66 research outputs found

    Vision-based Crack Identification on the Concrete Slab Surface using Fuzzy Reasoning Rules and Self-Organizing

    Get PDF
    Identifying cracks on the surface of concrete slab structure is important for structure stability maintenance. In order to avoid subjective visual inspection, it is necessary to develop an automated identification and measuring system by vision based method. Although there have been some intelligent computerized inspection methods, they are sensitive to noise due to the brightness contrast and objects such as forms and joints of certain size often falsely classified as cracks. In this paper, we propose a new fuzzy logic based image processing method that extracts cracks from concrete slab structure including small cracks that were often neglected as noise. We extract candidate crack areas by applying fuzzy method with three color channel values of concrete slab structure. Then further refinement processes are performed with Self Organizing Map algorithm and density based noise removal process to obtain basic crack characteristic attributes for further analysis. Experimental result verifies that the proposed method is sufficiently identified cracks with various sizes with high accuracy (97.3%) among 1319 ground truth cracks from 30 images

    Fuzzy neural network pattern recognition algorithm for classification of the events in power system networks

    Get PDF
    This dissertation introduces advanced artificial intelligence based algorithm for detecting and classifying faults on the power system transmission line. The proposed algorithm is aimed at substituting classical relays susceptible to possible performance deterioration during variable power system operating and fault conditions. The new concept relies on a principle of pattern recognition and detects the existence of the fault, identifies fault type, and estimates the transmission line faulted section. The approach utilizes self-organized, Adaptive Resonance Theory (ART) neural network, combined with fuzzy decision rule for interpretation of neural network outputs. Neural network learns the mapping between inputs and desired outputs through processing a set of example cases. Training of the neural network is based on the combined use of unsupervised and supervised learning methods. During training, a set of input events is transformed into a set of prototypes of typical input events. During application, real events are classified based on the interpretation of their matching to the prototypes through fuzzy decision rule. This study introduces several enhancements to the original version of the ART algorithm: suitable preprocessing of neural network inputs, improvement in the concept of supervised learning, fuzzyfication of neural network outputs, and utilization of on-line learning. A selected model of an actual power network is used to simulate extensive sets of scenarios covering a variety of power system operating conditions as well as fault and disturbance events. Simulation results show improved recognition capabilities compared to a previous version of ART neural network algorithm, Multilayer Perceptron (MLP) neural network algorithm, and impedance based distance relay. Simulation results also show exceptional robustness of the novel ART algorithm for all operating conditions and events studied, as well as superior classification capabilities compared to the other solutions. Consequently, it is demonstrated that the proposed ART solution may be used for accurate, high-speed distinction among faulted and unfaulted events, and estimation of fault type and fault section

    Online Deception Detection Using BDI Agents

    Get PDF
    This research has two facets within separate research areas. The research area of Belief, Desire and Intention (BDI) agent capability development was extended. Deception detection research has been advanced with the development of automation using BDI agents. BDI agents performed tasks automatically and autonomously. This study used these characteristics to automate deception detection with limited intervention of human users. This was a useful research area resulting in a capability general enough to have practical application by private individuals, investigators, organizations and others. The need for this research is grounded in the fact that humans are not very effective at detecting deception whether in written or spoken form. This research extends the deception detection capability research in that typical deception detection tools are labor intensive and require extraction of the text in question following ingestion into a deception detection tool. A neural network capability module was incorporated to lend the resulting prototype Machine Learning attributes. The prototype developed as a result of this research was able to classify online data as either deceptive or not deceptive with 85% accuracy. The false discovery rate for deceptive online data entries was 20% while the false discovery rate for not deceptive was 10%. The system showed stability during test runs. No computer crashes or other anomalous system behavior were observed during the testing phase. The prototype successfully interacted with an online data communications server database and processed data using Neural Network input vector generation algorithms within second

    Fuzzy ART Neural Network Algorithm for Classifying the Power System Faults

    Full text link

    Model-based Tool Condition Monitoring for Ball-nose End Milling

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Automated Pattern-Based System for Real-Time Process Monitoring

    Get PDF
    corecore