busy, the MS waits until the medium becomes idle, waits for an additional

DIFS and enters a deferral period (backoff period) to reduce the chance of collisions with

other contending MSs. In the deferral period, the MS selects a Backoff Interval (BI) that

is uniformly distributed between zero and a Contention Window (CW). CW is initially set

to CWmin and is doubled every consecutive collision until CW reaches CWmax, as shown

in Eq. (2.1). The deferral period is divided into time slots, each a duration of aSlotT ime

seconds. The length of the backoff interval is calculated as a multiple of aSlotT ime as shown

in Eq. (2.2).
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Figure 2.1: Transmission Procedure of DCF Mechanism

CW = min[((CWmin + 1)× 2c)− 1, CWmax] (2.1)

BI = Uniform Random(0, CW ) ∗ aSlotT ime (2.2)

While the medium is idle, a backoff timer counts down from the randomly selected BI

value every SlotT ime, as shown in Fig. 2.2, adapted from [47]. When the timer reaches zero

and the medium is still idle for additional DIFS, the MS can transmit. The backoff timer is

frozen when a transmission is detected and continues to elapse when the channel becomes idle

again. After receiving a frame, the receiving MS waits for a Short Inter-frame Space (SIFS)

and responds with an Acknowledgment (ACK) to confirm a successful transmission. The

SIFS parameter is smaller than DIFS to allow acknowledgments to have the highest priority

in accessing the channel. A collision occurs when the backoff timer of two or more MSs reach

zero at the same time. To reduce the probability of collisions, the CW is doubled every time

a collision repeatedly occurs until the maximum value of the CW (CWmax) is reached, i.e.

1023 timeslots. This procedure is called exponential backoff.

The hidden node problem occurs when a MS can hear only some but not all MS’s

transmissions. To overcome this problem, an optional mechanism employing Request To

Sent (RTS) and Clear To Send (CTS) messages is used. In the Request to Send/Clear

to Send (RTS/CTS) mode, the MS first transmits an RTS message and waits for a CTS
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Figure 2.2: Backoff Procedure of DCF Mechanism

message from the recipient before beginning data transmission. With this method, all MSs

in the range of sender and receiver will be aware of the frame transmission. While these

two extra frames present additional overheads, Anastasi and Lenzini [48] reported that this

method significantly alleviates the hidden node problem and reduces average access delay,

particularly for large data frames [47]. As reported in [49] by Bianchi, the performance of

DCF depends primarily on CWmin and the number of active MSs, and is only marginally

dependent on these parameters when RTS/CTS is used. The IEEE standard also defines a

PCF IFS (PIFS) that is between the SIFS and DIFS values and is used with a centralized

polling mechanism. In the infrastructure mode, an AP transmits beacon frames periodically

to deliver management information that is necessary for the association process (where a MS

associates with an AP) [47].

Because DCF was originally designed for data applications [46], its main weaknesses

is the lack of QoS support (absolute throughput, relative throughput or delay support).

The lack of any QoS support also means that DCF provides no fairness among different

traffic classes or among different transmitting frame sizes. Additionally, high variation of

throughput and delay is inherited from the exponential backoff mechanism, particularly in

overloaded situations. To demonstrate the limitations of DCF, a simple scenario with ten
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Figure 2.3: Performance of DCF MSs with requirement of 150 Kbps and 300 Kbps

DCF MSs in a 2 Mbps1 WLAN was simulated using OPNET 9.1. The MSs operate in an ad-

hoc mode (that is sufficient to evaluate the MAC characteristics). Eight MSs transmit at a

low data rate (150 Kbps) and two MSs at a high data rate (300 Kbps). The total aggregated

offered load is 1.8 Mbps. With a raw channel rate of 2 Mbps, the MAC overhead makes the

offered load higher than the effective aggregated throughput (overloaded situation).

Figure 2.3 (a) shows the instantaneous throughput of two representative DCF MSs. Here,

C1 (Class 1) indicates a MS with low data rate and C2 (Class 2), a MS with high data rate.

The average throughput of C1 is around 138 Kbps and C2 around 160 Kbps, even though, C1

requires only half the throughput of C2. This demonstrates unfair bandwidth allocation in

DCF. The instantaneous throughput and access delay widely fluctuate as shown in Fig. 2.3

(a) and Fig. 2.3 (b). The coefficients of variation2 (COV) of throughput and access delay are

both very high ranging from 0.3 to 1.6. The problems of lack of fairness, and high variation of

throughput and access delay degrade the performance of QoS-sensitive applications. Clearly,

this evidence suggests deficiency of DCF for QoS provision in WLANs.

1Data rates of 5.5 Mbps and 11 Mbps have also been considered in this work.
2This is the ratio of the standard deviation of the quantity to its mean
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In summary, the DCF mode of IEEE 802.11 has advantages of simplicity, ease of im-

plementation, and suitability for data applications. However, DCF does not support QoS

requirements or provide specific delay/throughput support. Moreover, several studies report

high variation of throughput and delay [32, 50], relatively poor performance for voice trans-

mission, and the inability to provide low delay variation [51] in overload conditions. Next,

we will describe several mechanism for QoS support in 802.11 proposed in the literature and

standards process.

2.4 TAXONOMY OF DISTRIBUTED QOS MECHANISMS IN WLANS

A hierarchical taxonomy of distributed MAC mechanisms based on IEEE 802.11 WLANs

is depicted in Figure 2.4. At the highest level, MAC schemes can be categorized into dis-

tributed and centralized control protocols. In the class of distributed MAC protocols, we

consider the DCF mode of 802.11. The 802.11 MAC protocol parameters, such as IFS, BI,

CWmin, CWmax, and Persistence Factor (PF) have been suggested for QoS support as de-

scribed below. The approaches to provide QoS support can be classified into priority based

and fair scheduling based approaches. For each approach, essential concepts, advantages,

disadvantages, and limitations will be discussed.

2.5 PRIORITY-BASED QOS SUPPORT

The objective of the majority of QoS support mechanisms proposed in the literature is to

provide service differentiation by allowing faster access to the channel to traffic classes with

higher priority. Faster access can be provided by allocating a smaller waiting time (IFS)

[52, 53, 54, 45, 55] or a smaller contention window (CW) [44, 56, 57, 58, 59, 60] that results

in a smaller backoff interval (BI) on average. The values of IFS and CW are fixed once they

are assigned; therefore, we call the QoS mechanisms employing these assignments static

priority-based mechanisms. The common drawback of priority-based mechanisms is that the
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higher throughput or smaller average delay of high priority traffic is achieved at the expense

of low priority, i.e., reduced throughput or increased average delay [61]. In short, binding

the priority to channel access makes these QoS-support mechanisms unfair. As the number

of high priority traffic MSs increases, they tend to monopolize the channel preventing access

for low priority traffic. The selection of a random backoff interval and exponential expansion

of the contention window also introduce large variations in delay and throughput. Moreover,

the standard value of CWmin is usually too small for common networks as reported in [49].
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2.5.1 Using the Inter-frame Space (IFS)

The idea behind QoS-support mechanisms that exploit different waiting times after the busy

period is to assign a smaller IFS value to higher priority traffic. A higher priority frame needs

to wait for a shorter duration so it can seize the channel sooner than a low priority frame.

The low priority frame finds the channel busy and has to wait until the high priority traffic

has completed transmission. Moreover, it has to enter a backoff period after the channel

becomes free. During such a backoff period, a smaller IFS also decreases the waiting time

for high priority traffic.

2.5.1.1 Using existing IFS values for priority Many researchers have proposed using

IFS values that are already available from the 802.11 standard to differentiate between low

priority and high priority traffic. In the 802.11 standard, three different IFS values specified

are the SIFS, PIFS and DIFS. Sheu and Sheu [45], Banchs et al. [55], and Deng et al. [62]

suggest using the PIFS and DIFS values to differentiate between high priority (real-time) and

low priority (non real-time) traffic. However, like DCF, this mechanism shows increases in

average access delay and packet losses under high load conditions. Further, using only DIFS

and PIFS, however, allows for only two priority classes. To differentiate between more than

two priority classes, other alternatives have to be explored. Deng et al. [62] has employed

two different backoff algorithms after the IFS waiting time to support more traffic classes.

Another alternative is to use new IFS values as discussed next.

2.5.1.2 Using new IFS values for priority In contrast to using only the DIFS and

PIFS values, Benveniste [63] and Aad et al. [53] proposed using multiple IFSs to differentiate

among priority classes where each priority class is given a different IFS. The values of IFS are

assigned such that the IFSi of low priority frames are longer than the IFSj of high priority

frame (IFSi > IFSj) where priority of class i < priority of class j. Therefore, the higher

priority frame will get access to the channel sooner than the lower priority frames. Aad et al.

also add a small random time at the end of IFS to avoid the collision among frames in the

same priority class. The idea of new IFS values has led to the on-going standard to provide

QoS called Enhanced Distributed Channel Access (EDCA), to be described in Section 2.5.3.
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2.5.1.3 Discussion and Summary Although priority-based mechanisms can help dif-

ferentiate the throughput for traffic with different classes of priority, fairness between different

traffic classes is neglected. Additionally, specific throughput and delay are not assured. In

some cases, where there is only high priority class (e.g. voice), differentiation may not even

be witnessed. Without the help of an admission control, a specific level of throughput and/or

delay, which is an ultimate goal of providing QoS in WLAN, cannot be achieved [32, 64].

2.5.2 Using Backoff Algorithms

As described previously, the BI is an integer value which corresponds to the number of

timeslots that a MS needs to wait after the IFS before it can transmit data. This section

presents the mechanisms that modify the backoff algorithm. Based on whether or not the

ranges of CWmin and CWmax among priority classes overlap, two main approaches by as-

signing different contention windows are a) Contention Window Differentiation (CWD) and

b) Contention Window Separation (CWS).

2.5.2.1 Contention Window Differentiation (CWD) In the case of CWD, given

two classes of traffic A and B, there are two ranges of the CW namely, CWA (between 0 and

CWmin,A) and CWB (between 0 and CWmin,B). Ayyagari et al. [56], Benvenisite et al. [54]

proposed mechanisms to modify the minimum and maximum value of the CWs. The values

of CW are assigned such that the CWmin and CWmax values of low priority frames are higher

than that of high priority frame (CWmin,i > CWmin,j and CWmax,i > CWmax,j where priority

of class i < priority of class j ). Since BI is a random number that is uniformly distributed

between 0 and CWmin, the two traffic classes are differentiated by the average BI values.

The drawback of CWD is that the two contention windows overlap; thus, a low priority

traffic can sometimes access the network sooner than high priority traffic. In an overloaded

condition, it is critical for the high priority traffic to get faster access to the network than

the low priority traffic. The lower priority frame selects a longer BI on average whereas the

higher priority frame selects a smaller BI on average. Therefore, the higher priority frame

is likely to get access to the channel earlier than the lower priority frames. The quality of
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differentiation depends on the amount of overlap between the contention windows of different

traffic classes.

To dynamically adjust the range of CW as the number of active MSs changes, Chen et

al. [65] proposed a scheme called Priority-Based Contention Control (PCC) where a priority

reference value (called priority limit) is piggy-backed with transmitted frames to help each

MS calculate its CW according to Eq. (2.3). In this equation, the parameter S is a scaling

factor, PT is the priority of the traffic flow being served in each MS and PL is the current

priority reference value. Eventually, a MS with a high priority flow will receive a smaller

CW. To increase the probability of getting access to the medium, for real-time traffic the

value of PT is increased when the first collision occurs. This method helps reduce potential

variation of throughput and delay.

CW = S × 1

PT − PL + 1
(2.3)

In the work by Barry et al. [58], the CW for a high priority traffic class is between a

CWmin of [8,32] and a CWmax of 64. The CW for low priority traffic is between a CWmin of

[32,128] and a CWmax of 1024. Because the overlap of the CWmin and CWmax of the lower

and higher priority traffic is small, the delay between low priority traffic and high priority

traffic is clearly differentiated as shown in their simulation results. In the extreme case,

there is no overlap between the CWmin and CWmax of different traffic classes, which to be

discussed next.

2.5.2.2 Contention Window Separation (CWS) As in the case of CWD, higher

priority traffic in CWS receives a CW that results in a smaller BI whereas lower priority

traffic receives a CW that results in a longer BI. The CWmin and CWmax are completely

separated and, thus, the traffic from higher priority classes is more likely to be transmitted

before traffic from lower priority classes, if they arrive at the same time. However, CWS does

not guarantee that the high priority traffic will always transmit sooner. The reason is that

the CW starts from 0 regardless of the value of CWmin and CWmax. Therefore, although

the ranges of CWmin and CWmax are completed separated, the possible value of BI can still

overlap. The implication of this will be discussed in more details in Section 2.5.4.
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An example of CWS is the algorithm proposed by Deng et al. [52] described by Eq.

2.4 and 2.5 below, where µ(a, b) is a random number generated from a uniform distribution

between a and b. i is the number of consecutive collisions.

CWhigh =
⌊
µ(0, 1) ∗ 2i+1

⌋
(2.4)

CWlow = 2i+1 +
⌊
µ(0, 1) ∗ 2i+1

⌋
(2.5)

Although this mechanism completely separates the CW initially, the separation may not

be valid in time because of the following reason. This mechanism is employed in each MS

independently. As the number of consecutive collisions in each MS can be different, the CW

of high priority traffic CWhigh and the CW of low priority traffic CWlow can overlap and

create an inconsistency among frames in the same priority class among MSs. Furthermore,

the scheme proposed by Deng et al. supports only up to two classes of priority. Therefore,

Deng et al. combine their CWS proposal with the IFS mechanism described earlier to support

more priority classes. Simulation results in [52] however do show improvements in reducing

delay and packet loss and increasing throughput for higher priority traffic.

A similar scheme called distributed priority scheduling is proposed by Kanodia et al. [60]

where the priority of every MSs’ head-of-line packet is piggybacked onto RTS, CTS, data and

ACK frames. Using this information, each MS can create a table of frames that are expected

to be transmitted along with their priorities in a ranked list. Frames with the highest rank

choose a smaller CW interval while those with lower rank have an additional waiting time

and select the BI from a larger CW. The CW can be calculated as shown in Eq. (2.6) where

µ(a, b) is a random number generated from a uniform distribution between a and b, rj is

the rank of node j’s packet, l represents the number of retransmission attempts, m is the

maximum attempt, α is the separation of BI given to the highest priority traffic and γ is the

separation of BI between the first and second attempt. The analysis and simulations in [60]

show that this mechanism reduced mean end-to-end delays of high priority packets.

BI =





µ(0, 2lCWmin − 1), rj = 1, l < m

αCWmin + µ(0, γCWmin − 1), rj > 1, l < 0

µ(0, 2lγCWmin − 1), rj = 1, l ≥ 1

(2.6)
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2.5.2.3 Discussion and Summary Because the CW in DCF always starts from zero,

no matter the values of CWmin and CWmax of each priority are, the range of CW among

classes will always overlap. The effort to separate the range between CWmin and CWmax

via CWS only provides clearer QoS differentiation than that of CWD on the average case.

However, it does not assure that low priority traffic will always wait longer than higher

priority traffic. Because of this, the low priority traffic can gain a faster access than the high

priority traffic even though both classes of traffic arrive to the head of queue at the same

time. This behavior is not desirable for a QoS mechanism.

Moreover, after each consecutive collision, the value of CW is doubled, as in Eq. (2.7)

below. In this equation, i is the number of consecutive times a MS attempts to send a frame

and the initial CWmin
3+0is 23 = 8.

CW = 23+i − 1 (2.7)

As a result of this binary exponential backoff, the probability of waiting time or backoff

time increases in direct proportion to the amount of time a MS has been waiting. This

behavior is undesirable for time-sensitive traffic. Also, the BI selection of the system (for

all MSs combined) is not uniformly distributed, but rather exponentially distributed where

smaller BI values are more likely than longer ones. A long CW occurs only if multiple

consecutive collisions occur. For example, BIs ranging from 0 to 7 timeslots appear as

choices for selection every time a new packet needs transmission. In contrast, a backoff

interval of 1023 timeslots appears as a choice only when the packet transmission has failed

on 8 consecutive trials. So an MS that has recently entered into contention could potentially

transmit earlier than a MS that has faced several collisions. Moreover, the initial value of

CW, which is CWmin = 15), is too small to avoid unnecessary collisions, especially in an

overloaded network [49]. The work of Romdhani et al. [66] was proposed to partially address

this problem by decreasing the value of CW slowly rather than resetting back to CWmin

immediately after a successful transmission.
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Figure 2.5: Transmission Procedure of EDCA Mechanism

2.5.3 Enhanced Distributed Coordination Function (EDCF) of 802.11e

The Enhanced DCF (EDCF) is currently being standardized by the IEEE 802.11 working

group E [67, 33]. Recently, the nomenclature was changed from EDCF to Enhanced Dis-

tributed Channel Access (EDCA); however most of the key features remain the same. In

this study, we will refer to both EDCA and EDCF interchangeably. EDCA is also a static

priority-based mechanism. EDCA consists of 8 priority class but only 4 priority queues.

Priorities 0-2 are mapped into Access Category (AC) 0, or the lowest priority queue, and

designated for best effort traffic. Priority 3 is mapped into AC 2 and designated for video

probe traffic. Priorities 4-5 are mapped into AC 2 and designated for video application while

priorities 6-7 are mapped into AC 3 and designated for voice applications.

An important new feature of 802.11e is the concept of Transmission Opportunity (TXOP).

A TXOP is an interval of time indicating when a station has the right to initiate trans-

mission. A TXOP is composed of a starting time and a maximum allowable duration

(TXOPlimit). TXOPlimit is distributed via beacon frames. A new type of IFS named

Arbitrary IFS (AIFS) has been added. The value of AIFS depends on the priority class

of traffic as shown in Figure 2.5 [67]. Each priority class has its own queue and backoff
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Table 2.1: Proposed Values of Parameters in EDCA

AC AIFSN CWmin CWmax Application

0 2 15 1023 Best Effort

1 1 15 1023 Video Probe

2 1 7 15 Video

3 1 3 7 Voice

counter. AIFSi can be calculated according to Eq. (2.8) where i represents the index of the

traffic class. The BI of each priority class is chosen according to a uniform distribution over

[0, CWi] as shown in Eq. (2.9). The values of Arbitrary IFS Number (AIFSN), CWmin, and

CWmax for certain types of application as proposed are shown in Table 2.1 [68].

AIFSi = SIFS + aAIFSi × SlotT ime (2.8)

BIi = µ(0, CWi)× SlotT ime (2.9)

2.5.4 Drawbacks of EDCA

In this section, we will present the drawbacks and potential inadequacy of QoS support

of EDCA. One may find EDCA attractive due to its simplicity, prioritized-QoS support,

and decentralized nature. Several studies report good service differentiation (e.g., improved

throughput, access delay and dropped rate for high priority traffic [69]).

Nonetheless, recent studies and performance analyses indicate several drawbacks of EDCA.

Many improvements have been proposed to remedy these drawbacks and limitations. How-

ever, these improvements often alleviate these issues at the expense of complicating the

base mechanism. The following list is the summary of the drawbacks compiled from our

observations and what is reported in the literature.
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Static Priority-based Mechanism: In static priority mechanisms, the values of AIFSN,

CWmin, and CWmax are fixed based on the priority class. Fixing these values with

a priority class makes EDCA difficult to adapt in a dynamic environment where the

amount of traffic, traffic patterns, and the number of MSs can change with time [70].

As the number of MSs increases, high priority traffic with very small values of CWmin

and CWmax may result in high probability of collision as reported, especially in highly

contentious conditions [71, 66]. Moreover, the priority of a traffic class is statically

combined with the right to access the medium leading to several problems ranging from

unfair occupation of the bandwidth to starvation of low priority traffic.

Exponential Backoff: Although exponential backoff is a beneficial mechanism to avoid

further collisions, it may not be suitable for QoS sensitive applications. The colliding

packets are supposed to be transmitted successfully sooner than any newly contending

packets. However, the colliding packets are penalized by the exponential backoff with

a longer waiting time while newly contending packets are given a small waiting time.

Exponential backoff can cause high variation of throughput and delay in overloaded sit-

uations. Moreover, in the exponential backoff, the probability of waiting time or backoff

time increases in direct proportion to the amount of time an MS has been waiting [72].

In exponential backoff, the longer a frame has waited, the longer it is likely that a packet

will wait. This property is undesirable for time-sensitive traffic.

Fairness: EDCA is not fair in both short-term and long-term. The short-term unfairness

is a result of the overlapping range of CW between high priority and low priority traffic

whereas the long-term unfairness stems from the assignment of initial CW. To under-

stand this, let us define CWlower and CWupper as a lower bound and an upper bound from

which BI is selected. In other words, CW is simply the difference between CWlower and

CWupper. According to this definition, CWmin is the initial CWupper while CWmax is the

maximum value of CWupper. The problem is that, although, the CWupper of high priority

traffic is smaller than that of low priority traffic, CWlower is always 0. Because of this,

the range of CW of high priority and low priority always overlaps no matter what the

values of CWmin and CWmax are, as shown in Figure 2.5.4. Occasionally, low priority

traffic is transmitted sooner than high priority traffic due to a smaller drawn value of BI.
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Figure 2.6: Overlapped Ranges of CW among Different Priority Classes in EDCA

The long-term unfairness is due to the range of CWmin and CWmax. The long-term share

of bandwidth of a priority class directly depends on the values of CWmin and CWmax

of the priority class. Because the assignment of CWmin and CWmax in EDCA is fixed

– i.e., CWmin and CWmax of high priority traffic are smaller than those of low priority

traffic, the shares of bandwidth among priority classes are not in proportion. The share

of high priority is simply “more” than that of low priority; however, it is unclear how

much more the bandwidth of high priority class is in comparison to that of low priority

class. Because of the lack of fairness in general, neither utilitarian fairness nor temporal

fairness is supported in EDCA. Under utilitarian fairness, the achieved performance

values, e.g. throughput, are used as a criterion to maintain the fairness while time is

used as a criterion to maintain fairness under temporal fairness. These fairness problems

can be resolved by adopting fair-scheduling mechanisms, as discussed later.

CW Differentiation: The differentiation through CW provides relative throughput; how-

ever the analysis by Robinson and Randhawa [73] confirms that high priority traffic can

suffer performance degradation from heavy load of low priority traffic. At high loads,

EDCA cannot ensure specific performance of traffic of the same priority because the

probability of collision is a function of the size and composition of the set of contending

MSs. More specifically, even though the offered load remains the same, the performance

of high priority traffic can be different if the number of contending MSs varies. More-

over, Xiao [74] reported that the delay depends on the overlap portion within and among
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priority classes. The reason is that the CW of each priority class can overlap and the

size of such an overlap can change dynamically.

IFS Differentiation: Differentiation through IFS may be effective for high priority traffic;

however it leaves lower priority traffic susceptible to starvation [50, 71, 75]. There are

also some conflicting findings related to the influence of IFS. While Robinson and Rand-

hawa [73] suggest that AIFS helps reduce the probability of collision for high priority

traffic, Xiao [74] suggested that AIFS does not. Compounding the drawbacks from CW

differentiation, EDCA is faced with an unpleasant situation for QoS differentiation. The

differentiation through IFS leaves lower priority traffic susceptible to starvation whereas

the differentiation through CW leaves high priority traffic susceptible to performance

degradation under heavy load situation.

QoS Translation: In EDCA, the translation of QoS from the user level, i.e., throughput

and delay, to EDCA parameters, i.e., IFS, CWmin, or CWmax, is not obvious. It is

not clear what the values of AIFS, CWmin, and CWmax should be to provide say a

throughput of 64 Kbps with a 50 ms target delay. Without proper QoS translation, the

user’s demand may not be adequately satisfied.

Parameters Sensitivity: In a dynamic environment, the amount of traffic, traffic pattern,

and the number of MSs can change frequently. The quality of QoS support of EDCA

is highly sensitive to the given set of parameters, i.e. AIFS, CWmin, CWmax. With

small changes of parameters, e.g., CWmin, drastically different QoS performance can be

observed, as shown later in the simulation result. In EDCA, different values of CWmin

and CWmax are used to provide differentiation among priority classes. However, it is not

easy to find a right set of parameters that provides satisfactory performance for high

priority, acceptable performance for low priority, and robustness for all priority classes in

a complex and diverse scenarios. The reason is that the right set of parameters depend

upon many factors such as load [76, 77] and the number of active MSs. A demonstration

via simulation is presented next.

We will demonstrate this problem by considering two scenarios. The first scenario

(EDCA-10C1) consists of MSs only from high priority class and the second scenario consists

MSs from both high priority and low priority class. In scenario EDCA-10C1, there are 10
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high priority class MSs (EDCA-C1) with an offered load of 400 Kbps in 2 Mbps WLAN.

The AIFSN , CWmin, and CWmax of EDCA-C1 MSs are set to 1 (PIFS), 16, and 64, re-

spectively. In the second scenario (EDCA-10C1+10C2), an additional 10 low priority class

MSs (EDCA-C2) with an offered load of 400 Kbps are added into the network, i.e., in ad-

dition to 10 EDCA-C1 MSs from EDCA-C1 scenario. The AIFSN , CWmin, and CWmax of

EDCA-C2 MSs are set to 2 (DIFS), 256, and 1024, respectively.

In EDCA-C1 scenario, when there is no traffic from a low priority class, Figure 2.7

(a) shows that all EDCA-C1 MSs receive the exact throughput as needed with very little

variation. However, by adding traffic from low priority MSs, the throughput variation of

EDCA-C1 MSs increases relatively significantly as shown in Figure 2.7 (b). Although the

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

12

14

16
x 10

4

T
hr

ou
gh

pu
t (

bp
s)

Time (sec)

EDCA−C1

2.7 (a): 10 EDCA MSs at 125 Kbps

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

12

14

16
x 10

4

T
hr

ou
gh

pu
t (

bp
s)

Time (sec)

EDCA−C1
EDCA−C2

2.7 (b): 20 EDCA MSs at 125 Kbps

Figure 2.7: Deterioration of QoS Support in EDCA

total offered load of the high priority class remains the same and is still under the effective

aggregate throughput of the WLAN (1.5 Mbps), the experienced throughput of the high

priority MSs fluctuates increasingly. This result confirms the analyses of the influence of

low priority traffic on high priority traffic from Robinson et al. [73] who suggests that the

traffic from high priority classes of EDCA is not protected from the traffic from low priority

classes even though the values of AIFSN and CWmin of high priority class is very small, or

as small as possible.
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Moreover, we found that the results of EDCA-10C1+10C2 scenario can be changed

tremendously, if only the value of CWmin of EDCA-C2 MSs is changed from 256 to 128 or

512. When CWmin = 128, the variation increases enormously as shown in Figure. 2.7 (a)

whereas the variation decreases substantially when CWmin = 512 as shown in Figure. 2.7

(a). This result confirms the sensitivity of QoS support of EDCA. It is worth nothing that it

might seem that EDCA can provide a good QoS support if the right parameter is assigned.

However, we believe that the right parameter is not easy to assign, since different values of

parameters yield vastly different results. The the values of CWmin and CWmax represent

the tradeoff between the differentiated ability and the number of supported MSs. That is,

the smaller the values of CWmin and CWmax are, the better the differentiation. However,

the smaller the values of CWmin and CWmax are, the smaller the number of support MSs.

Many sets of values have been suggested and used to demonstrate differentiated QoS support

with EDCA [66, 68]. However, it not clear if any fixed set of values will be suitable for all

scenarios.
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2.8 (a): CWmin = 128

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5
x 10

5

T
hr

ou
gh

pu
t (

bp
s)

Time (sec)

EDCA−C1
EDCA−C2
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Figure 2.8: Parameter Sensitivity of QoS Support in EDCA

In conclusion, several studies including analyses, performance evaluations, and limita-

tions of EDCA, have been reported in past a few years. These publications suggest that

EDCA can provide service differentiation support. However, EDCA may suffer from issues,

31



such as degraded QoS support of high priority traffic, starvation of low priority traffic, un-

controlled delay, lack of admission control, lack of fairness, complex QoS translation, and

sensitivity to parameter tunings. Several proposals [66, 76] have been suggested in the lit-

erature to alleviate these problems and improve the performance; however, the improved

performance is achieved at the expense of increased complexity of the mechanism making it

less attractive.

2.6 FAIR SCHEDULING BASED QOS SUPPORT

To overcome the unfair apportioning of bandwidth, recently there have been proposals that

use fair queuing mechanisms as part of the channel access. It is important to emphasize that

priority is no longer applied in fair scheduling. One flow maybe require higher throughput

than the other flows. The flow with higher throughput does not have a higher priority than

the other flows with lower throughput. Each flow simply requires different throughput and

the scheduler attempts to provide a fair resource allocation according to the requirements.

Consider two traffic classes that need 200 Kbps and 100 Kbps respectively. A mechanism

is considered to be fair if the experienced throughput for these classes are in the ratio 2:1

on average. Fair scheduling algorithms [78] attempt to partition the network resource fairly

among flows in proportion to a given flow weight. They work by regulating the waiting

time so that traffic in each class has a fair opportunity to be sent, which is different from the

schemes that bind channel access to priority. In this case, the bandwidth is fairly apportioned

between different traffic classes. Next, we will briefly describe three QoS mechanisms based

on fair queue scheduling. The first two mechanisms aim at providing relative throughput

support, i.e., ability to allocate fair throughput among different traffic classes, while the last

mechanism considers absolute throughput support, or ability to deliver specific throughput.
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2.6.1 Distributed Weighted Fair Queuing (DWFQ)

Due to the fact that the length of CW is inversely proportional to the average through-

put, Banchs et al. [79] proposed a modification to the backoff algorithm called Distributed

Weighted Fair Queuing (DWFQ). The mechanism is based on fair scheduling and provides

fair access to shared bandwidth, in proportion to flow weights. In DWFQ, each MS specifies

its weight. The default value of weight for best-effort traffic is equal to 1. Any number

that is lower than one is not allowed while a number that is higher than 1 indicates better

than best-effort service. All flows of all MSs are constrained by having the same ratio (TWi)

between experienced throughput (Ri) and a weight (Wi), i.e. TWi = Ri

Wi
. The weights are

used to differentiate and apportion the bandwidth between traffic classes. By comparing

its own TWi to those of other MSs, a given MS can adjust its CW accordingly. The CW

is decreased if its TWi is smaller than those of other MSs and it is increased. However,

the randomness associated with using the CW increases the variability of throughput and

delay, especially in overloaded condition. To demonstrate this issue, we consider a scenario

with 10 DWFQ MSs. Two MSs with low data rate (C1) demand throughput support of 150

Kbps and eight MSs high data rate (C2) demand relative throughput support of 300 Kbps.

The total offered load is 1.8 Mbps which is higher than the effective channel capacity of a 2

Mbps WLAN. Figure 2.9 shows the instantaneous throughput of two representative DWFQ

MSs. We can see that the instantaneous experienced throughput of both representative MSs

fluctuates wildly. Moreover, DWFQ requires an additional field in the frame header in the

MAC layer to exchange the values of TWi among MSs. Requiring additional fields in the

frame header is often not desirable. Finally, it is not clear what the appropriate values of

Wi for each traffic classes are or how to map this value to different types of traffic class.

2.6.2 Distributed Fair Scheduling (DFS)

Rather than having fixed ranges of CW for the low priority frame and the high priority

frame as in Section 2.6.1, Vaidya et al. [80] proposed a mechanism called Distributed Fair

Scheduling (DFS). In DFS, each MS specifies its weight similarly to that of DWFQ, except

the weight values of all traffic classes in every MSs are required to sum to 1. A packet with
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Figure 2.9: Instantaneous Throughput of DWFQ, 10 MSs at 300 Kbps

the smallest ratio between its length and its weight receives an opportunity to transmit first.

The weight represents a value associated with the priority class. A higher priority traffic

class has an associated higher weight. This mechanism picks a backoff interval proportional

to a finish tag. The finish tag is the ratio between the packet length and the weight of

a frame given by:Bi =
⌊⌊

Scaling Factor ∗ Li

φi

⌋
∗ ρ

⌋
, where Bi is the backoff interval, Li is

the packet length, φi is the weight, and ρ is a random variable uniformly distributed in the

range of [0.9, 1.1]. This random number with mean 1 is introduced to prevent a collision

when two or more MSs count down to zero simultaneously. With the combination of weight

and packet length in backoff calculation, traffic with different throughput classes can be

treated differently. This mechanism is based on Self-Clocked Fair Queue (SCFQ) (Ref. 22

in [78]) which has O(log(v)) complexity where v is the number of flows. Additionally as

the authors themselves note, the experienced throughput are quite sensitive to the choice of

frame lengths and right value of weights making it complicated to map the QoS requirement

into the weight, as reported in [71]. For example, it is not clear what is the meaning of a

weight value of 0.3 to the users. To demonstrate the effect of the values of weight in DFS. We

consider a scenario where there are two classes of traffic, five class 1 (C1) MSs and five class

2 (C2) MSs. The value of weight of C1 MSs is twice as high as the value of weight of C2 MSs.
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Then, we varied the value of weight of C1 MSs between 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2,

0.4, 0.8, and 1.0. Figure. 2.10 shows that a right value of weight is required to achieve the

highest throughput. Otherwise, different values of weights for MSs will result in different

experienced throughput (even though the throughput allocation is still fair). Finally, DFS

supports only one type of throughput model, i.e. the relative throughput support.
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Figure 2.10: Throughput vs. weight for 10 DFS MSs

2.6.3 Assured Rate MAC Extension (ARME)

Banchs et al. [81] proposed Assured Rate MAC Extension (ARME) which is based on fair

queue scheduling and aims at providing fair access to shared bandwidth, in proportion to a

rate of token bucket. The principle of fair queuing can be used to regulate the wait time of

traffic according to its class so that traffic in each class has an equal opportunity to be sent

and the bandwidth is fairly apportioned between different traffic classes. The rates of token

are used to differentiate between traffic classes and to apportion the bandwidth between

them. In ARME, each MS receives a rate of token bucket as specified or desired throughput.

By comparing the available token in the bucket, a given MS can adjust its own CW. The CW

is increased if 1) the network is detected as being in an overloaded situation, 2) the queue of

frame is empty or 3) the number of available tokens is smaller than the minimum require-

35



ment. The network is declared overloaded if the average number of collisions is higher than

a certain threshold. If any of these 3 situations does not occur, the CW will be increased.

The priority access of MS using this mechanism results in a smaller CW than that of DCF

MS. This mechanism of QoS support is achieved at the expense of the scalability, another

desired property of QoS support mechanism in WLANs. Additionally, the randomness asso-

ciated with using the CW increases the variation of throughput and delay, especially in an

overloaded situation. To demonstrate this issue, we consider a scenario with 10 ARME MSs

with throughput requirement of 300 Kbps. The total offered load is 3 Mbps which is higher

than the effective channel capacity of a 2 Mbps WLAN. The first MS starts transmission at

time 0, the second MS at time 20, the third MS at time 40, and so on. Figure 2.11 shows

that as additional ARME MSs becomes active, the ability to provide absolute throughput

is significantly deteriorated whereas the instantaneous experienced throughput of each MS

wildly fluctuates.
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Figure 2.11: Instantaneous Throughput of ARME, 10 MSs at 300 Kbps

2.6.4 Discussion and Summary

Although, DWFQ, DFS, and ARME mechanisms are based on fair scheduling and share some

similarities, these mechanisms are different in the several aspects such as the choice of the

fair queuing mechanism, the translation of user requirements, the WLAN parameters used
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to differentiate service and the type of QoS support. The choice of the fair queue scheduling

mechanism will affect the protocol complexity and computational cost. For example, DFS

is based on SCFQ [82] which has O(log(n)) complexity where n is the number of flows.

DWFQ is based on the fairness ratio between experienced throughput and its weight while

ARME is based on credit-based scheduling. However, DWFQ requires exchanging a special

frame to disseminate the fairness ratio among MSs. Requiring additional frames increases

the complexity and overhead of the protocol.

The method or parameter used to translate users’ requirements into the parameter of the

fair queuing mechanisms are different. The users’ requirements are for example throughput

and delay. The fair queuing parameter could be a weight as used in DWFQ and DFS. The

weight parameter can provide fairness but it is difficult to map the throughput or delay to

the right value of weight because it depends on other factors such as the number of flows,

total channel capacity, and so on. In terms of the WLAN parameters that are used to

provide QoS support, DFS modifies the value of BI whereas ARME and DWFQ modify the

value of CW. Each parameter has its own differentiation ability and effectiveness that vary

with scenario. The BI is directly proportional to the expected throughput while CW is less

specific and random. Lastly, in term of QoS support, all three mechanisms provide only

one type of QoS support, either relative throughput or absolute throughput. ARME aims at

providing absolute throughput while DWFQ and DFS provide relative throughput. Although

an integrated solution is a desired property of QoS support in WLANs, no mechanism has

been successful in achieving a satisfactory level of integration. Thus, the purpose of this

study is to develop an integrated QoS mechanism in WLANs.

2.7 DELAY-CONSTRAINT SUPPORT IN WLANS

Although priority-based mechanisms provide better access, i.e. higher throughput and

smaller delay for high priority traffic, the delay still remains unbounded. Most QoS-sensitive

applications require delay bounds. However, only a small number of research efforts have

considered delay support.
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In Decentralized Delay Fluctuation Control Mechanism (DDFC) [83], Yamada et al.

proposed a mechanism to calculate the value of CW according to the buffering delay, i.e.,

CW = (CWmin+1)×2c×t0
t−(ts−t0)

, where c is number of consecutive collisions, ts is a buffering delay

threshold, and t0 is a scaling factor. According to DDFC, the longer the buffering delay,

the smaller the value of CW. As a result, the longer the time a packet has waited, shorter

will be the backoff the packet will endure. Although, DDFC may reduce the average delay

via a smaller calculated CW, the problem of high probability of collision due to the smaller

value of CW has not been addressed. Moreover, the CW remains expanding exponentially

for every consecutive collision and randomly selected from (0,CW), as before. Therefore,

time-sensitive traffic may suffer from the high variation of delay. Wong and Donaldson [84]

proposed another mechanism to reduce delay by calculating the Persistence Factor (PF)

according to the buffering delay. PF parameter determines the degree of increase of CW

when collisions occur. In DCF, PF = 2, which means CW is doubled for every consecutive

collision. If PF = 3, CW is tripled instead and results in a longer waiting time. The longer

the buffering delay, the smaller the value of PF. PF increases from 1 to 2 in the first half of

the lifetime of a packet to avoid high probability of collisions and decreases from 1 to 0 as

the buffering delay increases to the maximum time life time of a packet to decrease the long

delay.

In [85], Jayaparvathy et al. proposed a mechanism to exchange the experienced delay and

adjust the backoff time accordingly. If the experienced delay of a transmitting node is longer

than its current experienced delay, the backoff time will be reduced, otherwise the backoff

time will be doubled. Chen et al. [86] proposed another mechanism to generate a jamming

signal to give an advantage to access the channel for real-time re-retransmitting MSs. This

mechanism is similar to that of blackburst proposed by Sobrinho and Krishnakumar in [87].

Kanodia et al. [60, 88] attempted to address delay support in multi-hop ad hoc networks

by considering three schemes, time-to-live (TTL) allocation, fixed per-node allocation (FPN),

and uniform delay budget (UDB). While the TTL scheme gives preference to packets that

have traveled several hops, the FPN scheme discriminates against packets with long paths.

Although the UDB scheme allocates the delay budget uniformly among nodes, this scheme

still does not guarantee a delay bound.
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In conclusion, despite the imminent need of delay support for time-sensitive applications

like voice and video, research on this topic has been surprisingly limited and largely unex-

plored. Only a small number of research studies has addressed delay support by giving a

smaller backoff timer to time-sensitive traffic. No mechanism has accomplished closing the

gap in providing delay bounds in a WLAN, which remains a fertile research area.

2.8 CONCLUDING REMARKS

Research on distributed QoS support mechanisms for 802.11 networks is a relatively new area

of study, motivated by emerging applications requiring QoS support. Current mechanisms

use well known QoS schemes (based on priority and fair queuing) from wired networks and

map QoS requirements onto 802.11 MAC parameters. However, for priority-based mecha-

nisms like EDCA, it remains unclear what are the right set of MAC parameters to achieve a

satisfactory and robust QoS support. Most schemes in the research literature have focused

on only throughput delivery. Other QoS metrics, such as delay and jitter, need more atten-

tion. The current distributed mechanisms provide only QoS differentiation, but no specific

QoS level is supported. A new protocol that provides specific QoS support that is tailored

for WLANs is proposed in Chapter 3. Simulation results validating the performance of the

protocol will be presented in Chapter 4 and Chapter 5.
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3.0 SUPPORTING RELATIVE/ABSOLUTE THROUGHPUT AND DELAY

IN WLANS

In this chapter, we will present a novel Quality of Service (QoS) mechanism called Dis-

tributed Relative/Absolute Fair Throughput with Delay Support (DRAFT+D). DRAFT+D

is designed specifically to provide integrated QoS support in IEEE 802.11 Wireless Local

Area Networks (WLANs). The QoS support is achieved by modification of only one 802.11

Medium Access Control (MAC) parameter with ease of implementation and straight-forward

QoS translation. Unlike any other distributed QoS mechanisms, DRAFT+D supports two

QoS metrics (throughput and delay) with two QoS models (absolute and relative) under

two fairness constraints (utilitarian and temporal fairness). While achieving the aforemen-

tioned QoS support, DRAFT+D is also equipped with a safeguard against excessive traffic

to maintain predictable performance.

DRAFT+D is based on fair queue scheduling mechanisms [80], which can take advantage

of carrier sensing and event synchronization in a WLAN. Carrier sensing and synchroniza-

tion of backoff timers in a WLAN allow Self-Clocked Fair Queue (SCFQ) to be implemented

in a fully distributed through the Backoff Interval (BI). The correct relative and absolute

bandwidth allocation is achieved by calculating of BI according to the specified QoS require-

ments, i.e., throughput or delay. In the next section, we will present the assumptions and

limitations of the research, and follow with detailed descriptions and justifications of the

proposed mechanisms.
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3.1 ASSUMPTIONS

The main objective of DRAFT+D is to provide QoS support in WLANs. The assumptions

under which the mechanism operates are listed as follow:

• The MAC layer of each Mobile Station (MS) can only see its own network segment.

• We consider QoS support only within a single-hop WLAN. The Multiple-hop or end-to-

end QoS support is not considered in the proposed mechanism; therefore, the proposed

mechanism addresses QoS support only within a Basic Service Set (BSS) of a WLAN.

• Each MS independently specifies the throughput and delay requirements and operates

collectively according to the provided set of rules.

3.2 OVERVIEW OF DRAFT+D

In this section, we will present an overview of DRAFT+D including its components, a work-

ing flowchart, and bandwidth allocation in DRAFT+D. This overview will provide a concep-

tual roadmap for the rest of this chapter. The components of QoS support in DRAFT+D

are depicted in Figure 3.1. Three main objectives of DRAFT+D are to provide: a) fair

QoS support, b) specific QoS support, and c) excessive traffic control. Fair QoS refers to

relative throughput support while specific QoS support refers to absolute throughput and

absolute delay. Both relative and absolute throughput support are achieved via calculation

of BI according to the value of a flow weight. The value of this weight is a simple map from

the throughput or delay requirements in a form of quantum rate. Two criteria of fairness

(see Chapter 2) for relative throughput support are provided: a) utilitarian fairness and b)

temporal fairness. Two types of absolute QoS are supported by allocating sufficient share

of the channel capacity to these types of traffic. To simultaneously maintain absolute QoS

support and prevent excessive traffic, two mechanisms are incorporated: a) Deficit Round

Robin (DRR) and b) Distributed SafeGuard for Absolute Throughput Support in Relative

Throughput Flows (DSG-RT). Both DRR and DSG-RT are employed independently in each

MS to achieve predictable performance. DRR is used to control the load submitted by an
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Figure 3.1: Components of QoS Support in DRAFT+D

MS to the air. DSG-RT is used to limit new flows if the network is overloaded. The main

advantage of DRR and DSG-RT is that they are implemented locally and independently

without requiring exchange of any information from other MSs. Unlike any other QoS mech-

anism in a WLAN, DRAFT+D achieves QoS support including safeguard against excessive

traffic in a fully distributed manner.

One of the properties of fair-scheduling-based mechanisms is the ability to provide specific

average delay [89]. Intuitively, if a fair-scheduling-based mechanism can provide a specific

throughput support according to a flow weight, it will be able to provide a specific delay (on

average) as well. Since DRAFT+D emulates fair scheduling in a WLAN, DRAFT+D has

the advantage of the ability to provide specific delay, on average.

A flowchart in Figure 3.2 shows the five-step procedure from QoS specification to packet

transmission in DRAFT+D. The first step is the QoS requirement specification, i.e., through-

put (λ) or delay (δ) required. The second step is the translation of these QoS requirements

into a common denominator, called quantum rate (λ). The third step is to calculate an
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appropriate value of a flow weight (φ) from the translated quantum rate according to the

QoS model, i.e., absolute or relative. The fourth step is to calculate the value of BI based

on the value of weight. The final step is to wait until the calculated backoff timer expires

and then begins the packet transmission.

Figure 3.3 demonstrates how DRAFT+D partitions bandwidth for different QoS require-

ments of different classes of traffic (demand vs. supply). From the right side of the figure

(supply side), we assume a WLAN with data rate RAW has an effective channel capacity

of λe, i.e., after accounting for overhead from physical layer, protocol headers, and waiting

times. Then, DRAFT+D partitions the effective channel capacity in the form of fair shares

(λ) into two QoS classes: a) absolute class (λAT,AD), and b) relative class (λRT ).

AT

RT

e

AD

AT,AD

RT

Figure 3.3: Bandwidth Allocation in DRAFT+D

From the left side of the figure (demand side), requirements from absolute and relative

QoS classes in the form of quantum rates (λAT , λAD, λRT ) are specified independently and

handled separately. Because absolute throughput and absolute delay support share the same
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underlying mechanism; their quantum rates are grouped and handled together. According to

these requirements, DRAFT+D, then partitions sufficient bandwidth to flows in the absolute

QoS class while fairly allocating bandwidth to flows in the relative QoS class. Via a simple

manipulation of weight, the share of bandwidth of flows in a absolute QoS class (λAT,AD)

is escalated to sufficiently provide specific throughput and delay support while the share of

bandwidth of flows in the relative throughput class (λRT ) is de-escalated to accommodate

all the traffic flows of this class. We show that as long as the sum of quantum rates of all the

flows from the relative throughput class is smaller than the escalated remaining bandwidth,

absolute QoS will be fully supported and maintained.

We start by describing the components in DRAFT+D DRAFT+D: a) the way DRR is

applied in WLANs, b) QoS translation, and then c) the calculation of unbiased weight.

3.3 THE BASICS OF DRAFT+D

3.3.1 Applying DRR in WLANs

Traffic at each MS can be categorized into one of three supported QoS classes, i.e., a) absolute

throughput, b) relative throughput, and c) absolute delay. A traffic class i at MS j (TCj[i])

with throughput requirement (λj[i]) or with target delay (δj[i]) (i.e., specified independently

by each MS) is allocated a service quantum of Q bits every tj[i] second. Without loss of

generality, we assume that there is only one traffic class per MS and omit the superscript in

what follows to simplify the presentation. The quantum rate is set equal to the throughput

requirement (from either throughput or delay). Traffic requiring a higher throughput or

lower target delay is given a higher quantum rate. We will explain later how DRAFT+D

translates a given delay requirement to a corresponding throughput requirement. Therefore,

we will use the same notation for throughput requirement and the quantum rate, i.e., λ[i].

In time, each traffic class in each MS independently accumulates service quanta according

to its specified quantum rate. The accumulated quanta of TC[i], which represent unused

resources corresponds to a Deficit Counter (DC[i]). DC[i] is increased continuously with
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time at a rate of λ[i] up to the maximum limit (DCmax) as shown in Eq. (3.1). DC[i] is

decreased by the size of the frame in bits (l[i]) whenever a frame is successfully transmitted

as shown in Eq. (3.2).

DC[i](t) = DC[i](t′) + λ[i]× (t− t′), DC[i] < DCmax (3.1)

DC[i](t) = DC[i](t)− l[i](t) (3.2)

The DRR mechanism acts as a traffic regulator to control the flow rate, as shown in

Figure 3.4. During the test process, if DC[i] is below a minimum limit (DCmin), TC[i]

is not eligible to contend for network access. Without a traffic regulator, it is difficult,

if not impossible, to provide absolute QoS support since traffic can be injected into the

network unpredictably and/or excessively. This embedded rate control is the first advantage

of DRAFT+D.
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Figure 3.4: Token Bucket - A Rate Control Mechanism in DRAFT+D
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DRR can be used to further reduce the probability of collision by calculating a Variable

Length IFS (VIFS) according to the value of DC[i]. However, this is not the main focus of the

proposed mechanism. A description and preliminary simulation results of VIFS mechanism

can be found in Appendix A.

3.3.2 QoS Translation

In Enhanced Distributed Channel Access (EDCA), it is not obvious what the values of

AIFS, CWmin, and CWmax should be to provide specific throughput and delay targets. In

DRAFT+D, QoS translation is straight-forward. Let us suppose that the desired throughput

is a throughput requirement parameter and the target delay is a delay parameter. To simplify

the QoS translation, both throughput and delay requirements are mapped into a common

denominator, i.e., quantum rate. Under throughput support, the quantum rate is set equal

to the throughput requirement. For example, if the throughput requirement of a flow is 200

Kbps, we simply let the quantum λ[i] be 200 Kbps. Under delay support, the quantum rate

is set either to: a) the throughput requirement or, b) the delay-specific quantum rate, which

ever is higher. The delay-specific quantum rate (λd) is calculated from the ratio between the

maximum packet size (Lmax) and the specified target delay (δ[i]), as shown in Eq. (3.3).

λd[i] =
Lmax

δ[i]
(3.3)

For example, the delay-specific quantum rate of a traffic flow with 64 Kbps throughput and

40 ms target delay is 200 Kbps, assuming L = 1 Kbyte (8000
0.04

). Therefore, a bandwidth

requirement of 200 Kbps (rather than 64 Kbps) is picked as the quantum rate. In this study,

target delay is the Head-of-Queue (HoQ) delay. The HoQ delay is the duration from the

time a packet arrives at the head-of-queue until the reception of acknowledgement. Other

types of delay metric, e.g., MAC delay, are also applicable at the price of higher throughput

requirement. With this QoS mapping, the rest of the mechanism makes use of λ[i] (either

from throughput requirement or delay requirement). λ[i] is then used in the calculation of

weight (φ[i]) to provide fairness, as discussed next.
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3.3.3 Calculating Unbiased Weight

An unbiased weight is a representation of quantum rate in the form of a flow weight. The

unbiased weight is from the ratio between the quantum rate and a reference data rate, as

shown in Eq. (3.4).

φ[i] =
λ[i]

R
(3.4)

φ[i] denotes the weight of class i, λ[i] denotes the quantum rate, and R denotes a reference

data rate which is set to 1 Mbps. According to Eq. (3.4), a flow with a quantum rate of

200 Kbps receives a weight of 0.2 (200Kbps
1Mbps

) while a flow with a quantum rate of 400 Kbps

receives a weight of 0.4 (400Kbps
1Mbps

).

The required quantum rate for delay support was discussed earlier in Section 3.3.2. The

unbiased weight for delay support can be calculated simply by plugging the required quantum

rate into Eq. (3.4). Collapsing all QoS requirements into quantum rates helps simplify the

weight calculation and entire QoS support mechanism. Next, we will present the ways to

calculate the weights and backoff intervals to provide absolute and relative QoS support, and

the rationale for the calculation in detail.

3.4 RELATIVE AND ABSOLUTE QOS SUPPORT

3.4.1 Calculating Weight

The way in which the weight parameter is calculated is crucial to provide fairness and QoS

support. We will now present the way to calculate weight to provide relative throughput,

absolute throughput and absolute delay support. While, relative throughput support aims at

providing fair bandwidth allocation to different flows, absolute throughput support aims at

providing specific bandwidth allocation. To provide both relative throughput and absolute

throughput support, we have to calculate the corresponding weights differently.

For relative throughput support, the unbiased weight is multiplied by a deescalating

factor called θ (0 < θ ≤ 1), as shown in Eq. (3.5). φrt[i] denotes the de-escalated weight of a
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relative throughput flow of class i. For example, if θ = 0.5 and L = 1 Kbyte, a flow requiring

relative throughput of 200 Kbps receives a relative weight of 0.1 (0.5 · 200Kbps
1Mbps

) while a flow

with relative throughput of 400 Kbps receives a relative weight of 0.2 (0.5 · 400Kbps
1Mbps

).

φrt[i] = θ · φ[i] (3.5)

For absolute throughput and absolute delay support, the unbiased weight is multiplied

by an escalating factor called ω (ω ≥ 1), as shown in Eq. (3.6). φat[i] denotes the weight of

absolute class i. For example, assuming ω = 5 and L = 1 Kbyte, a flow requiring absolute

throughput of 200 Kbps receives a weight of 1 (5 · 200Kbps
1Mbps

) while a flow requiring absolute

throughput of 400 Kbps receives a weight of 2 (5 · 400Kbps
1Mbps

).

φat[i] = ω · φ[i] (3.6)

Under utilitarian fairness, MSs with the same throughput requirements should receive

the same experienced throughput, irrespective of the data rate at which they are connected.

However, the network resources which each user utilizes may be drastically different de-

pending on the data rate at which they are connected. Under temporal fairness, each MS

with a different data rate should receive a different weight. To achieve temporal fairness, a

MS connecting with a lower data rate should receive a lower weight than a MS connecting

with a high data rate so that both MSs will utilize the same channel time. In DRAFT+D,

temporal fairness can be enforced simply by multiplying a temporal factor (γ) to the weight

calculations in Eq. (3.5) and Eq. (3.6). The temporal factor can be calculated as shown in

Eq. (3.7).

γ =
Rconnected

Rmax

(3.7)

For example, under temporal fairness, the weight value of a MS-1 requiring 64 Kbps and

connected at 2 Mbps is equal to 0.036 whereas the weight value of a MS-2 requiring 64 Kbps

and connected at 11 Mbps is equal to 0.2. We can see that the weight value of MS-1 is

around 5.5 times less than that of MS-2 because MS-1 requires 5.5 times more time to send

the same amount of data than MS-2. Simulation results to demonstrate the use of temporal

fairness will be presented in Chapter 5.
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The four parameters, φrt, φat, θ, and ω, are important in achieving absolute QoS and

relative throughput support. Flows from an absolute throughput class expect to receive as

much bandwidth as requested while the flows from relative throughput classes will fairly

share the rest of the bandwidth according to their weights. Next, we will present the way

the weight parameter in DRAFT+D is mapped into an 802.11 MAC parameter, namely the

backoff interval.

3.4.2 Calculating Backoff Interval

In EDCA, two 802.11 MAC parameters, i.e., InterFrame Space (IFS) and BI, are modified

to provide differentiated but unfair QoS support. In DRAFT+D, only one parameter, the

BI, is modified to provide both relative and absolute QoS support. The modification of BI

is simple yet effective, and can be used to provide both relative and absolute QoS support.

To provide relative QoS support, we calculate the values of Contention Window (CW)

and BI in a manner similar to Distributed Fair Scheduling (DFS), proposed by Vaidya et

al. [80]. Eq. (3.8) - Eq. (3.11) show how the values of CW and BI are calculated. We will

explain the equations below.

CWcenter[i] = 2κ · L

φ[i]
(3.8)

CW [i] =
Rmax

λ[i]
(3.9)

CWlower[i] =

⌈
CWcenter[i]− CW [i]

2

⌉
(3.10)

CWupper[i] =

⌈
CWcenter[i] +

CW [i]

2

⌉
(3.11)

BI[i] =

[
CWlower[i], CWupper[i]

]
(3.12)

According to Eq. (3.8), CWcenter[i] is the mean value of CW of traffic class i with weight

φ[i]. φ[i] is calculated from the specified throughput or target delay requirement; L is the

packet size in Kbytes. The parameter κ is a constant used in the calculation of CWcenter. A

higher value of κ results in a higher value of CWcenter and a smaller probability of collision.
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A discussion and the sensitivity analysis of κ will be given in Section 4.3.1. According to

Eq. (3.8), the value of CWcenter is inversely proportional to the value of weight. That is, the

larger the value of weight, the smaller is the value of CWcenter[i]. For example, if κ = 5 and

L = 1 Kbyte, a weight of 0.2 yields a CWcenter[1] of 160 ( 25

0.2
) while a weight of 0.4 yields a

CWcenter[2] of 80 ( 25

0.4
).

CW [i] represents the number of possible values of BI of traffic class i. Note that in

Eq. (3.9), the maximum data rate of the WLAN Rmax is used to calculate CW because

this value will result in the largest range of CW [i] helping to avoid potential unnecessary

collisions. For example, CW [i] of a flow with 500 Kbps is 22 (11Mbps
500kbps

). Therefore, there

are 22 spaces regardless of the connected data rate. CW [i] is doubled for every consecutive

collision.

A backoff slot (BI[i]) is uniformly and randomly selected from a range between CWlower[i]

and CWupper[i], as shown in Eq. (3.12). That is, CWlower[i] is the lower bound of BI[i] while

CWupper[i] is the upper bound of BI[i] of a particular weight value (φ[i]). By calculating

the value of BI based on weight, the collisions among different classes with different values

of weight are reduced automatically. The reason is that the range of BI[i] of traffic with

different weights can be separated from each other, as shown in Figure 3.5. For example, the

Figure 3.5: Non-Overlapping Ranges of BI[i] in DRAFT+D

BI of MS-1 with λ[1] = 200Kbps, is between 132 and 188 (160± 28) whereas the BI of MS-2

with λ[2] = 400Kbps is between 66 and 94 (80 ± 14), assuming κ = 5 and L = 1 Kbytes.

Under normal circumstances, the values or steps of the required throughput of applications

may be quite different from one another, e.g. 1 Mbps, 400 Kbps, 200 Kbps, 128 Kbps, and

64 Kbps.
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Further, the calculation of CW and BI based on weight also provides fairness. According

to Eq. (3.8), a flow of the same weight will receive the same range of possible BI. Because

the waiting time for a packet transmission is directly proportional to the value of selected BI,

flows with the same weight will receive the same experienced throughput and/or experienced

delay, on average, as show in Figure 3.6. Flows with proportionally larger or smaller weight

wait for proportionally shorter or longer periods. Moreover, because each MS independently

calculates its own CW and BI and all MSs share a common clock via the idle and busy

states, and the waiting time is directly proportional to the value of weight, fairness can be

achieved in a fully distributed manner without requiring the exchange or collection of any

information from other MSs. Next, we will provide an analysis of the condition under which

absolute QoS can be supported and maintained.

=400k

=200k

Figure 3.6: Proportional Waiting Time via BI[i] in DRAFT+D

3.4.3 Analysis of Absolute QoS Support

Let us define the fair share of channel capacity as the proportion of effective channel capacity

that a flow should receive according to its weight. Let λk[x] denote a traffic flow of class x

at MS k with a weight of φ[x] and λe denote the effective channel capacity of a WLAN. We

once again assume one traffic class per MS and omit the superscript k in what follows. The

fair share of λ[x] (denoted by λ[x]) is equal to the product of the effective channel capacity
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and the normalized weight, as shown in Eq. (3.13). The normalized weight represents the

percentage of the weight value in comparison to the sum of weights of all flows in all MSs.

The normalized weight is thus the ratio between the weight of the MS and the sum of all

weights of all flows in the network. It is important to note that, in practice, the share of a

flow can be observed via the experienced throughput without the need to know the sum of

all weights. The reason is that every MS in a WLAN listens to the idle/busy period, and

elapses or freezes its backoff timer accordingly. Therefore, their waiting times are directly

proportional to the value of weights and fair shares.

λ[x] = λe · φ[x]∑
∀i

φ[i]
(3.13)

In what follows, AT, AD, and RT represent all flows in absolute throughput, absolute

delay, and relative throughput classes respectively.

AT

RT

e

AD

AT,AD

RT

Figure 3.7: Fair Share Allocation in DRAFT+D

The parameter ω escalates the fair share of the flows requiring absolute QoS support while

the parameter θ de-escalates the fair share of flows requiring relative throughput support.
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Consequently, the fair share of flows from the absolute QoS class (λ[x ∈ AT, AD]) are

escalated and the fair share of flows from the relative throughput class (λ[x ∈ RT ]) are

de-escalated compared to the unbiased fair share calculated from the unbiased weight (φ[i]),

as shown in Eq. (3.14) and Eq. (3.15), and graphically in Figure 3.7.

λ[x ∈ AT, AD] = λe · ω · φ[x]∑
∀i

φ[i]
(3.14)

λ[y ∈ RT ] = λe · θ · φ[y]∑
∀i

φ[i]
(3.15)

In Eq. (3.14), we can substitute the weight by the quantum rate and show this relationship

in terms of quantum rate, as shown in Eq. (3.16).

λ[x ∈ AT, AD] = λe · ω · λ[x]

ω · ∑
∀i∈AT,AD

λ[i] + θ · ∑
∀j∈RT

λ[j]
(3.16)

To achieve absolute QoS support, we assume that the values of ω and θ are chosen such

that the fair share of absolute QoS class (λx∈AT,AD) is equal or higher than the specified

throughput requirement (λ[x ∈ AT, AD] ≥ λ[x]). Then, the desired throughput (given by

the quantum rate) will be obtained. Eq. (3.17) shows the condition under which absolute

QoS can be supported.

λ[x] ≤ λ[x ∈ AT, AD]

λ[x] ≤ λe · ω · λ[x]

ω · ∑
∀i∈AT,AD

λ[i] + θ · ∑
∀j∈RT

λ[j]

∑

∀j∈RT

λ[j] ≤ ω

θ
· (λe −

∑

∀i∈AT,AD

λ[i]) (3.17)

From Eq. (3.17), as long as the sum of quantum rates of all the flows from the relative

throughput class (the left side of the equation) is smaller than the right side of the equa-

tion, which we shall refer to as “the escalated upper bound” of the remaining bandwidth,

absolute QoS will be fully supported. The remaining bandwidth is the difference between

the effective channel capacity and the sum of the throughput requirement from flows in the

absolute QoS class. Obviously, the total traffic from absolute QoS flows must be less than

the effective channel capacity. We will call the condition in Eq. (3.17) where absolute QoS
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can be supported as the overload condition and the ratio ω/θ as the overload ratio. This

ratio indicates how much the network can be overloaded while maintaining absolute QoS

support.

3.4.4 Calculating Appropriate Values of ω and θ

While parameter ω is applied only to the traffic from absolute QoS class, parameter θ is

applied only to the traffic from relative throughput class. Both parameters affect the ability

to provide absolute QoS support. Appropriate values of these parameters are crucial to the

performance of DRAFT+D in providing QoS support. Once appropriate values of ω and θ

are calculated, we assume that they are distributed via a beacon frame to be used as standard

values for all MSs in the network. Next, we will demonstrate the impact and suggest ways

to compute the appropriate values of ω and θ.

Absolute QoS can be supported if the value of ω is set large enough such that the fair

share of absolute QoS is higher than the specified or required quantum rate. Using algebraic

manipulation of Eq (3.17), appropriate ω and θ can be computed from an estimate of the

expected total throughput requirements of flows in the relative throughput class and the

absolute QoS class, as shown in Eq. (3.18).

ω

θ
≥

∑
∀j∈RT

λ[j]

λe −
∑

∀i∈AT,AD

λ[i]
(3.18)

For example, let us suppose that we have a hypothetical WLAN W1 with a raw data

rate of 2 Mbps and λe = 1.5. If this WLAN is expected to support 0.5 Mbps of traffic from

the absolute throughput class and 5 Mbps traffic from the relative throughput class, the

appropriate value of ω/θ is ( 5
1.5−0.5

) = 5. In this hypothetical WLAN, if the offered load

is not overly excessive, absolute throughput will be fully supported. If the offered load is

excessive (more than 5.5 Mbps), absolute QoS support will deteriorate gracefully to relative

throughput support.

To understand the impact of ω and θ, we assume θ = 1 for now. When θ = 1, the

overload ratio is simply equal to ω. In this case, the network can support a total quantum

(from flows in the relative throughput class) ω times as much as the remaining bandwidth
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(i.e., the bandwidth after flows from absolute QoS class are accommodated). For example,

if ω = 5, λe = 1.5 Mbps, and the traffic from absolute throughput class is 0.5 Mbps, the

amount of supported traffic from relative throughput class will be 5 Mbps, or 5 times as

much as the remaining bandwidth (1 Mbps).

However, in practice, the value of ω cannot be increased indefinitely to accommodate an

infinite amount of traffic. The condition when ω is no longer valid can be determined by

the difference between the initial CWcenter and the next CWcenter. If the difference of the

two CWcenter’s is less than 1, the new value of ω is not valid. This condition can be derived

from the relationship between CWcenter and ω, as shown in Eq. (3.19) which is modified from

Eq. (3.18).

CWcenter[i] =
2k ·R
ω · λ[i]

(3.19)

For example, if λ[i] = 500 Kbps, κ = 5, and R = 1 Mbps, the maximum value of ω of 7

can be calculated as shown in Eq. (3.20).

CWcenter,ω1 − CWcenter,ω2 ≤ 1

25

0.5 · ω1

− 25

0.5 · ω2

≤ 1

ω2
1 + ω1 − 64 ≥ 0

ω ≤ 7.52 (3.20)

That is, the valid value of ω to provide absolute throughput with for λ = 500 Kbps

is between 1 and 7. Depending on the design of the expected total throughput and the

maximum throughput, an appropriate value of ω can be chosen. Next, we will present the

impact and the way to calculate the appropriate value of parameter θ.

From Eq. (3.18), the ratio ω/θ represents the number of times the amount of traffic from

relative throughput class can be supported beyond the remaining bandwidth. Although, the

range of valid value of ω is limited, we can manipulate the value of θ to support a higher the

amount of traffic from relative throughput class while maintaining absolute QoS support.

The smaller the value of θ, the higher the amount of traffic from relative throughput class can

be supported. For example, in the same hypothetical WLAN W1, if we change the value of θ
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from 1.0 to 0.5, the acceptable total offered load increases from 5.5 Mbps to 10.5 Mbps. This

is, the total offered load in a 2 Mbps WLAN with effective throughput of only 1.5 Mbps. Out

of 10.5 Mbps acceptable offered load, 0.5 Mbps is from the absolute throughput class and

10 Mbps is from the relative throughput class. This amount of offered load is exceptionally

high since it is more than 650% higher than the effective channel capacity. Under most

circumstances, this amount of offered load should be sufficient for any operational WLAN.

We can further decrease the value of θ to accommodate a larger amount of traffic, if necessary.

The trade-off of using a small value of θ is the limitation of maximum achievable throughput

of traffic from the relative throughput class. The smaller the value of θ, the smaller is the

actual throughput of flows in from the relative throughput class.

So far, we have described the mechanisms and analyses of DRAFT+D to provide rela-

tive throughput support, absolute throughput support, and absolute delay support. Absolute

throughput and absolute delay support can be maintained as long as the amount of traffic is

within the estimated value. However, if the amount of injected traffic of relative throughput

class is overly excessive, the absolute throughput and absolute delay support will be deteri-

orated. Next, we will present a safeguard mechanism against excessive traffic from relative

throughput class.

3.5 EXCESSIVE TRAFFIC CONTROL WITH DSG-RT

The objective of Distributed SafeGuard for Absolute Throughput Support in Relative Through-

put Flows (DSG-RT) is to control and limit the excessive amount of traffic from relative

throughput class while maintaining absolute QoS support. DSG-RT provides a set of rules

that each MS applies independently to achieve the goal of predictable performance. This

goal is achieved by comparing the actual experienced throughput of a new Mobile Station

with Relative Throughput Requirement (RT-MS) with an expecting throughput threshold.

If the experienced throughput is higher than a threshold, which we call overload threshold,

a new flow can continue sending traffic. However, if the experienced throughput is smaller

than the overload threshold, a new flow should not be allowed to continue. The overload
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condition can be determined locally, as shown in Eq. (3.21). This equation is derived by

multiplying both sides of (3.17) with the quantum rate of class k (λ[k]).

λ[k] ·
∑

∀j∈RT

λ[j] ≤ λ[k] · ω

θ
·
[
λe −

∑

∀i∈AT,AD

λ[i]
]

θ

ω
· λ[k] ≤ λ[k]∑

∀j∈RT

λ[j]
·
[
λe −

∑

∀i∈AT,AD

λ[i]
]

(3.21)

According to Eq. (3.21), as long as the experienced throughput of flows in the relative

throughput class (the right side of (3.21)) equals or is higher than the product between the

quantum rate and θ
ω

ratio (the left side of the equation), the ability to provide absolute QoS

will be maintained. In Eq. (3.21), the overload threshold can be calculated according to

the specified quantum rate whereas the fair share can observed from the actual experienced

throughput. Because, in practice, the experienced throughput can fluctuate and its mea-

surement may not be completely accurate, to prevent deterioration of absolute support, the

original overload threshold is multiplied by a safety factor (β), as shown in Eq. (3.22).

λ[k] ≥ β · θ

ω
· λ[k] (3.22)

Using Eq. (3.22), we propose a safeguard mechanism against excessive traffic based on

the measurement of experienced throughput during the testing period. The testing period

consists of two phases: a) transient period and b) decision period. During the transient

period, a new flow will transmit N1 packets into a WLAN. The purpose of the packets during

transient period is to make sure that the experienced throughput is stable and representative.

The experienced throughput is calculated from the Exponentially Weighted Moving Average

(EWMA) of instantaneous throughput. After the transient period, the new flow will continue

transmitting N2 packets into a WLAN. For every successful transmission, the experienced

throughput will be measured against the overload threshold. During the decision period, if

the experienced throughput is smaller than the overload threshold, the new flow will stop

transmission. If not, the flow can continue. Appropriate values of the number of packets

during the transient and decision period (N1, N2) have been determined in the sensitively

analysis section in Chapter 4. Note that a number of MSs may probe the channel around
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the same time causing additional loads. We consider the effect of the number Ξ of MSs that

probe the channel in Section 4.3.7

It is important to note that five parameters required for DSG-RT are λ[k], λ[k], β, θ, and

ω. These parameters are available locally at each MS. λ[k] can be measured independently

at each MS while λ[k] is the throughput requirement specified by each MS. The parameter

β, θ and ω are assumed to be standard values in a given WLAN. The simplicity of the

scheme is that these parameters are available locally at each MS. Therefore, each MS can

independently perform the test by itself in a fully distributed way. Additionally, the overload

condition in Eq. (3.22) can also be applied as an adaptive bandwidth control mechanism.

Rather than stopping a new flow, the adaptive mechanism will throttle the fair share of

flows from relative throughput class (see discussion in Appendix B). Finally, a distributed

safeguard mechanism against excessive traffic from absolute throughput and absolute delay

class is also possible in DRAFT+D with a similar method (See Appendix C for analyses,

preliminary protocol description, and simulation results).

3.6 DISCUSSIONS

In WLANs, an Access Point (AP) is commonly used to relay traffic between the wired

network, e.g., Internet, and the MSs. The amount of downlink traffic from the wired network

often represents the majority of traffic in the WLAN [90]. If the downlink traffic destined

to a particular MSs requires absolute throughput or absolute delay support, appropriate

quantum rates will be assigned by the AP to such flows according to the requirement. We

assume that the appropriate quantum rates are communicated by the destination MSs to

the AP by a reservation mechanism in an upper layer. Once the AP receives appropriate

quantum rates for the downlink from the destination MSs, the AP will use the same basic

function of DRAFT+D to provide QoS support accordingly.

It is to be noted that the values of BI in DRAFT+D are likely to be larger that those

of Distributed Coordination Function (DCF). Therefore, MSs with DRAFT+D will be at

disadvantage in competing for bandwidth to those of DCF. However, a larger value of BI
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does not incur a significant delay and overhead under both light and heavy loads. The reason

is that, in the light load situation, the channel is idle most of the time. The backoff timer

of each MS counts down at the rate of the number of idle timeslot multiplied by the value

of BI. The value of each timeslot is around 8-50 µs [91], depending on the physical layer.

Therefore, the total amount of waiting time due to backoff is very small. For example, MS 1

receives a value of BI of 30 and MS 2 receives a value of BI 300. We assume that there is no

other transmission in the channel and timeslot lasts 10 µs, MS 1 will wait during the backoff

for 300 µs while MS 2 will wait for 3 ms. We can notice that the difference in waiting time is

on the order of a few ms which is very small in comparison to other delays such transmission

delay. As shown in Chapters 4 and 5, DRAFT+D significantly outperforms EDCA under

heavy loads.

In DRAFT+D, we assume that each MS independently specifies the throughput and

delay requirements and operates according to the provided set of rules. Selfish MSs can gain

advantages in two ways. The first way is to specify unreasonably high QoS requirements.

The second way is to arbitrarily calculate an unreasonably small value of BI. To prevent

MSs from specifying a QoS requirement that is higher than necessary, a monetary incentive

mechanism where users need to pay more if they request higher QoS requirements can be

used. However, this mechanism should be implemented in a higher layer. To prevent MSs

from calculating a small value of BI, a monitoring mechanism can be used to observe the

backoff duration of previous transmitting packets. If an unreasonably small backoff duration

is detected, selfish MSs could face penalty in accessing the network [92, 93, 94].

3.7 CONCLUDING REMARKS

In this chapter, we presented a detailed description of DRAFT+D for providing a) relative

throughput, b) absolute throughput, and c) absolute delay with safeguard against excessive

traffic. In EDCA, two MAC parameters are modified to provide differentiated but unfair

QoS support. DRAFT+D modifies only the way BI is calculated to provide both relative

and absolute QoS support. Relative throughput support is achieved by calculating fair BI.

60



Absolute throughput and absolute delay support is achieved by allocating sufficient fair share

for these types of traffic. Absolute throughput and absolute delay can be supported as long

as the overload condition is maintained. The overload condition can be maintained in a fully

distributed manner via a safeguard mechanism called DSG-RT. The advantage of DSG-RT

is that it can independently limit a new flow from relative throughput class without requiring

any information from other MSs. In Chapter 4, we will present baseline performance eval-

uation, performance comparison with selected QoS mechanisms, and sensitivity analysis of

DRAFT+D. In Chapter 5, comprehensive performance evaluation of DRAFT+D in several

diverse and realistic scenarios will be presented.

61



4.0 BASELINE PERFORMANCE EVALUATION, COMPARISON, AND

SENSITIVITY ANALYSIS

In Chapter 3, we presented a description of Distributed Relative/Absolute Fair Throughput

with Delay Support (DRAFT+D) protocol that provides support for relative throughput,

absolute throughput, and absolute delay with a distributed safeguard mechanism. In this

chapter, we will present a baseline performance evaluation of DRAFT+D for providing

QoS support. The important findings are summarized as follows. Fair bandwidth allocation

according to weight can be achieved with very low variation of throughput and delay. Specific

bandwidth allocation is also achieved by absolute throughput support via the introduction of

ω and θ parameters with very low variation. The simulation results confirm that the analysis

in Section 3.4.3 of fair share and overload condition are correct. Specific delay support for the

Head-of-Queue (HoQ) packet is also achieved via absolute delay support. The mechanism

that limits excessive traffic from new RT-MSs can be accomplished in a distributed manner

without requiring exchange of any information among MSs. Finally, the results confirm the

effectiveness and robustness of DRAFT+D in an extremely saturated condition (10 Mbps in

2 Mbps WLAN).

To demonstrate the performance of DRAFT+D, we conducted our simulations using

OPNET 9.1. The model reused the 802.11 DCF model available in OPNET. Unless otherwise

specified, the following assumptions and parameters are used:

• Each MS works independently and cooperatively according to the provided specification.

We assume that no MS attempts to cheat or gain illegal advantages over the other MSs.

• MSs operate in Ad-Hoc mode which is sufficient and appropriate to evaluate the perfor-

mance of the MAC mechanism. In Chapter 5, we will relax this assumption and show
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the result in infrastructure mode where an AP is used to relay traffic among MSs. If

there is the presence of AP in the network, the AP will use the same set of rules as

DRAFT+D. Additionally, the AP is also responsible for relaying traffic among MSs or

between WLANs and wired-networks.

• In this simulation, each MS has only one class of traffic per MS, however, our mechanism

works for many classes of traffic per MS as well.

• All MSs are located within a single Independent Basic Service Set (IBSS) where every

MS is able to detect a transmission from other MSs. We assume that hidden-terminals

are not present and the Request to Send/Clear to Send (RTS/CTS) mechanism is not

used. In Chapter 5, we will relax this assumption and show the results when RTS/CTS

is used.

• Time variant behavior of the wireless channel is not considered. MSs are assumed to

operate in a WLAN where the characteristics of the wireless channel is static. The

channel is also assumed error-free. In Chapter 5, we will relax this assumption and

evaluate the performance in erroneous channels.

• We perform most of the simulations on a 2 Mbps WLAN to strategically minimize the

simulation times into manageable durations. In Chapter 5, we will relax this assumption

and evaluate the performance in 5.5 and 11 Mbps WLANs.

• We assume that all MSs are connected to the network at the same data rate. Later, we

will relax this assumption and consider multi-rate environments. However, multi-rate

is considered only in the static sense. By this, we mean each MS can connect to the

WLAN at different data rates. However, once an MS is connected, the data rate does

not change.

• MSs can be located anywhere within the IBSS. However, they remain at the particular

location during the course of simulation.

• The traffic from each MS is sent to random destinations.

• All flows are of constant bit rate. The constant bit rate traffic is to clearly demonstrate

the variation of throughput and delay (or the lack of) created by the mechanism. We

will relax this assumption in Chapter 5.
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• The frame size is fixed at 1000 bytes. Later, we will relax this assumption and consider

variable length packets.

• Buffer size is set to 256,000 bits, IFS = DIFS, κ = 5, ω = 5.

During the course of performance evaluation, the following metrics and their measure-

ments are used:

• Throughput: Throughput requirement and quantum rate refers to the offered load of

input traffic. The experienced throughput denotes the rate of successful data transmis-

sion over time.

• Delay: The HoQ delay denotes the waiting time since a packet becomes head-of-queue

until the reception of acknowledgement. The HoQ delay comprises the durations of

packet transmission, packet retransmission (if any), acknowledgement of transmissions,

and waiting times. The queuing delay is the duration for which the packet is waiting

in the queue before it becomes the head of the queue. The MAC delay refers to the

period between the time when a packet is received into the queue and the time when an

acknowledgement packet is received to confirm a successful transmission.

• Jitter: We consider jitter only in the MAC layer. This metric measures the difference

between the previous HoQ delay and the current HoQ delay.

• Collision Rate: Collision occurs when the backoff timer of two or more MSs reach zero

at the same time. Collision rate is calculated from the number of collisions per second.

• Aggregate Throughput: The aggregate throughput is the sum of throughput from all

MSs

• Backoff Interval: The backoff interval is recorded from the actual selected values of BI

for each packet.

In the next section, we will present an overview of the results and follow with sensitivity

analysis for important parameters of DRAFT+D, i.e., κ, ω, θ, N1, N2, β and Ξ.
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4.1 OVERVIEW OF RESULTS

In this section, sets of results that highlight the main functionalities of DRAFT+D are

presented. We will show that DRAFT+D provides excellent QoS support, namely relative

throughout support, absolute QoS support, and DSG-RT. For relative throughput support,

fair throughput allocation is achieved with respect to the two fairness constraints (utilitarian

fairness and temporal fairness). For absolute QoS support, specific QoS requirement with

respect to throughput or delay are achieved. Finally, DRAFT+D also provides good perfor-

mance of DSG-RT to prevent injection of excessive amounts of traffic. All QoS support is

provided via simple calculation of BI in a fair and fully distributed manner.

To demonstrate the performance of DRAFT+D, we will evaluate 7 scenarios where the

number of Mobile Stations with Relative Throughput Requirement (RT-MSs), the number

of Mobile Stations with Absolute Throughput Requirement (AT-MSs), the number of Mo-

bile Stations with Absolute Delay Requirement (AD-MSs), the total throughput requirement

(Σ), and DSG-RT flags vary as shown in Table 4.1. In scenario 10RT, we will demonstrate

the ability to DRAFT+D provide fair bandwidth allocation via relative throughput support.

In scenario 1AT+9RT, we will demonstrate the ability to provide specific bandwidth allo-

cation via the absolute throughput support. In scenario 1AT+19RT, we will show that the

analysis of fair share and overload condition in Chapter 3 is confirmed with the simulation

results. Scenario 1AT+199RT-05TT will show the impact of parameter θ while scenario

1AT+19RT-DSG will show the ability to limit excessive traffic using DSG-RT. Scenario

1AD+19RT will show the ability to provide absolute delay support of DRAFT+D and sce-

nario 1AT+1AD+18RT will show the ability of DRAFT+D to simultaneously support the

aforementioned three classes of QoS.

In these scenarios and in what is to follow, a new MS starts transmitting traffic 10

seconds (s) after the previous MS. The first MS starts transmission at time t = 10s, the

second MS at time t = 20s, the third MS at time t = 30s, and so on. Each MS remains

active for 240 seconds. Thus, the first MS is active during 10s < t < 250s, the second MS

during 20s < t < 260s, the third MS during 30s < t < 270s, and so on. During the course

of simulation of 500 seconds, all MSs are active simultaneously during 100s < t < 250s.
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Table 4.1: Simulation Parameters in the Overview of Results

# Name AT-MSs RT-MSs AD-MSs Σ DSG-RT
1 10RT - 10RT@500Kbps - 5 Mbps no
2 1AT+9RT 1AT@500Kbps 9RT@500Kbps - 5 Mbps no
3 1AT+19RT 1AT@500Kbps 19RT@500Kbps - 10 Mbps no
4 1AT+19RT-05TT 1AT@500Kbps 19RT@500Kbps - 10 Mbps no
5 1AT+19RT-DSG 1AT@500Kbps 19RT@500Kbps - 10 Mbps yes
6 1AD+19RT - 19RT@500Kbps 1AD@0.016s 10 Kbps no
7 1AT+1AD+18RT 1AT@100Kps 18RT@500Kbps 1AD@0.02s 10 Kbps no

4.1.1 Providing Relative Throughput Support

We will first demonstrate the ability of DRAFT+D to provide fair throughput support. In

scenario 10RT, a WLAN comprises of 10 RT-MSs with throughput requirement (λ) of 500

Kbps, making the total throughput requirement 5 Mbps in a 2 Mbps WLAN. Figure 4.1 (a)

shows that RT-MSs receive as much throughput as required (500 Kbps) when the network is

not saturated. Network saturation is the condition where the total throughput requirement,

in the form of offered load or quantum rate, is higher than the effective channel capacity.

The effective channel capacity is around 1.5 Mbps throughout the simulation (Figure 4.1

(b)). In scenario 10RT, the saturated condition begins when MS 4 becomes active at time

t = 40s. At this point, the total offered load adds up to 2 Mbps while the effective channel

capacity is around 1.5 Mbps.

Under saturated conditions, each RT-MS fairly shares the effective channel capacity

according to its weight. Since all RT-MSs in scenario 10RT have the same weight, they

receive the same experienced throughput. We also observe that the variation of throughput

is very small even in a highly saturated condition where the total throughput requirement

is more than 3 times the effective channel capacity (5 Mbps vs. 1.5 Mbps). The result is

comparable to that of DFS which is a similar mechanism.

Figure 4.1 (c) shows the MAC delay of RT-MSs. As expected, the MAC delay and its

variation are very small when the total throughput requirement is less than the effective

channel capacity. We see that the MAC delay is directly proportional to the value of weight.
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Figure 4.1 (d) and Figure 4.1 (e) show that jitter and collision rates are also relatively small.

The jitter is within ±40 ms and the mean collision rate is only around 0.13. The collision

rates of all MSs are under 0.3 most of the time. Finally, Figure 4.1 (f) shows the selected

backoff interval. We observe that the variation of selected backoff interval is very small,

between 61 and 66. The initial result of fair experienced throughput with low variation, low

collision rate, and stable effective channel capacity indicates the efficiency and effectiveness

of DRAFT+D. These are important properties of the QoS mechanism. We will show in

Section 5.1 that these properties remain intact even in more complicated scenarios.

4.1.2 Providing Absolute Throughput Support

In the previous section, we demonstrated the excellent performance of DRAFT+D to pro-

vide fair throughput support. In this section, we will demonstrate the unique ability of

the mechanism to provide absolute throughput support. Unlike any other distributed QoS

mechanism, DRAFT+D is specifically designed to recognize and support different QoS re-

quirements for different traffic flows at the same time in the same mechanism. DRAFT+D

delivers the exact throughput (on average) to Mobile Station with Absolute Throughput

Requirements (AT-MSs) and allocates fair shares of the remaining bandwidth to RT-MSs.

It is important to note that, without admission control, absolute throughput support can

not be guaranteed. In this scenario, we assume that the total offered load from AT-MSs and

RT-MSs are within reason. We will relax this assumption in later cases where the distributed

safeguard mechanism is employed.

In this scenario (1AT+9RT), there are 1 AT-MS and 9 RT-MSs. Other simulation

parameters remain the same as the scenario 10RT. Figure 4.2 (a) shows that the AT-MS

receives as much throughput as its demand throughout the simulation even in a heavily

saturated condition while RT-MSs fairly share the remaining bandwidth. The remaining

bandwidth (λr) is defined as the difference between the effective channel capacity (λe) and

the total throughput requirement of AT-MSs (
∑

∀i∈AT

λ[i]), λr = λe−
∑

∀i∈AT

λ[i]. Figure 4.2 (b)

shows the delay performance where the MAC delay of AT-MS is around 100 times smaller

than that of RT-MSs. While the MAC delay of RT-MSs is as high as 2.5 seconds, the MAC
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Figure 4.1: Relative Throughput Support with 10 RT-MSs @ 500 Kbps
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delay of AT-MS is only around 0.025 second. The ability of DRAFT+D to delivery specific

throughput and low delay in a highly saturated condition suggests that absolute throughput

support of DRAFT+D can be viable for QoS-sensitive applications.
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Figure 4.2: Absolute Throughput Support with 1 AT-MS & 9 RT-MSs @ 500 Kbps

According to the analysis in Chapter 3, absolute throughput can be supported as long

as the overload condition (Eq. 3.17) is satisfied. If the overload condition is violated, the

experienced throughput of AT-MSs will deteriorate (gracefully) to relative throughput. We

will demonstrate this behavior by adding 10 more RT-MSs to the scenario 1AT+9RT. In the

new scenario (1AT+19RT), there are 1 AT-MS and 19 RT-MSs, i.e., the total throughput

requirement is 10 Mbps. As the number of active MSs increases, the condition needed to

maintain support of absolute throughput will be violated at some point. Based on Eq. (3.17),

the maximum number of RT-MSs (RTmax) that DRAFT+D can support before losing the

ability to provide absolute throughput can be calculated as follows (assuming all RT-MSs

have the same throughput requirement):

RTmax ≤ ω

θ
×

λe −
∑

∀i∈AT

λ[i]

λj∈RT

For the RT-MSs with throughput requirement of 500 Kbps (λj∈RT = 500 Kbps), the sum

of throughput requirement of AT-MS of 500 Kbps (
∑

∀i∈AT

λ[i] = 500 Kbps), effective channel
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capacity of 1.5 Mbps (λe = 1.5 Mbps), ω = 5, and θ = 1, the maximum number of RT-MSs

where the absolute throughput can be maintained is 10. At this point (Figure. 4.3), the

total throughput requirement is 5 Mbps, 4.5 Mbps is from RT-MSs and 0.5 Mbps is from

AT-MS. Figure. 4.3 shows that the analytical estimate of the maximum number of RT-MSs,

i.e., 10, matches exactly the result in the simulation. We conclude that the analyses of fair

share and the condition under which DRAFT+D can provide absolute throughput support

in Chapter 3 are correct.
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Figure 4.3: Absolute Throughput Support with 1 AT-MS & 19 RT-MSs @ 500 Kbps, θ = 1.0

It important to point out that, prior to the deterioration of absolute throughput support

(Figure. 4.3), the throughput required by AT-MS is fulfilled and the experienced throughput

of RT-MSs remains very stable even though the network is more than 3 times higher than

the effective channel capacity. However, we believe that an even better performance can

be achieved. Next, we consider the two potential solutions employed in RT-MSs to provide

better absolute throughput support in the situation where additional traffic from RT-MSs is

injected into the network.

1. Calculating an appropriate value of θ

2. Employing DSG-RT mechanism in RT-MSs
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4.1.3 The Effect of Parameter θ on Absolute Throughput Support

Parameter θ is a deescalating factor that is used to reduce the fair share of RT-MSs in

comparison to the fair share based on the normal weight calculation. The range of θ is

between 0 and 1 (0 < θ ≤ 1). The smaller the value of θ, the smaller is the fair share of

RT-MSs. According to Eq. (3.17), the higher the value of overload ratio (ω/θ), the larger

is the amount of traffic from RT-MSs that can be supported while absolute throughput is

maintained. Therefore, to achieve a higher amount of supported traffic from RT-MSs, we

can simply increase the value of the overload ratio. Two ways that the overload ratio can be

increased: a) decreasing θ (discussed below) or b) increasing ω (discussed in Section 4.3).

The first method to prolong the absolute throughput support is to calculate an appropri-

ate value of θ. The appropriate value of θ can be calculated by Eq. (4.1) during the phase of

network design where the maximum throughput requirement of RT-MS can be projected or

estimated. Assume that we would like to support the traffic from RT-MSs up to 9.5 Mbps

and traffic from AT-MSs up to 0.5 Mbps, i.e., total of 10 Mbps in 2 Mbps WLAN. According

to Eq. (4.1), the value of θ must be equal to or less than 0.5 to achieve this objective.

θ ≤ ω ·
λe −

∑
∀i∈AT,AD

λ[i]

∑
∀j∈RT

λ[j]
(4.1)

To demonstrate the effectiveness of θ, we consider a new scenario 1AT+19RT+05TT. Sce-

nario 1AT+19RT+05TT is similar to scenario 1AT+19RT, except the value of θ is changed

from 1.0 to 0.5. In scenario 1AT+19RT+05TT, Figure 4.4 (a) shows that the AT-MS re-

ceives as much throughput as it requires for the entire simulation. During 200 < t < 250, the

total throughput requirement in the WLAN is 10 Mbps. This result matches the calculation

discussed previously. We believe that this level of aggregate throughput requirement of 10

Mbps in a 2 Mbps WLAN is extremely high and sufficient in most situations. However,

without admission control, absolute throughput support cannot be guaranteed. Additional

traffic can still be injected into the network, since there is no mechanism to prevent it from

doing so. If the amount of throughput requirement from RT-MSs is higher than 10 Mbps

(although unlikely), the ability to provide absolute throughput will deteriorate. The results

in terms of aggregate throughput, MAC delay, jitter, collision rate, and backoff interval are
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also provided in Figure 4.4 (b) - Figure 4.4 (f). Due to the higher offered load, the MAC

delay, jitter, collision rate, and backoff interval of 1AT+19RT scenario are higher than those

of 10RT scenario. However, the aggregate throughput remains the same. Note that, the ag-

gregate throughput of scenario 10RT drops sooner than that of scenario 1AT-19RT because

there are fewer MSs in scenario 10RT than scenario 1AT+19RT. Since each MS remains

active for the same 240s, the last MS of scenario 10RT becomes inactive sooner than the last

MS of scenario 1AT+19RT. Next, we will evaluate the second method, namely DSG-RT, to

maintain the ability to provide absolute throughput support by limiting offered load in a

distributed manner.

4.1.4 Distributed SafeGuard for Absolute Throughput Support in Relative

Throughput Flows

The objective of DSG-RT is to limit the excessive traffic from RT-MSs to prevent deterio-

ration of absolute QoS support. This objective is achieved by each RT-MS independently

comparing the experienced throughput with the overload threshold. A new flow or RT-MS

will not be allowed to continue if the overload threshold is violated. The overload threshold

is the throughput level that can be calculated independently by each MS from the specified

quantum rate, ω, and θ at each RT-MS, Eq. (3.22).

To demonstrate the performance of DSG-RT, we consider the scenario 1AT+19RT-DSG

where θ is kept at 1.0. Without DSG-RT, the throughput of AT-MS begins to deteriorate

at t = 110s or when the 11thRT-MS becomes active (Figure 4.3). With DSG-RT, absolute

throughput support can be maintained since additional traffic from RT-MSs after t > 110s

will not be allowed to continue (Figure 4.5). The experienced throughput of AT-MS remains

equal to the specified throughput requirement while the experienced throughput of accepted

RT-MSs is proportional according to its weight. The overload threshold is set at 200 Kbps. If

the experienced throughput of RT-MSs is smaller than the overload threshold, a new MS will

not be allowed. The main advantage of DSG-RT is that the mechanism is fully distributed

and does not require exchanging any information from other MSs. Each RT-MS monitors

the experienced throughput and accepts or rejects a new flow independently.
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Figure 4.4: Absolute Throughput Support with 1 AT-MS & 19 RT-MSs @ 500 Kbps
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Figure 4.5: Absolute Throughput Support with DSG-RT, 1 AT-MS & 19 RT-MSs

4.1.5 Providing Absolute Delay Support

In this section, we will demonstrate the ability of DRAFT+D to provide absolute delay

support. The objective of absolute delay support is to provide an experienced delay (on

average) within the specified target delay to the HoQ packet. To the best of our knowledge,

there is no other mechanism has achieved this objective in a distributed manner. Only a few

proposals shed some light on better-than-best-effort delay support, as discussed in Chapter 2.

To demonstrate absolute delay support, we consider the scenario 1AD+19RT which is

composed of 1 Mobile Station with Absolute Delay Requirement (AD-MS) requiring 500

Kbps with 0.016s target delay and 19 RT-MSs. The throughput requirement of RT-MSs is

also 500 Kbps. Therefore, the total throughput requirement is 10 Mbps in a 2 Mbps WLAN.

The target delay of 0.016s represents the worst case target delay requirement for 500 Kbps

with a maximum packet size of 1000 bytes. The reason is that 500 Kbps is the least amount

of capacity needed to support a 0.016s target delay. Figure 4.6 (a) shows that the HoQ delay

of AD-MS is within the specified target delay throughout the simulation even though the

network is extremely saturated and total throughput requirement is 10 Mbps.
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Figure 4.6: Delay Support with 0.02s Target Delay, 1 AD-MS & 19 RT-MSs

We can decompose the MAC delay into: a) queuing delay, b) backoff delay, and c) HoQ

delay. Figure 4.6 (b) shows that the queuing delay increases significantly while the backoff

delay increases slightly as a function of offered load. On the contrary, the HoQ delay stays

relatively constant throughout the simulation as the load increases. Depending on several

factors such as burstiness of input traffic, network load, etc, the MAC delay can become

higher than the target delay. The reason is that the MAC delay (D∗) is not bounded by the

target delay. Rather, it is approximately bounded by Eq. 4.2, adapted from [95]. Here, σ is

the size of token bucket, Lmax is the maximum packet size, and λ is the quantum rate.

D∗ ≤ σ + Lmax

λ
(4.2)

The absolute delay support of DRAFT+D is designed to provide a specific target delay for

the head-of-queue packet; however it does not provide assurance on the MAC delay. Absolute

delay support is a step towards delay support and could lead to provision of MAC delay

support at the price of amount of traffic from AT-MSs and AD-MSs (via Eq. 4.2). However,

research on this topic is beyond the scope of this study. We will present comprehensive

results, e.g., multiple delay requirements, aperiodic input traffic, large numbers of MSs, later

in Section 5.3.
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4.1.6 WLAN with Heterogeneous MSs

In practice, a WLAN may consist of MSs with different QoS requirements. In this section, we

will demonstrate the performance of DRAFT+D when the network consists of MSs requiring

both throughput and delay requirements, we consider a scenario (1AT+1AD+18RT) where

there are 1 AT-MSs requiring 100 Kbps, and 1 AD-MSs requiring 100 Kbps with 0.02s target

delay, and 18 RT-MSs requiring 500 Kbps. The translation of target delay into throughput

makes the required quantum rate of AD-MS equals to 400 Kbps. The result shows that both

AT-MS and AD-MS receive the same experienced throughput that is as much as they are

needed, as shown in Figure 4.7 (a). The HoQ delay of AD-MS is smaller than that of AT-MSs

and well below the specific target delay for the entire simulation, as shown in Figure 4.7 (b).

This result suggests that throughput and delay can be supported simultaneously without

any degradation or interference from one another.
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Figure 4.7: Performance in a WLAN with 1 AT-MS, 1 AD-MS, & 18 RT-MSs

So far, we have demonstrated the ability of DRAFT+D to provide QoS support in

terms of: a) relative throughput, b) absolute throughput, and c) absolute delay. The initial

results show that DRAFT+D can provide excellent performance with and without safeguard

mechanism. The performance of throughput support surpasses any other QoS mechanisms

while the delay support and safeguard mechanism are unique features of DRAFT+D. In
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the following sections, we will show the performance of other selected QoS mechanisms, i.e.,

Distributed Weighted Fair Queuing (DWFQ), DFS, and EDCA. We will end this chapter

with an evaluation of sensitivity analysis and parameter tuning.

4.2 COMPARATIVE SIMULATION RESULTS

In Section 4.1.1-4.1.3, we demonstrated the ability of DRAFT+D to provide absolute through-

put and relative throughput support. A question one might ask is how well other state-of-

the-art QoS mechanisms perform in comparison with DRAFT+D. In this chapter, we will

demonstrate the performance of three state-of-the-art mechanisms: one is based on priority

mechanism and the other two are based on fair-scheduling mechanism.

For priority-based mechanisms, EDCA is chosen since it has been receiving a lot of

attention from the research community. EDCA is a priority-based mechanism which could

support both requirements. However, the supported circumstances are highly dependent

on the number MSs, the total load, the configuration of IFS, CWmin and CWmax of each

traffic class [73]. For fair-scheduling based mechanisms, DWFQ and DFS (as discussed in

Chapter 2) are chosen since both of them are designed to provide fair throughput support,

comparable to the relative throughput support of DRAFT+D.

We consider the 1AT-19RT scenario where there are 1 AT-MS and 19 RT-MSs, each with

throughput requirement of 500 Kbps as a base line for comparison. For EDCA scenario, AT-

MS is configured with AIFS = 1, CWmin = 16 CWmax = 32 while the RT-MSs is configured

with AIFS = 2, CWmin = 32, and CWmax = 1024. We give EDCA the advantage of

configuration such that the AIFS of AT-MS is smaller than that RT-MSs. Moreover, CWmin

and CWmax of AT-MS and RT-MSs are completely separated. The weights of AT-MS and

RT-MSs in DWFQ scenario is 2 and 1, respectively, while the weights of AT-MS and RT-MSs

in DFS are is 0.05 ( 1
20

) since they require the same throughput of 500 Kbps.

Figure 4.8 (a) shows the performance of DWFQ mechanism. Although DWFQ is sup-

posed to provide fair bandwidth allocation, the fairness performance is not as good as ex-

pected. According to Figure 4.8 (a), DWFQ appears to work in favor of existing MSs or
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currently active MSs. Therefore, fairness among RT-MSs is significantly compromised. It

is important to point out that DWFQ may seem to provide absolute throughput support;

in fact, DWFQ does not. This result is due to the fact that DWFQ works in favor of ex-

isting DWFQ and the AT-MS is the first MS to transmit. To clarify this obscurity, we

re-configured the simulation so that the AT-MS started at t = 55. This hypothesis is con-

firmed (that DWFQ cannot provide absolute throughput support) from the new result, as

shown in Figure 4.8 (b). The performance of DWFQ based on MAC Delay, collision rate,

Backoff Interval, and aggregate throughput is also worse than that of DRAFT+D. Figure 4.9

shows that DFS can provide excellent fairness. However, DFS is unable to provide the ab-

solute throughput requirement since it was designed to support only relative throughput

requirement. Figure 4.10 shows that EDCA can provide absolute throughput and relative

throughput under relatively saturated conditions, e.g, under 3 Mbps of total throughput re-

quirement. This amount of throughput requirement is significantly lower than the amount of

throughput requirement that DRAFT+D can support, i.e., 10 Mbps. Moreover, the variation

of experienced throughput of RT-MSs is larger than that of DRAFT+D.

In the next sections, we will investigated the operating ranges of seven parameters that

are important to the overall performance of DRAFT+D. The first three parameters, i.e., κ,

ω, and θ, directly influence the ability to provide relative and absolute QoS support. The

last four parameters, i.e., N1, N2, β, and Ξ1, influence the performance of DSG-RT.

4.3 SENSITIVITY ANALYSIS AND PARAMETERS TUNING

In this section, the effect of seven parameters, i.e., κ, ω, θ, N1, N2, β and Ξ, will be

investigated. The results showed that the right set of these parameters can be calculated

and assigned relatively easily. Wide ranges of values of these parameters are available to

provide a good and predictable performance. In short, the values of κ around 6, the values

of ω between 1 and 7, the values of θ from 1 to 0.16, the values of N1 larger than 30, the

values of N2 larger than 10, the values of β higher than 1.0, and any value of Ξ, are found to

be within a good range of operation. The details of tuning of each parameter, the rationales,

and simulation results will be presented next.

1the number of simultaneously probing MSs.
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4.8 (a): Throughput, AT-MS starts at 10s
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4.8 (b): Throughput, AT-MS starts at 55s
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4.8 (c): Aggregate Throughput
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4.8 (d): MAC Delay
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4.8 (e): Collision Rate
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Figure 4.8: Performance of DWFQ in providing Relative Throughput Support
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4.9 (a): Throughput
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4.9 (b): Aggregate Throughput
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4.9 (c): MAC Delay
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4.9 (d): Jitter
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4.9 (e): Collision Rate
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Figure 4.9: Performance of DFS in Providing Throughput Support
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4.10 (a): Throughput
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4.10 (b): Aggregate Throughput
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4.10 (c): MAC Delay

0 50 100 150 200 250 300 350 400 450

−0.4

−0.2

0

0.2

0.4

0.6

Ji
tte

r 
(s

ec
)

Time (sec)

EDCA−AT − 500Kbps
EDCA−RT − 500Kbps

4.10 (d): Jitter
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4.10 (e): Collision Rate
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4.10 (f): Backoff Interval

Figure 4.10: Performance of EDCA in Providing Throughput Support
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Table 4.2: Comparison of CWcenter[i] for Different Values of κ

κ CWcenter[64Kbps] CW [64Kbps] CWcenter[200Kbps] CW [200Kbps]
1 32 172 10 55
2 62 172 20 55
3 125 172 40 55
4∗ 250 172 80 55
5 500 172 160 55
6 1000 172 310 55

4.3.1 The Effect of Parameter κ

Parameter κ is a constant used in the calculation of average value of BI or CWcenter, as

shown in Eq. 4.3. The value of κ directly influences the calculated value of CWcenter, which,

in turn, influences the value of BI[i]. A higher value of κ results in a higher value of CWcenter

and a smaller probability of collision. However, the higher value of CWcenter may result in a

smaller effective channel capacity due to the unnecessary waiting time.

CWcenter[i] =
2κ

φ[i]
(4.3)

In practice, CWcenter needs to be chosen large enough to accommodate the corresponding

Contention Window (CW [i]). Table 4.2 shows the values of CWcenter[i] for different values

of κ, i.e., 1) λ[i] = 64Kbps and CW [1] = 172, and 2) λ[2] = 200Kbps and CW [2] = 55.

We can see from Table 4.2 that if κ < 4, the CWcenter[i] is smaller than the corresponding

CW [i]; therefore these values of κ are not appropriate. Too small of a value of κ can result in

unnecessary collisions, poor aggregate throughput, and increased variations of throughput

and delay. A sufficiently high value of κ will provide enough room to avoid unnecessary

collisions.

Choosing an appropriate value of κ is a tradeoff between probability of collision and the

maximum effective channel capacity. To study the influence of κ, we consider the 1AT+19RT

scenario, change the value of κ from 2 to 10, and measure the value of CWcenter, collision

rate, and aggregate throughput. As expected, the result in Figure 4.11 (a) shows that as the

value of CWcenter increases as a function of κ while the collision rate decreases as a function
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of κ. This result confirms our intuition about the effect of κ on the probability of collision.

That is, the higher the value of κ, the smaller is the probability of collision.
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Figure 4.11: The Effect of Parameter κ

Figure 4.11 (b) shows the aggregate throughput as the value of κ changed from 2 to

10, with a step of two. A significantly low value of κ, e.g. κ = 2, results in high collision

rate and deterioration of the effective channel capacity. On the contrary, a significantly high

value of κ, e.g. κ = 10, results in excessive overheads (in terms of waiting time) which,

in turn, decreases the effective channel capacity as well. According to Figure 4.11 (b), we

see that an appropriate value of κ, i.e. around 6, provides good balance between waiting

time and probability of collision. The value of κ around 6 provides the highest and rela-

tively constant effective channel capacity throughput the entire simulation. This property –

relatively constant effective channel capacity – indicates the effectiveness of DRAFT+D in

calculating appropriate value of BI and regulating traffic in extremely saturated condition.

The effective channel capacity remained relatively constant across simulation scenarios pre-

viously presented where the number of simulation parameters such as number of MSs, loads,

traffic types, and WLAN’s parameters were changed. Constant effective channel capacity is

an important and unique properties of DRAFT+D.
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4.3.2 The Effect of Parameter ω

Parameter ω is introduced to support absolute throughput. We will look at parameter ω

from two perspectives: a) the effect of ω on supported amount of traffic from RT-MSs and b)

the effect of ω on the value of CWcenter. These two perspectives represent the lower bound

and the upper bound of the appropriate value of ω.

From the first perspective, we look back to the basic for ω. Parameter ω is an escalating

factor used to increase the fair share of AT-MSs from the normal weight. According to this

definition, the appropriate value of ω can be calculated by the ratio between the deescalated

aggregate quantum rate from RT-MSs and the remaining bandwidth, as shown in Eq. (4.4).

In other words, an appropriate value of ω represents the ratio of supported amount of traffic

from RT-MSs above the actual remaining bandwidth. The higher the value of ω, the higher

is amount of traffic from RT-MSs that can be supported.

ω ≥
θ · ∑

∀j∈RT

λ[j]

λe −
∑

∀i∈AT,AD

λ[i]
(4.4)

Let θ = 1, then the increased fair share of channel capacity is achieved by decreasing

the value of CWcenter. Therefore, we look at the calculation of CWcenter and the relationship

between CWcenter and ω in the second perspective. According to the calculation of CWcenter,

see Eq. (3.8), and calculation of weight of AT-MSs, see Eq. (3.6), the relationship between

CWcenter and ω can be derived and expressed in Eq. (4.5).

CWcenter[i] =
2k ·R
ω · λ[i]

(4.5)

According to Eq. (4.5), the higher the increased fair share of channel capacity, the smaller

is the value of CWcenter. However, the fair share cannot be increased indefinitely. An

important question is what and how to calculate the maximum value of ω is. We know that

increasing the value of ω increases the value of calculated weight. If we assume that ω is

an integer number. The condition where ω is no longer valid is when the higher value of ω

does not result in an integer difference between the original CWcenter and the new CWcenter.

According to Eq. (4.5), we can calculate the value of ω that makes the difference between
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the CWcenter smaller than 1 as shown in Eq. (4.6), assuming λ[i] = 500 Kbps, κ = 5, and

R = 1 Mbps.

CWcenter,ω1 − CWcenter,ω2 ≤ 1

25

0.5 · ω1

− 25

0.5 · ω2

≤ 1

ω2
1 + ω1 − 64 ≥ 0

ω ≤ 7.52 (4.6)

According to Eq. (4.6), the maximum value of ω for λ = 500 Kbps is less than or equal

to 7. This means, the values of ω between 1 and 7 is valid and able to provide absolute

throughput support according to Eq. (4.4). However, Eq. 4.4 and absolute throughput

support do not hold for the value of ω above 7. To confirm this analysis, we consider the

1AT+19RT scenario and use the values of ω: 2 and 10. Figure 4.12 shows that the results

in both cases match our analysis. When ω was set to 2, Figure. 4.12 (a) shows that absolute

throughput is supported as long as the amount of throughput requirement from RT-MSs is

less 2 Mbps, i.e., twice as much as the remaining bandwidth as calculated from Eq. (4.4).

When ω was set to 10, Figure 4.12 (b) shows that the ability to support absolute throughput

is not maintained as our analysis predicted.
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4.12 (a): ω = 2
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4.12 (b): ω = 10

Figure 4.12: The Effect of ω to Throughput Support
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The significant finding is the bound of ω. We found that there exists a range of values

of ω that can be used to provide absolute throughput support. The absolute throughput is

fully and predictably supported within this range. However, if ω is set outside this range, the

absolute throughput support is longer abided by our analysis. Therefore, it is important to

calculate this range in a priori to ensure to absolute throughput support. The range of valid

ω can be simply calculated via by Eq. (4.6). Next, we will discuss the effect of parameter θ

in maintaining absolute throughput support.

4.3.3 The Effect of Parameter θ

Parameter θ is a factor introduced to work in conjunction with ω to provide absolute through-

put support. While ω increases, the fair share of traffic of absolute throughput class, θ

decreases the fair share of traffic of relative throughput class. Because ω can be assigned

within a certain range, another way to increase the supported offered load is to adjust θ.

That is, we can decrease θ to increase the amount of supported offered load in a WLAN

while maintaining absolute throughput support.

To demonstrate the effect of θ, we consider 1AT+19RT scenario and increase the offered

load of RT-MSs in two cases: a) from 9.5 Mbps (19×500 Kbps) to 19 Mbps (19×1000 Kbps)

and b) from 9.5 Mbps to 28.5 Mbps (19 × 1500 Kbps). In order to support the increased

offered loads, the parameter θ needs to be adjusted accordingly. The required value of θ for

these offered loads can be calculated by Eq. (3.18), i.e., 0.25 and 0.16, respectively.

Figure 4.13 shows the absolute throughput support can be maintained as the maximum

offered load increases by decreasing θ by the same factor. More specifically, Figure 4.13 (a)

shows that, by decreasing θ from 0.5 to 0.25, the maximum supported offered load increases

from 9.5 Mbps to 19 Mbps and the absolute throughput support is still maintained. Similarly,

Figure 4.13 (b) shows that, by decreasing θ from 0.25 to 0.16, the maximum supported offered

load increases from 19 Mbps to 28.5 Mbps. Again, 19 Mbps and 28.5 Mbps of offered loads

are in a 2 Mbps WLAN with effective channel capacity of only 1.5 Mbps. This result suggests

the robustness of DRAFT+D in providing absolute throughput.

Now, let turn out attention to parameters that influence the performance of DSG-RT.
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4.13 (a): θ = 0.25
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4.13 (b): θ = 0.16

Figure 4.13: The Effect of θ on Throughput Support

The procedure of DSG-RT begins by sending out a number of packets at the desired rate.

During this period, the experienced throughput is calculated. DSG-RT compares the expe-

rienced throughput with the overload threshold. The experienced throughput is calculated

from the EWMA of instantaneous throughput. The overload threshold is calculated from

the product of the safety factor, the overload ratio, and the throughput requirement. During

the testing procedure, if the experienced throughput is smaller than the overload threshold,

the new flow will be immediately stopped. Otherwise, a new flow can continue.

According to this procedure, three parameters are important to the performance of DSG-

RT: 1) the number of packets during the transient period (N1), 2) the number of probing

packets during the decision period (N2), and 3) the level of safety factor (β). The effect of

the number of probing MSs (Ξ) that become active at the same time will be also evaluated

next.

4.3.4 The Effect of the Number of Packets During the Transient Period

The experienced throughput of a new RT-MS often takes some time (or a number of packets -

N1) to register until it can accurately reflect the true fair share. If DSG-RT begins the testing
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too early, a flow is likely to be stopped because the experienced throughput starts from zero.

In this section, we will determine the number of packets during the transient period that are

required for representative experienced throughput values. We consider scenarios (1-6) where

there are 1 AT-MS and 19 RT-MSs employing DSG-RT. The throughput requirement, the

time at which the MSs become active, and other simulation parameters remain the same as

in 1AT+19RT scenario. The only difference is that RT-MSs in these scenarios are subjected

to the test of DSG-RT.

Figure 4.14 shows that if the mechanism does not wait long enough (N1 > 30), 2 issues

can arise. First, a new RT-MS will be stopped immediately (Figure 4.14 (a)) or prematurely

(Figure 4.14 (b)). Second, a new RT-MS might be inaccurately accepted or rejected due to

the immaturity of the estimate of experienced throughput, as shown in Figure 4.14 (c). In

both cases, these issues impact the accuracy of the supported traffic from RT-MSs; however

they do not have any negative impact on the AT-MSs. Figure 4.14 (d) shows that when

DSG-RT waits sufficiently long (N1 = 30), the mechanism works accurately in accepting

and rejecting a new RT-MS.

These results suggest that the estimate of experienced throughput needs some time to

become mature. Since there is no significantly negative impact on waiting a little longer

(Figure 4.15), a higher number of packets, e.g., 40 or 50 packets, is recommended. In this

set of scenarios, we fixed the number of probing packets during the testing procedure and

safety factor for overload threshold at 10 and 2, respectively. In the next sections, we will

examine the effect of them.

4.3.5 The Effect of the Number of Probing Packets During a Decision Period

During a decision period, the experienced throughput is being compared with the overload

threshold for every successful transmission. During this period, if the experienced throughput

drops below the overload threshold, a new RT-MS will be stopped immediately. In this

section, we will determine the number of necessary probing packets (N2) that can provide

an accurate estimate of the experienced throughput.
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4.14 (a): N1 = 0
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4.14 (b): N1 = 10
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4.14 (c): N1 = 20
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4.14 (d): N1 = 30

Figure 4.14: The Effect of the Number of Packets during the Transient Period

At the first glace, it might seem that a high number of probing packets may increase

the accuracy of the throughput estimate. However, this is not always true. According to

Figure 4.14, we see that the mechanism always errs on the conservative side. That is, the

mechanism tends to stop flows a little earlier rather than later. This behavior is, in fact,

desirable. If the mechanism already stops flows during the testing procedure with 10 testing

packets, the higher number of packets will not yield much advantage at all. To prove this,
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4.15 (a): N1 = 40

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6
x 10

5

T
hr

ou
gh

pu
t (

bp
s)

Time (sec)

Overloading

Threshold

DRAFT−AT
DRAFT−RT

4.15 (b): N1 = 50

Figure 4.15: The Effect of the Number of Packet During the Transient Period

we increased the number of probing packets (N2) from 10 to 40 and kept the number of

packets during the transient period (N1) to 10. Figure 4.16 shows that the result remain

exactly the same as Figure 4.14 (b) and Figure 4.14 (c). This result matches our intuition.
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4.16 (a): N1 = 10

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6
x 10

5

T
hr

ou
gh

pu
t (

bp
s)

Time (sec)

Inaccurate
Acception/Rejection

Overloading

Threshold

DRAFT−AT
DRAFT−RT

4.16 (b): N1 = 20

Figure 4.16: The Effect of the Number of Probing Packets, N2 = 40 packets
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On the contrary, it is more interesting to examine whether a smaller number of probing

packets can provide a good estimate of experienced throughput. Figure 4.17 shows that the

performance of DSG-RT is exactly the same if 5 packets are used during the testing period.

Based on these results, we conclude that once the experienced throughput is mature (e.g., at

N1 = 30, only a smaller number of probing packets are necessary to provide a good estimate

of current fair share and good performance of DSG-RT.
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4.17 (a): N1 = 0
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4.17 (b): N1 = 10
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4.17 (c): N1 = 20
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4.17 (d): N1 = 30

Figure 4.17: The Effect of the Number of Probing Packets, N2 = 5 packets
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4.3.6 The Effect of Safety Factor

According to our analysis in Chapter 3, absolute QoS support can be maintained as long

as the experienced throughput of relative QoS is higher than the overload threshold, see

Eq. (3.22). However, in practice, the experienced throughput can fluctuate and its estimate

may not be 100% accurate. To prevent deterioration of absolute QoS support, the original

overload threshold is multiplied by a safety factor (β). In this section, we examine the effect

of different values of the safety factor on experienced throughput and experienced delay.

Figure 4.18 shows that the safety factor does not have any impact on absolute throughput

support. However, the safety factor represents a tradeoff between the number of accepted

RT-MSs (or amount of traffic from RT-MSs) and the experienced throughput of RT-MSs.

The higher the value of the safety factor, the smaller the number of accepted RT-MSs. With

the same remaining bandwidth to RT-MSs, the smaller number of accepted RT-MSs results

in a higher experienced throughput for each active RT-MS.

For experienced delay, the opposite effect is expected and witnessed. That is, the higher

the value of the safety factor, the smaller is the experienced delay. The reason is that a

higher value of safety factor results in a smaller amount of total throughput requirements,

or offered load. According to Figure 4.19, the experienced delay of RT-MSs decreases by one

eighth while the experienced delay of AT-MS decreases by one-half. Next, we will examine

the effect of the number of probing MSs that become active at the same time.

4.3.7 The Effect of the Number of Probing MSs

In the previous scenarios, each RT-MS is set to start sending out traffic in 10 seconds

intervals. In this section, we will investigate the effect when more than one MSs starts

to transmit traffic at the same time. Based on 1AT+19DSAC-RT scenario, there can be

total of 11 RT-MSs accepted in the network. Figure 4.20 shows that the mechanism still

performs well in this scenario. If the number of simultaneously active MSs is smaller than

the maximum acceptable MSs, all the MSs will be accepted. However, if the number of

simultaneously active MSs is higher than the maximum acceptable MSs, all the MSs will be

rejected. These results are as expected and demonstrated the robustness of DSG-RT.
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4.18 (a): β = 1.0

0 50 100 150 200 250 300 350 400 450
0

0.7

1

2

3

4

5

6

T
hr

ou
gh

pu
t (

bp
s)

Time (sec)

Overloading

Threshold

DRAFT−AT
DRAFT−RT

4.18 (b): β = 1.4
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4.18 (c): β = 1.8

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

T
hr

ou
gh

pu
t (

bp
s)

Time (sec)

Overloading

Threshold

DRAFT−AT
DRAFT−RT

4.18 (d): β = 2.0

Figure 4.18: The Effect of the Safety Factor on the Experienced Throughput

4.4 CONCLUDING REMARKS

In conclusion, the simulation results confirmed that DRAFT+D can provide QoS support,

i.e., a) relative throughput support, b) absolute throughput support, and c) absolute delay

support, even in highly overloaded conditions. The variation of throughput and delay is

small throughout the course of simulations. The safeguard mechanism can prevent excess
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Figure 4.19: The Effect of the Safety Factor on the Experienced Delay

traffic from relative throughput class expected. Finally, relatively wide ranges of values of

κ, ω, θ, N1, N2, β, and ξ can provide a good performance. The right set of parameters

within DRAFT+D can be calculated relatively easily and in advance. In the next chapter,

we will present performance of DRAFT+D in various scenarios where the effect of levels

of throughput requirement, the number of levels of throughput requirement, the time at

which MSs become active, number of active MSs, traffic type, mode of operation, the use of

RTS/CTS, data rate, and fairness criteria will be evaluated.
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4.20 (a): Ξ = 4 Flows
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4.20 (b): Ξ = 8 Flows
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4.20 (c): Ξ = 12 Flows

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

T
hr

ou
gh

pu
t (

bp
s)

Time (sec)

Overloading

Threshold

All 16 Flows Rejected

DRAFT−AT
DRAFT−RT

4.20 (d): Ξ = 16 Flows

Figure 4.20: The Effect of Simultaneously Active MSs
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5.0 COMPREHENSIVE PERFORMANCE EVALUATION

In this chapter, we will present comprehensive performance evaluation of DRAFT+D. Three

main components of DRAFT+D, i.e., throughput support, delay support, and safeguard

against excessive traffic support, will be evaluated in several scenarios. In these scenarios,

performance of DRAFT+D with different levels of throughput requirement, the number of

levels of throughput requirement, the time at which MSs become active, number of active

MSs, traffic type, mode of operation, the use of RTS/CTS, data rate, and fairness criteria,

will be evaluated. We will begin with a comprehensive evaluation of the throughput support,

then follow with an evaluation of DSG-RT. We will end this chapter with a comprehensive

evaluation of the delay support.

5.1 COMPREHENSIVE EVALUATION OF THROUGHPUT SUPPORT

Let us recap the objectives of the throughput support. The objectives of throughput support

are twofold: 1) to provide specific or absolute throughput support and 2) to provide fair

or relative delay support. In section 4.1, we have demonstrated these features with the

some simulation scenarios. In this section, we will examine the ability to provide absolute

throughput and relative throughput support with under several conditions to gain a deeper

understanding and more confidence in the performance of the proposed mechanism.

To achieve this objective, we will evaluate 12 scenarios where 8 factors are varied (see

Table 5.1). These factors are the levels of throughput requirements, the types of input

traffic (Constant Bit Rate (CBR) vs. Variable Bit Rate (VBR)), channel error, the mode

of operation (Ad-Hoc vs. Infrastructure), the use of RTS/CTS mechanism, the number of
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Table 5.1: Simulation Parameters for Evaluation of Throughput Support

# Name AT-MSs RT-MSs TrafficError Mode RTSFairness
Speed
(Mbps)

1 3AT+19RT:DTR
4x100Kbps 4x100Kbps

CBR No Adhoc No Util. 25x150Kbps 5x150Kbps
10x250Kbps 10x250Kbps

2 1AT+19RT:VBR 1x500Kbps 19x500Kbps VBR No Adhoc No Util. 2
3 1AT+19RT:E-2 1x500Kbps 19x500Kbps CBR 10−2 Adhoc No Util. 2
4 1AT+19RT:E-3 1x500Kbps 19x500Kbps CBR 10−3 Adhoc No Util. 2
5 1AT+19RT:AP 1x500Kbps 19x500Kbps CBR No Infra No Util. 2
6 1AT+19RT:RTS 1x500Kbps 19x500Kbps CBR No Adhoc Yes Util. 2
7 10AT+20RT 10x100Kbps 20x200Kbps CBR No Adhoc No Util. 2
8 20AT+40RT 20x25Kbps 40x50Kbps CBR No Adhoc No Util. 2
9 1AT+19RT:5SR 1x500Kbps 19x500Kbps CBR No Adhoc No Util. 5.5
10 1AT+19RT:11SR 1x500Kbps 19x500Kbps CBR No Adhoc No Util. 11
11 1AT+19RT:MRTF 1x500Kbps 19x500Kbps CBR No Adhoc No Util. 5.5+11
12 1AT+19RT:MRUF 1x500Kbps 19x500Kbps CBR No Adhoc No Temp. 5.5+11

MSs (30 vs. 60), data rates (5.5 vs. 11 Mbps), and fairness criteria (utilitarian vs. temporal

fairness). The results suggest that absolute throughput can be supported in all scenarios as

long as the overload condition is satisfied and the effective channel capacity remains relatively

constant even in a situation where network is extremely saturated up to 6 times as much as

the effective channel capacity and the number of MSs is as high as 60. The effective channel

capacity decreases significantly in two scenarios: a) the error is high, PER > 10−2, and b)

the MSs operate in infrastructure mode. In these scenarios, if the effective channel capacity

is calculated or estimated appropriately, QoS provision with DRAFT+D remains supported.

That is, the AT-MSs will receive as much throughput as required while RT-MSs will share

the remaining bandwidth according to their throughput requirements and fairness criteria.

Next, we will examine the effect of different levels of throughput requirement in providing

relative throughput and absolute throughput support.
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5.1.1 The Effect of Different Levels of Throughput Requirements

Thus far, all MSs have the same throughput requirement of 500 Kbps. In this section,

we will examine the performance of DRAFT+D when there are multiple flows with differ-

ent throughput requirements, i.e., 250 Kbps, 150 Kbps, 100 Kbps. We consider a scenario

(3AT+19RT:DTR) where there are 3 AT-MSs where AT-MSs require throughput of 250

Kbps, 150 Kbps and 100 Kbps, respectively, and 19 RT-MSs where 10 RT-MSs have through-

put requirement of 250 Kbps, 5 RT-MSs have throughput requirement of 150 Kbps second,

and 4 RT-MSs have throughput requirement of 100 Kbps. For the sake for comparison, we

kept both the total throughput requirements of AT-MSs and RT-MSs the same as 1AT-19RT

scenario, i.e., 500 Kbps for AT-MSs and 4.35 Mbps for RT-MSs. We used ω = 5 here.

The result shows that the higher number of levels of throughput does not appear to

have any impact on the ability of DRAFT+D to provide absolute throughput and relative

throughput support. Figure 5.1 (a) shows that AT-MSs receive as much throughput as

required for the entire simulation while the RT-MSs share the remaining bandwidth according

to the specified throughput requirements. That is, the higher the specified throughput

requirement, the higher is the experienced throughput. The reason is that the MSs with

higher throughput requirement receive smaller values of BI, as shown in Figure 5.1 (b). It

is noteworthy that although AT-MSs and RT-MSs become active at different times, the

throughput support is still maintained. Therefore, it appears that neither the levels of

throughput requirement nor the time at which MSs begin transmission have any impact on

the ability of DRAFT+D to provide absolute throughput and relative throughput support.

The finding matches the analysis in Chapter 3 which indicated that only the aggregate

throughput requirement from AT-MSs and RT-MSs, ω, θ, and effective channel capacity

have an impact on absolute throughput and relative throughput support. Next, we will

examine the effect of variable bit rate characteristic of input traffic.

5.1.2 The Effect of Variable Bit Rate (VBR) Traffic

So far, we chose CBR as input traffic to demonstrate the variation of the experienced through-

put created by the mechanism. The results in the previous sections show that DRAFT+D
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Figure 5.1: The Effect of Different Throughput Requirements on Throughput Support

introduces only negligible variations to the experienced throughput. This is a good property

of DRAFT+D over EDCA and DWFQ. To study the effect of aperiodic input traffic, we con-

sider a scenario (1AT+19RT:VBR) where the input traffic is changed to VBR. Two types of

VBR traffic are considered: a) VBR traffic with exponentially distributed inter-arrival time

and b) ON-OFF traffic. The inter-arrival time for each packet is exponentially distributed

with mean 0.016 second, i.e., 500 Kbps on average. The duration of ON-period is expo-

nentially distributed with mean 0.9 second and the duration of OFF-period is exponentially

distributed with mean 0.1 second. Traffic is generated at the rate of 550 Kbps during the

ON-period whereas no traffic is generated during the OFF-period, i.e., 555 Kbps on average.

The results in Figure 5.2 shows that the variation of experienced throughput of AT-MS in-

creases in both cases. However, this variation is caused by the aperiodicity of inter-arrival

time in the offered load. In fact, the variation of experienced throughput is smaller than

the original input traffic. This reduced variation is a by-product of DRAFT+D’s inherent

ability to regulate traffic flow of the embedded token bucket.
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5.2 (a): Exponential Inter-Arrival Time
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Figure 5.2: The Effect of VBR Traffic on Throughput Support

5.1.3 Presence of Channel Error

In WLANs, high error rates are one of the inherited characteristics of a wireless channel. So

far, error-free channels have been assumed. In this section, we relax this assumption and

consider two scenarios where errors are presented in the wireless channel. For this purpose,

we use an ON-OFF (Gilbert-Elliott channel) model [96] to generate errors at the receiver

MSs. During the ON-period (or bad-state), the received frames will be assumed as erroneous

frames. During the OFF-state (good-state), the received frames will be accepted as they are

reported from the physical layer, either as collided frames or as successfully received frames.

The duration of ON-period and OFF-period are randomly generated from an exponential

distribution with means 0.126 × 10−2 and 0.125 second, respectively. These durations can

be translated into a Packet Error Rate (PER) of approximately 10−2 (or 1% of the time the

channel is bad). Figure 5.3 (a) shows that this level of PER does not have any significant

impact on the performance.

Next, we increased the duration of the ON-period to 0.0138 second while we kept the

duration of OFF-period at 0.125 second. With these duration-pairs, the PER increases to
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Figure 5.3: The Effect of Channel Error on Throughput Support

approximately 10−1 (or 10% of the time the channel is bad). The impact of this PER is

depicted in Figure 5.3 (b). According to this figure, we can separate the impact into two

segments. The first segment is when the overload threshold is still satisfied, i.e., 0s > t >

110s and t > 350s. During these periods, the absolute throughput support is maintained.

Although, the variation of throughput increases slightly with Coefficient of Variation (COV)1

of 0.01, the experienced throughput of AT-MS remains approximately at 500 Kbps. The

second segment is when the overload threshold is violated, i.e., 110s > t > 350s. During

this period, the variation of throughput increases substantially with COV of 0.12 and the

ability to provide absolute throughput is no longer supported. The reason for the dip in

the experienced throughput of AT-MS and deterioration of ability to maintain absolute

throughput support results from the decrease in effective channel capacity from 1.5 Mbps

to 1.25 Mbps due to the increase PER. At this level of effective channel capacity, the fair

share of AT-MS is less than the specified throughput requirement; thus absolute throughput

cannot be supported.

1This is the ratio of the standard deviation of the quantity to its mean
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In practice, different MSs may suffer different levels of error rates. Some may suffer even a

higher error rate than 10%. However, we conclude from this result that absolute throughput

those using DRAFT+D can tolerate error without any degradation as long as there is no

significant loss of effective channel capacity. However, in a situation where the error is

high enough to cause a significant loss of channel capacity, the ability to provide absolute

throughput support can be degraded to relative throughput support. If the network is not

overly saturated, the ability to provide absolute throughput can be maintained. For example,

if the total offered load in smaller than 5.5 Mbps in a 2 Mbps WLAN, the experienced

throughput of AT-MS remains supported. This result indicates a trade-off between the

ability to tolerate error and the amount of traffic from AT-MSs to be supported. The higher

the ability to tolerate error, the smaller is the amount of traffic from AT-MSs that can be

supported. In conclusion, the effect of high error rate on the absolute throughput support

can be alleviated by two methods: a) the effective channel capacity should be estimated with

an average error rate in mind to maintain absolute throughput support in a real network and

b) a new estimate of effective channel capacity can be used in conjunction with DSG-RT to

limit the traffic from RT-MSs appropriately and effectively. Next, we will examine the effect

of the mode of operation.

5.1.4 The Effect of Presence of Access Point

So far, we assume that the WLAN operates in the Ad-hoc mode where traffic can be sent from

a source MS to a destination MS directly. The Ad-hoc mode is sufficient and appropriate

to evaluate the behavior of the mechanism because it represents the fundamental operation

of the MAC layer. However, the commonly used mode of WLAN is the infrastructure mode

where the AP plays an important role in relaying traffic among MSs within the WLAN

and/or relaying traffic from/to the outside networks, e.g., Internet. In this section, we

consider a scenario (1AT+19RT:AP) where the MSs operate in the infrastructure mode. In

1AT+19RT:AP scenario, there is 1 AT-MS and 19 other RT-MSs, each MS requiring 250

Kbps. This throughput requirement makes up the total offered load to 5 Mbps in a 2 Mbps

WLAN. In 1AT+19RT:AP scenario, all traffic from each MS must be relayed via an AP.

Figure 5.4 shows that the performance of DRAFT+D remains the same for both AT-MS and

102



RT-MSs. We also consider another scenario where traffic among MSs and AP is asymmetric.

In this scneario, there are 20 MSs. One AT-MS which requires 100 Kbps uplink and 150

Kbps downlink. Among 19 RT-MSs, 9 RT-MSs require 600 Kbps and 10 RT-MSs require 400

Kbps. Figure 5.5 shows that the performance of DRAFT+D remains the same for both that

AT-MSs receive throughput as much as required for both uplink and downlink and RT-MSs

share the rest of the available bandwidth according their requirements.
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Figure 5.5: The Effect of AP in Asymmetric

Traffic WLAN

One important observation is that the effective channel capacity of a WLAN operating

in infrastructure mode decreases from 1.5 Mbps to approximately 550 Kbps. However, this

is not a result of DRAFT+D. Rather, it is a result of the overhead in relaying all the

traffic between source MSs and destination MSs via the AP. For every successful packet

transmission, two packets will be transmitted. One is from the source MS to AP and the

second is from AP to the destination MS plus all the acknowledgement and re-transmission

packets. Consequently, the effective channel capacity of a WLAN is reduced by more than

half. However, if most of the traffic in a WLAN comes from the outside networks (a common

traffic pattern), the negative effect of AP will be reduced. That is, the AP will be perceived

as another MS with high volume of traffic and the effective channel capacity of a WLAN

will not deteriorate significantly.
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5.1.5 Presence of RTS/CTS

The hidden-terminal situation occurs when a set of MSs cannot hear the transmissions of

the other set of MSs. To prevent this potential problem, an exchange of control frames

called Request to Send/Clear to Send (RTS/CTS) prior to the packet transmission has

been suggested. Although this operation is optional in the IEEE standard, it is usually

beneficial to employ this in a WLAN [49]. In this section, we first evaluate the effect of

hidden terminals. Then we evaluate the performance of DRAFT+D when the RTS/CTS

mechanism is used.

1000 m

1
0
0
0
 m

1
0
0
0
 m

1000 m

Figure 5.6: Hidden Terminals Scenario

To demonstrate the effect of hidden terminals, we consider a scenario which is composed

of 5 AT-MSs - four on the centers of the four edges of a square and one in the center

of the square. The four AT-MSs on the centers of the edges of the square cannot hear

the transmissions from one another. These four AT-MSs have traffic requirements of 100

Kbps each of which is to be transmitted to the fifth MS in the center which can hear the

transmissions from all MSs, as shown in Figure 5.6. This scenario represents the worst-case

scenario since all four MSs are hidden from one another. If additional MSs are presence

in the network and are transmitting to the MS in the center, they will not be hidden from
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Figure 5.7: The Effect of Hidden Terminals
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Figure 5.8: The Effect of RTS/CTS on

Throughput Support

one of these four MSs. Due to the significantly increased number of collisions from hidden

terminals, the performance of all MSs degrades in this environment when RTS/CTS is not

used, as shown in Figure 5.7. However, when RTS/CTS is used, the problem of RTS/CTS is

significantly alleviated at the expense of additional overhead and slightly increased variation

of throughput. It is important to note that in a highly loaded network, the collision rate could

increase due to the collisions among RTS/CTS frames. Based on this result, we assume that

the RTS/CTS mechanism indeed mitigates much of the hidden-terminal problem. In the

next scenario, we demonstrate the performance of DRAFT+D of the basic scenario when

RTS/CTS is used and no hidden terminal is explicitly placed in the network. Figure 5.8

shows that the RTS/CTS mechanism by itself has no significant impact on the performance

of DRAFT+D. The experienced throughput of both AT-MS and RT-MSs remains similar

to the scenario without when RTS/CTS was not employed. Next, we will examine the effect

of the number of MSs.
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5.1.6 The Effect of the Number of Mobile Stations

Thus far, we limited the number of MS of AT-MS to one and the number of RT-MS to 19

(total of 20 MSs). The number of MSs often reported as a important factor that deteriorate

the effectiveness of distributed mechanisms in WLAN [97]. In WLANs using DCF, the num-

ber of MSs has a significant impact on the performance. The higher the number of active

MSs, the higher the probability of collision and the lower the effective channel capacity. In

this section, we evaluate the performance of DRAFT+D two scenarios when the number of

AT-MSs and RT-MSs increases. In the first scenario (10AT+20RT), the number of AT-MSs

increases from 1 to 10 while the number of RT-MSs increases to 20, total of 30 MSs. The

throughput requirement of AT-MSs is 50 Kbps while the throughput requirement of RT-

MSs is 400 Kbps. In the second scenario (20AT+40RT), the number of AT-MSs increases

to 20 while the number of RT-MSs increases to 40, total of 60 MSs. The throughput re-

quirement of AT-MSs is 25 Kbps while the throughput requirement of RT-MSs is 200 Kbps.

In both scenarios, Figure 5.9 shows that the variations of throughput of AT-MSs increase

slightly. However, the AT-MSs still receive as much throughput as the specified throughput

requirement. This result suggests that the number of MSs has only a small impact on the

throughput support. At this level of network saturation and number of MSs, DRAFT+D

performs very well (robust and relatively unaffected) in comparison with other QoS mecha-

nisms in WLAN. Next, we will present the performance of DRAFT+D where the data rate

is changed to 5.5 and 11 Mbps.

5.1.7 The Effect of Data Rates

In all the previous scenarios, the data rate of all MSs was set to 2 Mbps. However, other data

rates are also available in WLAN; for instance, 11 Mbps, 5.5 Mbps, 2 Mbps, and 1 Mbps in

802.11b. In this section, we will investigate the performance of DRAFT+D in two scenarios

where the data rate is changed to 5.5 Mbps and 11 Mbps. In both scenarios, the throughput

requirement of all MSs is set to 1 Mbps to match the increased effective channel capacity in

both scenarios. Figure 5.10 shows that the experienced throughput of AT-MS and RT-MSs

remains the same as the scenario with 2 Mbps data rate. That is, AT-MS receives as much
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5.9 (b): 20AT-MSs & 40aRT-MSs

Figure 5.9: The Effect of Number of MSs on Throughput Support

throughput as required and RT-MSs share the remaining bandwidth. This suggests that the

performance of DRAFT+D is unaffected by the data rate.
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5.10 (a): 5.5 Mbps WLAN
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Figure 5.10: The Effect of Data Rate on Throughput Support
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5.1.8 The Effect of Multi-Rate Environment

In addition to availability of multiple data rates, different MSs can connect to a WLAN

at different data rates in a multi-rate environment. A multi-rate environment raises a new

issue of fairness because providing the same throughput or delay to MSs connecting at

different data rates requires a different amount of network resources. For example, an MS

connecting at 5.5 Mbps requires twice as much time to achieve the same throughput as an

MS connecting at 11 Mbps. Therefore to provide fairness in terms of network resources or

temporal fairness, DRAFT+D is equipped with an alternative way to calculate the value

of weight accordingly. To demonstrate the effect of different fairness criteria, we consider a

scenario (2AT-18RT:MR) where half of the MSs connected at 5.5 Mbps while the other half

of the MSs connected at 11 Mbps. More specifically, 1 AT-MS and 9 MSs connect to the

WLAN at 11 Mbps while 1 AT-MS and 9 MSs connect at 5.5 Mbps. Based on 2AT-18RT:MR

scenario, two experiments were conducted. One experiment used utilitarian fairness and the

other used temporal fairness.

The result in Figure 5.11 shows that AT-MSs receive as much throughput as they required

regardless of their connection rates or their fairness criteria. This result is as expected and

desirable for absolute throughput support. On the contrary, RT-MSs with the same through-

put requirement receive the same throughput based on utilitarian fairness, (Figure 5.11 (a))

while RT-MSs connecting at a lower speed receive lower throughput than MSs connecting

at a higher speed based on the temporal fairness. Figure 5.11 (b) shows that RT-MSs con-

necting at 11 Mbps receives twice throughput as much as the MSs connecting at 5.5 Mbps

when temporal fairness was enforced. Depending on the objective of the protocol designer

or network provider, either fairness criteria can be properly enforced.

In short, we have showed that DRAFT+D is equipped to and performs well in supporting

both fairness criteria: a) utilitarian fairness and b) temporal fairness. AT-MSs receive as

much throughput as required regardless of their connected data rate or fairness criteria while

RT-MSs fairly share the remaining bandwidth depending on the appropriate fairness criteria.

To this end, we have demonstrated the performance of DRAFT+D in various scenar-

ios. The simulation results showed that DRAFT+D performed well regardless of the levels
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5.11 (a): Utilitarian Fairness
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5.11 (b): Temporal Fairness

Figure 5.11: The Effect of Temporal Fairness in Multi-Rate WLAN on Throughput Support

of throughput requirement, the number of levels of throughput requirement, the time at

which MSs become active, number of active MSs, traffic type, mode of operation, the use

of RTS/CTS, data rate, and fairness criteria. Moreover, the performance of DRAFT+D

remains unchanged in moderately erroneous environment, e.g, PER is smaller than 10−2

where the effective channel capacity is not significantly degraded. A higher tolerance to

errors can be achieved at the expense of a smaller amount of supported traffic. Next, we will

demonstrate the performance of distributed safeguard mechanism of DRAFT+D, namely

DSG-RT.

5.2 COMPREHENSIVE EVALUATION OF DSG-RT

The objective of DSG-RT is to limit the amount of traffic from new RT-MSs to prevent exces-

sive traffic that causes the deterioration of the ability of DRAFT+D to provide absolute QoS

support. DSG-RT is achieved by comparing the experienced throughput of probing packets

with an overload threshold. A new RT-MS will not be allowed to continue transmitting
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Table 5.2: Simulation Parameters for Evaluation of DSG-RT

# Name AT-MSs RT-MSs TrafficError Mode RTSFairness
Speed
(Mbps)

1 3AT+19DSG-RT:DTR
4x100Kbps 4x100Kbps

CBR No Adhoc No Util. 25x150Kbps 5x150Kbps
10x250Kbps 10x250Kbps

2 1AT+19DSG-RT:VBR 1x500Kbps 19x500Kbps VBR No Adhoc No Util. 2
3 1AT+19DSG-RT:E-2 1x500Kbps 19x500Kbps CBR 10−2 Adhoc No Util. 2
4 1AT+19DSG-RT:E-3 1x500Kbps 19x500Kbps CBR 10−3 Adhoc No Util. 2
6 1AT+19DSF-RT:RTS 1x500Kbps 19x500Kbps CBR No Adhoc Yes Util. 2
7 10AT+20DSG-RT 10x100Kbps 20x200Kbps CBR No Adhoc No Util. 2
8 20AT+40DSG-RT 20x25Kbps 40x50Kbps CBR No Adhoc No Util. 2
9 1AT+19DSG-RT:5SR 1x500Kbps 19x500Kbps CBR No Adhoc No Util. 5.5
10 1AT+19DSG-RT:11SR 1x500Kbps 19x500Kbps CBR No Adhoc No Util. 11

if experienced throughput is smaller than the expecting overload threshold. The overload

threshold is the throughput level that can be calculated independently in each RT-MS from

the specified quantum rate, ω, and θ, Eq. (3.22).

The procedure of DSG-RT begins by sending out a number of packets at the desired rate.

During this period, the experienced throughput is calculated. DSG-RT compares the expe-

rienced throughput with the overload threshold. The experienced throughput is calculated

from the EWMA of instantaneous throughput. The overload threshold is calculated from

the product of the safety factor, the overload ratio, and the throughput requirement. During

the testing procedure, if the experienced throughput is smaller than the overload threshold,

the new flow will be immediately stopped. Otherwise, a new flow can continue.

In the following section, we will evaluate 10 scenarios where 8 factors are varied (see

Table 5.2). We will demonstrate that DSG-RT performs well in scenarios regardless of the

levels of throughput requirement, the time at which MSs become active, traffic type, error

rate, the use of RTS/CTS, number of active MSs, and data rate.
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5.2.1 The Effect of Different Levels of Throughput Requirements

In scenario 3AT+19DSG-RT:DTR, we examine the performance of DSG-RT when multiple

flows with different throughput requirements are presented. We consider a scenario where

there are 3 AT-MSs with throughput requirements of 500 Kbps, 250 Kbps and 125 Kbps,

and 19 RT-MSs where 10 RT-MSs with throughput requirement of 500 Kbps, 5 RT-MSs with

throughput requirement of 250 Kbps second, and 4 RT-MSs with throughput requirement

of 150 Kbps. Figure 5.12 shows that DSG-RT performs well under this circumstance.
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Figure 5.12: The Effect of Multiple Flows with Different Requirements

5.2.2 The Effect of Variable Bit Rate Traffic

In scenario 1AT+19DSG-RT:VBR, the VBR traffic is considered. We consider 2 types of

VBR traffic: a) VBR traffic with exponentially distributed inter-arrival time with the mean

of 0.016 and b) ON-OFF traffic with 0.9 second in ON-period and 0.1 second in OFF-period.

Figure 5.13 shows that performance of DSG-RT remains the same even when the inter-arrival

time of traffic is aperiodic.
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5.13 (a): Exponential Inter-Arrival Time
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Figure 5.13: The Effect of Variable Bit Rate (VBR) Traffic on DSG-RT

5.2.3 The Effect of Channel Error

In this section, we examine the performance of DSG-RT in two scenarios (1AT+19DSG-

RT:E-2 and 1AT+19DSG-RT:E-3) where Packet Error Rate (PER) of 10−2 and 10−3 are

present in the wireless channel. The simulation results show the accuracy of DSG-RT in

limiting new traffic remains undisturbed as long as the PERs is smaller than 10−2 (Figure 5.14

(a)). However, the performance of DSG-RT begins to deteriorate slightly as Packet Error

Rate (PER) increases higher than 10−1. Inaccurate admission and rejection can be observed.

The reason is that the variation of experienced throughput increases directly as a function

of error rate. Therefore, as the variation of experienced throughput increases, the accuracy

of the estimate of the experienced throughput and the accuracy of the testing procedure

decreases. This issue can be resolved by simply increasing the number of packets during the

transient period as shown in Figure 5.15.
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5.14 (a): PER = 10−2
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5.14 (b): PER = 10−1

Figure 5.14: The Effect of Channel Error on DSG-RT
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5.15 (a): PER = 10−1

Figure 5.15: The Effect of Channel Error on DSG-RT, N1 = 50
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5.2.4 The Effect of Request to Send/Clear to Send

In this section, we evaluate scenario 1AT+19DSF-RT:RTS when RTS/CTS mechanism is

used to mitigate hidden-terminal problem. Figure 5.16 (a) shows that the accuracy of DSG-

RT in limiting new traffic deteriorates slightly when RTS/CTS is used. This result suggests

that the number of packets during the transient period should be set to 50 as shown in

Figure 5.16 (b).
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5.16 (a): pktth = 30
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5.16 (b): pktth = 50

Figure 5.16: The Effect of RTS/CTS on DSG-RT

5.2.5 The Effect of the Number of Mobile Stations

In this section, we evaluate the performance of DRAFT+D two scenarios when the number

of AT-MSs and RT-MSs increases. In the first scenario (10AT+20DSG-RT), the number of

AT-MSs increases from 1 to 10 while the number of RT-MSs increases from 10 to 20, or a

total of 30 MSs. The throughput requirement of AT-MSs is 100 Kbps while the throughput

requirement of RT-MSs is 200 Kbps. In the second scenario (20AT+40DSG-RT), the number

of AT-MSs increases to 20 while the number of RT-MSs increases to 40, or a total of 60 MSs.

The throughput requirement of AT-MSs is 50 Kbps while the throughput requirement of

RT-MSs is 100 Kbps. Figure 5.17 shows that DSG-RT still performs well when the number
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of MSs increases. The experienced throughput of AT-MSs and RT-MSs remains stable and

the testing procedure is still accurate.
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5.17 (a): 10 AT-MSs, 20 RT-MSs
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Figure 5.17: The Effect of the Number of Mobile Stations

5.2.6 The Effect of Data Rate

In this section, we investigate the performance of DSG-RT in different data rates (scenario

1AT+19DSG-RT:5SR and 1AT+19DSG-RT:11SR). Figure 5.18 shows that the performance

of DSG-RT remains about the same as the scenario with 2 Mbps data rate. There are some

inaccurately rejected and admitted RT-MSs. The reason is that the estimate of experienced

throughput needs some time to become mature. As the data rate increases, the number of

packets during the transient period needs to be increased as well.

In conclusion, we demonstrated the performance of DSG-RT in various scenarios. The

simulation results show that DSG-RT performed well regardless of the levels of throughput

requirement, the number of levels of throughput requirement, the time at which MSs become

active, the number of probing MSs, the number of active MSs, traffic type, mode of operation,

the use of RTS/CTS, data rate, error rate, and fairness criteria. Moreover, three important

parameters of DSG-RT are also evaluated. The results showed that the number of packets

prior to the admission higher than 30 and the number of probing packet higher than 10
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5.18 (a): 5.5 Mbps
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Figure 5.18: The Effect of Data Rate

are sufficient to provide good performance in all tested scenarios. The safety factor is a

tradeoff between the number of accepted RT-MSs (or amount of traffic from RT-MSs) and

the experienced throughput of RT-MSs. Finally, DSG-RT also performed well in situation

where the number of simultaneously active MSs.

5.3 COMPREHENSIVE EVALUATION OF DELAY SUPPORT

The objective of absolute delay support in DRAFT+D is to provide an average HoQ delay.

HoQ delay is a successful transmission delay of a HoQ packet. In Section 4.1, we showed

a preview of absolute delay support of the basic scenario, 1AD+19RT scenario. In this

section, we will evaluate the ability to provide absolute delay in 8 scenarios with different

target delay requirements, traffic type, the mode of operation, the use of RTS/CTS, data

rates, error rates, and fairness criteria, as shown in Table 5.3.

The results show that the absolute delay can be supported. The HoQ delay of AD-MSs

is within the specified target delay as long as the condition to provide absolute throughput is
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Table 5.3: Simulation Parameters for Evaluation of Delay Support

# Name AD-MSs RT-MSs TrafficError Mode RTSFairness
Speed
(Mbps)

1 3AD+19RT:DTR
4x100Kbps:0.08 4x100Kbps

CBR No Adhoc No Util. 25x150Kbps:0.053 5x150Kbps
10x250Kbps:0.032 10x250Kbps

2 1AD+19RT:VBR 1x500Kbps:0.016 19x500Kbps VBR No Adhoc No Util. 2
3 1AD+19RT:E-2 1x500Kbps:0.016 19x500Kbps CBR 10−2 Adhoc No Util. 2
4 1AD+19RT:E-3 1x500Kbps:0.016 19x500Kbps CBR 10−3 Adhoc No Util. 2
5 1AD+19RT:AP 1x500Kbps:0.016 19x500Kbps CBR No Infra No Util. 2
6 1AD+19RT:RTS 1x500Kbps:0.016 19x500Kbps CBR No Adhoc Yes Util. 2
7 10AD+20RT 10x100Kbps:0.08 20x200Kbps CBR No Adhoc No Util. 2
8 20AD+40RT 20x25Kbps:0.32 40x50Kbps CBR No Adhoc No Util. 2
9 1AD+19RT:5SR 1x500Kbps::0.016 19x500Kbps CBR No Adhoc No Util. 5.5
10 1AD+19RT:11SR 1x500Kbps:0.016 19x500Kbps CBR No Adhoc No Util. 11
11 1AD+19RT:MRTF 1x500Kbps:0.016 19x500Kbps CBR No Adhoc No Util. 5.5+11
12 1AD+19RT:MRUF 1x500Kbps:0.016 19x500Kbps CBR No Adhoc No Temp. 5.5+11

maintained. The important finding is that the factor that poses the heaviest burden on the

delay support is aperiodicity of input traffic (Figure 5.20). Other factors affect the HoQ delay

only slightly. Next, we will present the simulation results and the simulation parameters of

each scenario.

5.3.1 The Effect of Multiple Flows with Different Target Delay Requirements

In 1AD+19RT scenario, we presented the performance of DRAFT+D in providing abso-

lute delay support when the target delay was set to 0.016 second. In this scenario, we will

investigate the performance of DRAFT+D when there are multiple target delay require-

ments. We consider scenario 3AD+19RT:DTR with different target delay requirement. The

3AD+19RT scenario consists of 3 AD-MSs with target delay requirements of 0.032, 0.054

and 0.08 second, respectively, and 19 RT-MSs. The throughput requirement of each AD-MS

is 250 Kbps, 150 Kbps, and 100 Kbps, respectively, as we keep the total throughput require-

ment of AD-MSs at 500 Kbps. All AD-MSs become active at the same time, at t = 10. The

the simulation parameters are kept the same as 1AD+19RT scenario. Figure 5.19 shows
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that the experienced delay of AT-MSs remains well within the specified target delay for the

entire simulation. This result suggests that different levels of target delay do not have any

impact on absolute delay support.
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Figure 5.19: The Effect of Different Delay Requirements on Delay Support

5.3.2 Variable Bit Rate (VBR) Traffic

The characteristic of VBR traffic is the aperiodicity of inter-arrival time of the input traffic.

This characteristic is found in many QoS-sensitive applications such as video applications.

The aperiodicity of inter-arrival time poses a heavy burden on a mechanism that tries to

meet target delay because the traffic may arrive back to back and cause a temporarily long

delay. Additional bandwidth can be allocated to alleviate this potential problem as discussed

earlier in Section 4.1.

In this section, we will examine the ability of DRAFT+D to provide delay support when

the input traffic is changed from CBR to VBR. We considered 2 types of VBR traffic: a)

traffic with exponentially distributed inter-arrival times and b) on-off traffic with 0.9 second

in on-period and 0.1 second in off-period. Figure 5.20 shows that the HoQ delay of AD-MS

can be as high as the target delay regardless of the network load. The increased HoQ delay

is due to the back-to-back arrival of packets in VBR traffic (both types). Despite the back-

to-back packet arrival, the HoQ delay of AD-MS is still within the specified target delay
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most of the time. This result suggests that DRAFT+D is able to provide a specific delay

support (on average) for the HoQ packet.
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5.20 (a): Exponential Inter-Arrival Time
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Figure 5.20: The Effect of VBR on Delay Support

5.3.3 Presence of Channel Error

In this section, we will evaluate the performance when error is present in the wireless channel

where the PER of wireless channel is 10−2. Figure 5.21 shows that the experienced delay of

AD-MS is still within the specified target delay.

5.3.4 The Effect of Presence of Access Point

In this section, we evaluate the performance of DRAFT+D when an Access Point (AP) is

presence. We consider a scenario (1AD+19RT:AP) where there are 1 AD-MS and 19 RT-

MSs with 250 Kbps throughput requirement. The AD-MS has the offered load of 250 Kbps

and requires 0.032s target delay. Figure 5.22 shows that the experienced delay of AD-MS

remains the same as the scenario where an AP is not used.
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Figure 5.21: The Effect of Channel Error on Delay Support
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Figure 5.22: The Effect of Access Point on Delay Support

5.3.5 Presence of Request to Send/Clear to Send

We evaluate the performance of A-DRAFT when Request to Send/Clear to Send (RTS/CTS)

mechanism is used at the MAC level. Figure 5.23 shows that the performance of AD-MS

remains the same.
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Figure 5.23: The Effect of RTS/CTS on Delay Support

5.3.6 The Effect of the Number of Mobile Stations

In this section, we will demonstrate the performance of DRAFT+D when the number of MSs

increases. In the first scenario, there are 10 AD-MSs and RT-MSs. The AD-MSs have the

target delay of 0.16 second and throughput requirement of 50 Kbps while the RT-MSs have

the throughput requirement of 400 Kbps. In the second scenario, there are 20 AD-MSs have

the target delay of 0.32 second and throughput requirement of 25 Kbps and 40 RT-MSs have

the throughput requirement of 200 Kbps. The total throughput requirement of AD-MSs and

RT-MSs of both scenarios is kept to same as 1AD+19RT scenario. Figure 5.24 shows that

the HoQ delay of AD-MSs remains within the specified target delay for the entire simulation

for both scenarios. This result suggests that the number of MSs does not appear to have

any significant effect on the absolute delay support.

5.3.7 The Effect of Data Rates

In this section, we will investigate the performance of DRAFT+D in 5.5 Mbps and 11 Mbps

WLAN. In these scenarios, both AD-MS and RD-MSs require the target delay of 0.008

second and have the throughput requirement of 1 Mbps. The total offered load in both

scenarios is 20 Mbps. Figure 5.25 shows that the HoQ delay of AD-MS remains within the
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5.24 (a): 10AD-MSs & 20RT-MSs
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Figure 5.24: The Effect of Number of MSs on Delay Support

specified target delay for the entire simulation in both scenarios.

0 50 100 150 200 250 300 350 400 450
0.001

0.008
0.01

0.1

1

Target Delay

Time (sec)

H
oQ

 D
el

ay
 (

se
c)

DRAFT−AD − 0.008s
DRAFT−RT − 1000 Kbps

5.25 (a): 5.5 Mbps
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Figure 5.25: Performance of Delay Support in 5.5 Mbps
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5.3.8 The Effect of Multi-Rate Environment

To demonstrate the effect of different fairness criteria on delay support, we consider a scenario

(2AD-18RT:MR) where half of MSs connected at 5.5 Mbps while the other half of MSs

connected at 11 Mbps. More specifically, 1 AD-MS and 9 RT-MSs connect to the WLAN

at 11 Mbps while 1 AD-MS and 9 RT-MSs connect at 5.5 Mbps. Based on 2AD-18RT:MR

scenario, two experiments were conducted. One experiment used utilitarian fairness and the

other used temporal fairness. The result (Figure 5.26) shows that the HoQ delay of AT-MSs

remains within the specified target.
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5.26 (a): Utilitarian Fairness
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Figure 5.26: The Effect of Temporal Fairness in Multi-Rate WLAN on Delay Support

5.4 CONCLUDING REMARKS

In this chapter, the comprehensive simulation results confirmed that DRAFT+D can provide

QoS support, i.e., a) relative throughput support, b) absolute throughput support, and c)

absolute delay support, in various scenarios in a predictable and robust manner. Many

scenarios including the levels of throughput requirement, the number of levels of throughput

requirement, the time at which MSs become active, number of active MSs, traffic type, mode
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of operation, the use of RTS/CTS, data rate, and fairness criteria have been evaluated. The

ability of DRAFT+D to provide relative throughput support, absolute throughput support,

absolute delay support, and admission control support remains unchanged while varying

these factors. Three factors that impact the performance of DRAFT+D the most are: a)

high error rate condition, b) the use of infrastructure mode. These factors affect the absolute

throughput support due to the significant loss of effective channel capacity. This finding

suggests that the effective channel capacity must be estimated appropriately as subject to

the error rate in the channel and the overhead of relaying traffic in the infrastructure mode

to maintain absolute throughput support. The performance of DSG-RT and absolute delay

support remain relatively unaffected by these factors.
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6.0 CONCLUSIONS AND FUTURE WORK

In this dissertation, we examined the limitations of Quality of Service (QoS) support. We

developed an integrated QoS mechanism to support two QoS metrics (throughput and delay)

with two QoS models (absolute and relative) under two fairness constraints (utilitarian and

temporal fairness) with straight-forward QoS translation in a fully distributed manner. We

believe that the integrated solution based on distributed fair scheduling is the answer for

overcoming the lack and inadequacy of the provision of QoS in Wireless Local Area Networks

(WLANs). We believe that pervasive high-speed wireless data services are at the same time

compelling and inevitable. It is just a question of how and when. And if we know the answer

to how, then it is only a matter of time until WLANs will become a ubiquitous reality.

The main contribution of this dissertation is a novel distributed QoS mechanism in

WLANs, called Distributed Relative/Absolute Fair Throughput with Delay Support (DRAFT+D).

Unlike any other QoS mechanism in WLANs, DRAFT+D provides both relative and abso-

lute QoS support for both throughput and delay with safeguard against excessive traffic in

a fully distributed manner in the same mechanism at the same time.

To the best of our knowledge, there are no other QoS mechanisms in WLANs that

a) provide both fair (relative) and specific (absolute) QoS support, b) consider and support

both throughput and delay requirements, c) equip with integrated safeguard against excessive

traffic, d) consider and support both utilitarian and temporal fairness, e) achieve multiple

types QoS support by modifying only the way to calculate Backoff Interval (BI), f) consider

and provide ease of QoS translation, and g) provide all QoS support including safeguard

against excessive traffic in a fully distributed manner in the same mechanism at the same time

without requiring or collecting any information from or to any other Mobile Stations (MSs).

The main features of DRAFT+D include:
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• Integrated QoS Support: DRAFT+D supports two QoS metrics (throughput and

delay) with two QoS models (absolute and relative) under two fairness constraints (util-

itarian and temporal fairness) with safeguard against excessive traffic in the same mech-

anism at the same time. The relative throughput support is achieved by calculating the

value of BI based on weight. The default fairness criteria is utilitarian fairness while

the temporal fairness can be simply enforced by calculating the value of weight with

temporal fairness factor. The absolute QoS support is achieved by allocating sufficient

bandwidth to this type of traffic. Excessive traffic is prevented by a) limiting traffic of

each flow with Deficit Round Robin (DRR) and b) limiting a new flow with Distributed

SafeGuard for Absolute Throughput Support in Relative Throughput Flows (DSG-RT).

• Fully Distributed in Nature: All QoS support including relative throughput, absolute

throughput, absolute delay, and safeguard support are achieved in a fully distributed

manner without requiring the exchange or collection of any information from other MSs.

DRAFT+D provides a set of rules that each MS applies independently to achieve the

goal of QoS support and predictable performance.

• Minimum Changes Required, Ease of Implementation, and Low Complex-

ity and Overhead: DRAFT+D requires minimum changes to the base protocol, i.e.,

Distributed Coordination Function (DCF), and ease of implementation by achieving all

QoS support by modifying only one WLAN’s parameter, i.e. BI. Possibility of hybrid

flow/class-based queue implementation helps reduce the computational complexity of

the protocol and also demonstrates flexibility and ease of implementation. Minimum

protocol complexity is justified from the inherited O(1) computational cost on which the

mechanism is based, i.e., DRR and Distributed Fair Scheduling (DFS). No additional

fields in the frame headers are needed. The use of DSG-RT also reduces overheads from

admission control for the entire network. The safeguard mechanism itself as well as other

QoS support are very lightweight since it is fully distributed and does not require any

collection or distribution of any information from or to any other MSs.

• Ease of QoS Translation and Minimum Requirement of Admission Control:

To alleviate the problem of complex QoS translation and to ease the QoS translation, all

QoS requirements are translated into a common denominator, i.e. quantum rate. The
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quantum rate, which represents throughput, is an obvious and natural QoS parameter.

The integrated safeguard against excessive traffic helps reduce the need and the burden

of admission control and thereby minimizes the requirement of admission control.

• Robustness, Scalability, Fairness, and Low Variation: The simulation of diverse

and realistic scenarios show promising results and demonstrates several desired properties

of DRAFT+D. The performance of DRAFT+D is relatively insensitive to the values of

protocol parameters. Relatively wide ranges of values to provide a good and predictable

performance of these protocols parameters are easily found and assigned in DRAFT+D.

High scalability (in terms of loads and the number of MSs), high robustness (against

types of input traffic, WLAN’s data rates of a WLAN, and WLAN’s parameter), high

degree of fairness, and low variation of throughput and delay are integral and critical

properties of the mechanism that was developed and examined in this study.

6.1 FUTURE RESEARCH

In this section, we identify the potential directions for future research.

• Implementation of DRAFT+D in a WLAN’s Network Interface Card (NIC):

The next step to validate the functionality of DRAFT+D beyond simulation is its im-

plementation in a real WLAN’s NIC and evaluation of its performance on a test-bed

network. Given the availability of WLAN’s adaptor, which allows changes in WLAN’s

firmware and driver, e.g, from TEXAS Instrument Corp., DRAFT+D can be imple-

mented. Promising results from research in real test-bed environments will affirm the

attractiveness of DRAFT+D while any unexpected results will provide a better under-

standing of the protocol and enable protocol designers to make necessary adjustments.

• QoS Provision for Newly Standardizing Protocols: In the past, popular and

widely adopted protocols such as Ethernet, DCF, and TCP/IP, were not equipped with

QoS support. When attempting to integrate QoS support to these protocols, it was

achieved at the expense of deterioration of protocol efficiency or with an increase in

protocol complexity. This complication motivates the concept of QoS-ready mechanisms.
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However, including QoS support in any new protocol must not introduce significant

complexities and, thus, prevent the new mechanism from being widely adopted at all. We

have shown in this research that DRAFT+D is simple to implement with the advantages

of integrated QoS support. Newly standardizing protocols such as Ethernet over Power

line [98], Ethernet Phoneline [99], and Wireless Personal Area Networks (WPAN) 802.15,

could benefit from the simplicity and the integrated QoS support offered by DRAFT+D.

• Opportunistic Scheduling: In WLANs, network resources each MS perceives can

be different and can change with time. This is due to the time-varying characteristic

of wireless channels. In this study, we have not considered the impact of such time-

varying characteristics. Further research could investigate a way to exploit good channel

conditions in DRAFT+D to improve performance in terms of fairness and QoS support.

• Multi-hop Networks and End-to-End QoS: In this study, we consider QoS support

in a single-hop WLAN. The next step is to extend the work to multiple hops toward

end-to-end QoS support. In the past, multi-hop and end-to-end considerations often

incur significant overhead and complexity. We may expect delay rather than throughput

to be the major constraint in end-to-end QoS support. One possibility would be for flows

to specify more stringent target delays depending on the delays in other hops.

• Reduce Probability of Collision via Variable IFS: Collision is among the most

fundamental limitations and indicator of overall performance of any Carrier Sense Mul-

tiple Access (CSMA)-based mechanisms including a WLAN of 802.11. Currently, class-

based InterFrame Space (IFS) has been proposed in Enhanced Distributed Channel

Access (EDCA) and expected be become available in the next version of 802.11 WLANs.

However, we believe that more research can be conducted to achieve a lower probability

of collision in a WLAN. In the present study, we applied DRR as a traffic regulator

via the value of Deficit Counter (DC). Further research could examine the way to map

the value of DC into the value of IFS. Appendix A provides an initial protocol descrip-

tion and preliminary simulation results to demonstrate the advantage of such a Variable

Length IFS (VIFS).

• Bandwidth Control for Relative Throughput Flows: Controlling the amount of

traffic from the relative throughput class is very important to maintain the ability to
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provide absolute throughput and delay support. Without such control, the ability to

provide absolute throughput and delay can be jeopardized. In the study, we proposed

DSG-RT to limit excessive traffic from the relative throughput class. In this case, the new

flow will not be allowed to continue. However, other alternatives to manage a new flow

might be preferable. Rather than limiting a new flow, the mechanism can throttle the

share of the current flows and allow a additional new flow to be transmitted. Appendix B

provides an initial description and preliminary simulation results to demonstrate the

advantage of the adaptive bandwidth control mechanism.

• Distributed Safeguard Against Excessive Traffic from Absolute QoS Class:

Without a safeguard against excessive traffic, specific QoS support is not possible because

excessive traffic from the absolute QoS class can be introduced into the network. In the

mechanism that we have proposed, DSG-RT is used to limit excessive traffic from the

relative throughput class but not from excessive traffic from the absolute QoS class. We

believe that further research on safeguarding against this situation is possible by using

a method similar to the proposed DSG-RT. Understanding how to prevent excessive

traffic from the absolute QoS class would provide a completely integrated and fully

distributed QoS mechanism. Integrating these elements with DRAFT+D would provide

the most comprehensive solution to QoS support in WLAN. Conducting this research is,

therefore, critically important and can potentially resolve the majority of the QoS issues

in WLAN. In Appendix C, a initial description, mathematical proof, and preliminary

simulation results of a distributed safeguard mechanism against traffic from absolute

throughput and delay class are presented.
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APPENDIX A

APPLYING DRR ON THE CALCULATION OF VARIABLE IFS

According to [73], different values of IFS among MSs provide two advantages: 1) a lower

average probability of collision and 2) a faster progressing of backoff timer. In each round,

when a wireless channel becomes idle, a smaller value of IFS allows a flow to decrease its

backoff timer sooner than flows with longer IFS. The different values of IFS can be used to

reduce the number of relevant contending MSs; hence reducing the probability of collision.

The relevant contending MSs are those which have the same value of IFS.

In the current literature, most studies proposed to assign different fixed values of IFS for

different classes of traffic to provide differentiated QoS support. Essentially, a smaller value

of IFS is assigned to higher priority traffic. Therefore, the higher priority traffic will have an

advantage to access the channel than the lower priority traffic. This approach can be used

to amplify the differentiation ability of static priority-based mechanisms. The advantage of

this approach is simplicity and minimal changes to the legacy mechanism. Although this

approach can help reduce the number of relevant MSs contending for the network access

between high priority and low priority class traffic, the probability of collision can still be

high if the number of MSs of the same class is high regardless of the number of MSs in the

other classes.

To avoid this problem, i.e. high probability of collision when the number of MSs of the

same class is high, we suggest a new mechanism to calculate variable length of IFS (V IFS)

based on a fair-scheduling mechanism, namely DRR. The main advantages of VIFS are

fairness and the significantly reduced probability of collision. This approach can provide
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fairness because the IFS is calculated based on fair scheduling mechanism. The IFS of MS

with a higher value of accumulated resource, in terms of DC, will be shorter than the IFS of

another MS with a smaller value of DC. The probability of collision is significantly reduced

because the higher the number of possible lengths of IFS, the smaller the probability of

collision. Moreover, the probability of collision is not fixed with the number of MSs in each

class. Rather, the length of IFS is calculated dynamically.

A.1 MECHANISM DESCRIPTION

The value of IFS of class i (IFSi) is calculated from the difference between DIFS and the

ratio between the value of deficit counter DC and the size of the quantum Q, as shown

in Eq. (A.1). Because the value of DC of each MS is likely to be different, the value

of the calculated IFS will also be different. According to this equation, four parameters

directly influencing the value of IFSi are DIFS, DCi, α, and Q. Two additional parameters

influencing DCi thus indirectly influencing IFSi are DCmin, and DCmax.

IFS[i] = DIFS − α
DC[i]

Q
(A.1)

The first term in Eq. (A.1) determines the maximum length of the calculated IFS[i].

The maximum length of IFS[i] is obtained when DRAFT+D flows have used up their

accumulated quanta, i.e. DC[i] = DCmin, assuming DC[i] cannot be a negative value

(DCmin ≥ 0). Although any arbitrary value can be used, DIFS is judiciously selected to

give A-DFAFT+D flows an equal right to access the network in comparison with DCF flows,

when DC[i] = DCmin. As long as, DRAFT+D has some available quanta (DC[i] > DCmin,

DRAFT+D flows will have a smaller IFS[i], thus providing a better advantage than DCF

flows. However, once DRAFT+D flows use up their service quanta, other DCF flows can

take turns to access the network. This selection provides a backward compatibility to the

legacy 802.11.

DC[i] represents unused allowance that is available for data transmission. At times,

different traffic flows may have different values of DC[i] depending on their rates of quantum
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and the rate of successful transmission. Different values of DC[i] result in different values

of IFS[i]. The higher the value of DC[i] is, the smaller is the value of IFS[i] is. A smaller

IFS[i] means a better advantage in accessing the wireless network. Unlike EDCA and

other priority-based mechanisms where the value of IFS is fixed with traffic or priority class

regardless of how much data a flow has sent, the value of IFS[i] in DRAFT+D is calculated

dynamically and instantaneously based on the current value of DCi as given in Eq. (A.1).

Therefore, the value of IFSi directly reflects unused resources which, in turn, represents an

eligibility level to access the network of each TCi.

In DRAFT+D, the right to access the channel, IFS[i], is separated from the QoS require-

ment, or the specified λi. Eq. (A.1) shows that IFS[i] is dynamically and instantaneously

determined by the current value of DC[i] but not λi. According to our simulation results,

variable length of IFS[i], significant helps reduce the number of collisions and can be used

to improve absolute delay support which is very sensitive to any performance variation or

deterioration. The parameter α is a scaling factor that translates the ratio of Q/DC[i] into

an appropriate value of IFS[i], i.e. between PIFS and DIFS. The granularity of IFS[i]

can be appropriately adjusted according to the limitation of the transceiver via parameter

α.

Two other parameters that indirectly influence IFS[i] are the minimum DC limit (DCmin)

and maximum DC limit (DCmax). DCmin is a parameter used to control the minimum value

of DC[i] required for data transmission. That is, the frame of a TC[i] whose DC[i] is lower

than the DCmin will not be allowed to be transmitted until DC[i] becomes higher than the

DCmin. Moreover, DCmin is also used to control the maximum length of IFS[i]. That is,

the smaller the value of DCmin, the longer the maximum length of IFS[i] is. DCmax is

a parameter indicating the maximum value of DC[i]. DCmax is used to control the maxi-

mum value of DC[i]. When the amount of accumulated quantum reaches DCmax, additional

quanta will be discarded. Thus, in overloaded situations, it is possible that all stations have

accumulated quanta up to DCmax. This may reduce the efficacy of VIFS

Ideally, with variable length IFS, we will have a continuous range of IFS for every level

of eligibility. Therefore, the probability of collision will be significantly reduced. However, in

practice, the sensitivity of transceiver and the latency will be limiting factors to determine
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the feasible range of operation. With continuous advancements in technology, we believe

that the approach can become a viable and effective alternative to significantly reduce the

probability of collision, which is a fundamental limitation of WLANs.

A.2 PRELIMINARY RESULTS

To demonstrate the advantage of VIFS, we consider scenario 1AT+19RT where there are

1 Mobile Station with Absolute Throughput Requirement (AT-MS) and 19 Mobile Station

with Relative Throughput Requirements (RT-MSs). Each MS require 500 Kbps. In the first

scenario, the IFS of all MSs is fixed at DCF IFS (DIFS). In the second scenario, all MSs

employ VIFS based on the value of DC. Figure 1.1 shows that the collision rate of AT-MS

reduces significantly from 0.18 to 0.02 (maximum value). However, the collision rate of RT-

MSs remains the same (Figure 1.1). The reason is that all RT-MSs are backlogged and have

the DC at the maximum bound. Consequently, all of their IFS values are approximately the

same.
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Figure 1.1: Comparison of Collision Rate when Using VIFS and DIFS
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APPENDIX B

ADAPTIVE BANDWIDTH AUTO-CONTROL FOR RELATIVE

THROUGHPUT FLOWS

B.1 MECHANISM DESCRIPTION

The objective of Adaptive Bandwidth Auto-Control for Relative Throughput Flows (ABAC-

RT) is to dynamically throttle the fair share of flows from relative throughput class while

maintaining the absolute throughput support. The mechanism makes use of the same condi-

tion as DSG-RT. Rather than rejecting a new flow as in DSG-RT as described in Chapter 3,

ABAC-RT reduces the value of weight; therefore throttling the fair share of all existing

flows from relative throughput class. In this mechanism, weight of each flow in the relative

throughput class is reduced to control their bandwidth when additional traffic from relative

throughput class is added into the network. After that, the weight of each flow in rela-

tive throughput class will increase as the traffic decreases. This adaptive mechanism can

be achieved with any standard feedback control mechanism. Here, we implement a sim-

ple threshold-based control mechanism and show that this mechanism works relatively well.

Other sophisticated or advanced feedback control mechanisms can be substituted to improve

the performance.

In the feedback control mechanism, parameter θ decreases by a factor of 4, e.g. 4 =

10−5, every time the experienced throughput (λ̃[k] ∈ RT ) is lower than a threshold. Oth-

erwise, the weight will be increased. This threshold is calculated from the product of a

threshold factor (β), ratio of θ
ω
, and the specified quantum rate. The threshold factor (β)
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is simply a percentage, e.g. 120%, above the critical condition calculated from Eq. 3.21.

The average experienced throughput is calculated using the standard exponential averaging

method to smooth out the instantaneous experienced throughput. The instantaneous expe-

rienced throughput is calculated from the amount of data sent (in bits) and the time required

to transmit these data. As the number of flows of the relative throughput class increases,

the share of bandwidth of each flow gradually decreases. When the aggregate throughput

of the relative throughput class reduces, the weight is slowly increased to the original value.

The pseudo code is shown below.

1. if
(
λ̃[k] < β · θ

ω · λ[k]
)

2. θ = θ −4
3. else
4. θ = θ +4
5. φ[k] = λ[k]

R

Four important parameters to implement the adaptive feature are λ̃[k], λ[k], θ, and ω.

λ̃[k] can be measured independently at each MS while λ[k] is the throughput requirement

specified by each MS. The parameters θ and ω are assumed to be the standard values for a

network. The simplicity of the scheme is that these parameters are available locally at each

MS. Therefore, each MS can monitor its own experienced throughput and implement the

control in a fully distributed way. Using this adaptive mechanism, relative throughput traffic

flows can be freely added into the network. In the next section, we will present a preliminary

result and sensitivity analysis of ABAC-RT. Additional results on the ABAC-RT can be

found in [100]

B.2 PRELIMINARY RESULTS

The idea behind this mechanism is to allow each RT-MS to independently monitor its ex-

perienced throughput, compare it against an overload threshold, and then adjust the weight

accordingly. If the experienced throughput is lower than the overload threshold, the value of

weight (φ) will be reduced (via reduction of θ). Figure 2.1 shows that absolute throughput
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support can be maintained when ABAC is used; however, there is short-term unfairness

among RT-MSs where the existing flows receive better throughput than the new flows.
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Figure 2.1: Absolute Throughput Support with Adaptive Mechanisms

B.2.1 Effect of β and 4

To maintain the absolute QoS support, the experienced throughput of RT-MSs must be

higher than the required threshold. The required threshold can be calculated from the

product between the throughput requirement and the overload ratio. If the experienced

throughput can be measured perfectly, we can simply use the required threshold as a point

to activate the adaptation. However, in the real system, the experienced throughput is

not measured perfectly and the adaptive mechanism may need some time to take effect.

Because of this, some kind of safety factor should be applied to the required threshold to

compensate the inaccuracy of the measurement and provide a buffer for the mechanism to

adapt accordingly. Parameter β is a safety factor (β > 1) that multiplies to the required

threshold. The new threshold is served as a point where the adaptive mechanism becomes

active to adjust the value of weight.

Figure 2.2 shows that β represents a trade-off between the variation of absolute through-

put support and fairness of relative throughput support. The higher the value of β is , the

smaller is the variation of absolute throughput and lower is the fairness of relative through-
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put are. The reason is that a higher value of β activates the adaptive mechanism sooner.

The sooner the adaptive mechanism is activated, the better is the ability to provide absolute

throughput to support. However, the sooner the adaptive mechanism is activated, the larger

with the differences between the experienced throughput of existing MSs and new entering

MSs be. According to out results, the performance of absolute throughput class is relatively

insensitive to the value of β as long as β ≥ 1.2. The value of β = 1.2 with step size of

10−5 appears to be sufficient to provide good performance for both absolute throughput and

relative throughput class. The sensitivity of step size (4) will be discussed next.
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2.2 (a): β = 1.0
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2.2 (b): β = 1.2
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2.2 (c): β = 2.0
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Figure 2.2: Effect of β in Adaptive Mechanism
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Figure 2.3 shows that performance of absolute throughput class is relatively insensitive

to the value of 4 as long as 4 ≥ 10−5, i.e. sufficiently aggressive to adapt to the .
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2.3 (a): 4 = 10−3
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2.3 (b): 4 = 10−4
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2.3 (c): 4 = 10−5
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Figure 2.3: Effect of 4 in Adaptive Mechanism
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APPENDIX C

DISTRIBUTED SAFEGUARD MECHANISM FOR ABSOLUTE

THROUGHPUT FLOWS

C.1 MECHANISM DESCRIPTION

The objective of Distributed SafeGuard for Absolute Throughput Support in Absolute

Throughput Flows (DSG-AT) is to limit excessive traffic from AT-MSs while maintaining

the absolute throughput support to the current AT-MSs. To achieve this objective, we begin

by considering two ways to calculate the bandwidth share of a relative throughput class.

First, the share of a flow k with weight φ[k] from relative throughput class can be calculated

from the product of the effective channel capacity (λe), de-escalating parameter (θ), and the

normalized weight ( φ[k]P
∀i

φ[i]
), as shown earlier in Eq. (C.1). Second, the fair share of a flow k

with weight φ[k] from relative throughput class can be calculated from the product of the

available channel capacity (λa), de-escalating parameter (θ), and the normalized weight of

the relative throughput class, as shown in Eq. (C.2). The available channel capacity (λa)

is the difference between the effective channel capacity and the bandwidth required for the

absolute throughput class as shown in Eq. (C.3).

λ[y ∈ RT ] = λe · θ · φ[y]∑
∀i

φ[i]
(C.1)

λ[k ∈ RT ] = λa · θ · φ[k]∑
∀j∈RT

φ[j]
(C.2)

λa = λe −
∑

∀i∈AT

λ[i] (C.3)
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According to Eq. (C.2), there are 3 known variables and 2 unknown variables. φ[k] is

calculated from a locally specified throughput requirement. The parameter θ is a standard

value. λ is a local measurement of experienced throughput at each MS. Two unknown vari-

ables are the available bandwidth (λa) and the normalized weight of the relative throughput

class ( φ[k]P
∀j∈RT

φ[j]
). Due to the fairness property of DRAFT+D, we can solve for these two-

unknowns by injecting two flows with different weight values into the network and measuring

the corresponding experienced throughput.

Assume, two new flows, k1, k2 from RT-MSs are, one at a time, injected into a WLAN

and each MS measure the experienced throughput. We assume that the available bandwidth

and total sum of the weight from relative throughput class does not change during this

process. The experienced throughput of these flows can be represented as show in Eq. (C.4)

and Eq. (C.5). Let
∑

∀j∈RT

φ[j] be the total sum of the weight from relative throughput class

before addition of a new flow.

λ[k1] = λa · θ · φ[k1]∑
∀j∈RT

φ[j] + φ[k1]
(C.4)

λ[k2] = λa · θ · φ[k2]∑
∀j∈RT

φ[j] + φ[k2]
(C.5)

With few steps of algebraic manipulation to solve Eq. (C.4) and Eq. (C.5), we can

calculate the sum of the weight from relative throughput class from Eq. (C.6), available

bandwidth from Eq. (C.7), the sum of throughput requirement from absolute throughput

class including the new flow from Eq. (C.8), and the sum of throughput requirement from

relative throughput class from Eq. (C.9).

∑

∀j∈RT

φ[j] =
φ[k2] ·

(
λ[k1]− λ[k2]

)

λ[k2]− φ[k2]
φ[k1]

· λ[k1]
(C.6a)

=
φ[k1] ·

(
λ[k2]− λ[k1]

)

λ[k1]− φ[k1]
φ[k2]

· λ[k2]
(C.6b)
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λa =

λ[k1] ·
( ∑
∀j∈RT

φ[j] + φ[k1]
)

θ · φ[k1]
(C.7a)

=

λ[k2] ·
( ∑
∀j∈RT

φ[j] + φ[k2]
)

θ · φ[k2]
(C.7b)

∑

∀i∈RT

λ[i] =
λ[k1]

λ[k1]
· λa (C.8a)

=
λ[k2]

λ[k2]
· λa (C.8b)

∑

∀i∈AT

λ[i] = λe − λa + λ[k] (C.9)

In short, all the required parameters can be calculated independently and locally at each

MS. We substitute the fair share of testing flows (λ) in Eq. (3.17) with the measurement

of the experienced throughput (λ̃) and evaluate whether the condition to provide absolute

support can be maintained with an addition of a new absolute throughput flow. If Eq. (3.17)

holds, the new absolute throughput flow will be allowed to remain active.

In conclusion, DSG-AT can determine whether a new AT-MS can become active with-

out jeopardizing the ability to provide absolute throughput for the existing AT-MSs. The

mechanism is achieved by injecting two small flows with different throughput requirements

into the network, and measuring their experienced throughput, and determining the over-

load condition in Eq. (3.17). Unlike any traffic limiting mechanism, the main advantage of

DSG-AT is that it is fully distributed and is performed independently at each MS.
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C.2 PRELIMINARY RESULTS

To demonstrate the performance DSG-AT, we consider two scenarios where a new AT-MS

of 500 Kbps starts when the available bandwidth is: a) sufficient, at t = 35, and b) not

sufficient, at t = 85. Figure 3.1 (a) shows that a new AT-MS starting at t = 35 can be

accepted since available bandwidth at this time is still sufficient according to the calculation

of available bandwidth by Eq. (3.17), as shown below.

θ ·
∑

∀j∈RT

λ[j] + ω ·
∑

∀i∈AT

λ[i] ≤ ω · λe

1× (2× 500) + 5× (2× 500) ≤ 5 · 1500

6000 ≤ 7500

When a new AT-MS starts a flow at t = 85, Figure 3.1 (b) shows that the new AT-MS

is not accepted since the available bandwidth is no longer sufficient at this point according

to the calculation of available bandwidth, shown below.

θ ·
∑

∀j∈RT

λ[j] + ω ·
∑

∀i∈AT

λ[i] ≤ ω · λe

1× (7× 500) + 5(×2× 500) ≤ 5× 1500

13000 � 7500
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3.1 (a): New AT-MS at t = 35
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3.1 (b): New AT-MS at t = 85

Figure 3.1: Safeguard against Excessive Traffic with DSG-AT
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