3,817 research outputs found

    Performance of IP address auto-configuration protocols in Delay and Disruptive Tolerant Networks

    Get PDF
    At this moment there is a lack of research respecting Mobile Ad-hoc Networks (MANET) address assignment methods used in Delay Tolerant Networks (DTN). The goal of this paper is to review the SDAD, WDAD and Buddy methods of IP address assignment known from MANET in difficult environment of Delay and Disruptive Tolerant Networks. Our research allows us for estimating the effectiveness of the chosen solution and, therefore, to choose the most suitable one for specified conditions. As a part of the work we have created a tool which allows to compare these methods in terms of capability of solving address conflicts and network load. Our simulator was created from scratch in Java programming language in such a manner, that implementation of new features and improvements in the future will be as convenient as possible

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    Design and evaluation of a self-configuring wireless mesh network architecture

    Get PDF
    Wireless network connectivity plays an increasingly important role in supporting our everyday private and professional lives. For over three decades, self-organizing wireless multi-hop ad-hoc networks have been investigated as a decentralized replacement for the traditional forms of wireless networks that rely on a wired infrastructure. However, despite the tremendous efforts of the international wireless research community and widespread availability of devices that are able to support these networks, wireless ad-hoc networks are hardly ever used. In this work, the reasons behind this discrepancy are investigated. It is found that several basic theoretical assumptions on ad-hoc networks prove to be wrong when solutions are deployed in reality, and that several basic functionalities are still missing. It is argued that a hierarchical wireless mesh network architecture, in which specialized, multi-interfaced mesh nodes form a reliable multi-hop wireless backbone for the less capable end-user clients is an essential step in bringing the ad-hoc networking concept one step closer to reality. Therefore, in a second part of this work, algorithms increasing the reliability and supporting the deployment and management of these wireless mesh networks are developed, implemented and evaluated, while keeping the observed limitations and practical considerations in mind. Furthermore, the feasibility of the algorithms is verified by experiment. The performance analysis of these protocols and the ability to deploy the developed algorithms on current generation off-the-shelf hardware indicates the successfulness of the followed research approach, which combines theoretical considerations with practical implementations and observations. However, it was found that there are also many pitfalls to using real-life implementation as a research technique. Therefore, in the last part of this work, a methodology for wireless network research using real-life implementation is developed, allowing researchers to generate more reliable protocols and performance analysis results with less effort

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Personal area technologies for internetworked services

    Get PDF

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore