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Summary 

In sculptured surface machining, the cutting engagement is not fixed. Most 

reported or conventional tool condition monitoring methods are based on thresholds 

or features derived from sensor signals captured from end milling with constant 

cutting engagement, which are therefore not suitable to be used directly for 

monitoring sculptured surface machining. On the other hand, several machining 

models and simulation methods have been developed in sculptured surface 

machining. These methods are generally applied prior to the cutting process to 

optimize the milling strategies and cutting parameters. There is a potential to apply 

the conventional tool condition monitoring methods in sculptured surface machining 

by accounting for the varying cutting engagement through the use of such developed 

machining models.  

The primary aim of this study is to investigate model-based tool condition 

monitoring methods for ball-nose end milling targeting for sculptured surface 

machining applications. The approach is based on a proposed tool wear modelling 

framework comprising of three parts: cutting force simulation, discrete wavelet 

analysis of cutting force sensor signal, and feature-based tool wear estimation model.   

A discrete mechanistic model is used to simulate the cutting force along the 

tool path to provide reference features. This model is developed by slicing the cutter 

into a series of axial discs. Each flute is divided into a few elemental cutting edges 

and the cutting force is aggregated from that for each elemental cutting edge. 

To deduce the tool wear from the cutting force, suitable features are extracted 

from the measured cutting force and the simulated cutting force. As the engagement 

condition of the sculptured surface changes, a time-frequency monitoring index based 

on wavelet transform has been developed and found to be more effective than that 

based on fast Fourier transform (FFT-based monitoring index). Wavelet 

transformation requires a smaller time window than FFT, while also provides 

frequency characteristics of the periodic cutting force signal. The adaptive window 

width in wavelet transform is an advantage for analyzing and monitoring the rapid 

transient of the cutting force signal as cutting engagement changes. Daubechies 
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wavelets are employed and derived from the cutting force during ball-nose milling. 

The residuals of the wavelets between the simulated force and the measured force 

signals are used for feature extraction.  

Machine learning methods are investigated. By training through examples, a 

machine learning method can be used to map suitable features (input) derived from 

the cutting force to the tool wear level (output). Among the machine learning 

methods, support vector regression (SVR) is a new generation of machine learning 

algorithm which was developed by Vapnik et al.  It is a well-established universal 

approximator of any multivariate function. Consequently, as a supervised method, 

SVR has been selected to establish the non-linear relation between the cutting force 

and tool wear, taking advantage of prior knowledge of the tool wear.  

As the tool wear process is complex, there exist complementary, redundant 

and possibly detrimental interactions between some features in mapping their relation 

to the tool wear. Hence a proper feature selection process to identify an effective 

subset can improve efficiency and performance. Rough set theory (RST) is a data 

mining tool to explore the hidden patterns in the data set. It is based on equivalence 

relations in the classification of objects. One main advantage of RST data analysis is 

that it only uses information inside the training data set; that is, it does not rely on 

prior knowledge, such as prior probabilities. In this investigation, the granularity 

structure of the cutting force features is studied using RST to find the optimal subset 

of features from the original set according to a given criterion. 

A tool wear estimation framework, has been developed that integrates the 

cutting force simulation, cutting force signal processing, wavelet feature extraction 

from cutting force signals, feature selection using RST, and tool wear estimation 

using SVR. Preliminary experiments to mill inclined surfaces at different inclination 

angles, different depths of cut and feedrates have been conducted to validate the 

proposed methods using the developed framework. The experimental results show 

that the tool wear estimation framework can effectively estimate maximum flank wear 

over various cutting conditions and inclined surfaces simulating different 

engagements of the cutting tool. 

The milling of a hemispherical surface enables study for tool wear and 

associated cutting force signals in milling with varying tool engagement. To build an 

effective model to monitor the tool wear profile in the hemispherical surface milling, 

a multi-classification and regression method using support vector machine is 
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investigated.  The residual cutting force wavelet features from the measured and 

simulated cutting forces are used to monitor the change of tool wear profile. Since the 

effective chip load at different section in the same contact area is varying for each 

specific tool pass, the geometric modelling method has to be employed to build 

training data sets to train the SVR tool wear model. The experimental results showed 

that model-based SVR tool wear estimation method can reflect the non-linear 

relationship between cutting force and tool wear so that the change of tool wear 

profile during milling can be monitored. 

 

Keywords: sculptured surface machining, ball-nose end milling, tool 

condition monitoring, tool wear estimation, mechanistic cutting force model, feature 

extraction, feature selection, wavelet transform.  
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Nomenclature 

Tool geometry: 

D : Diameter of the cutter 

0
R : Tool radius 

t
n :  Number of teeth on the cutter 

0
 : Helix angle at flute and shank meeting point 

 : Location angle of specific disc 

R(i): Local radius at i-th disc 

 : Lag angle of specific disc 

 : Local helix angle of specific disc 

 

Tool geometry in terms of chip: 

dS : Differential cutting edge length 

db : Length of differential cutting edge perpendicular to cutting speed, or chip width 

in each cutting edge discrete element 

t : Instantaneous undeformed chip thickness 

 

Model coefficients: 

aerete
KKK ,, : Edge force coefficients 

acrctc
KKK ,, : Shearing coefficients 

Kt, Kr: Cutting mechanics parameter 

mt, mr: Size effect parameter for most metallic materials 

w
C : Edge force coefficient due to flank wear. 

 

Cutting conditions: 

t
f : Feed per tooth, feed rate (mm/rev-tooth)  

F : Feed rate (mm/min) 

N : Spindle speed (revolutions per minute, rpm) 

V : Cutting speed ( DNV  ) 

aa: Axial depth of cut 

ar: Radial depth of cut. 

VB : Width of flank wear. 

γ : Workpiece surface tilt angle from horizontal (deg) 

 

 : Tool rotation angle, measured from +y-axis clock wise 

st
 : Tool entry angle 



xii 

 

 

ex
 : Tool exit angle 

p
 : Tool pitch angle (or tooth spacing angle) (

t

p
n




2
 ) 

 : Instantaneous immersion angle, )( z  (for each disc) 

st
 : Tool entry angle (for each disc) 

ex
 : Tool exit angle (for each disc) 

s
 : Swept angle, the difference between the exit angle of last engaged disc and the 

entry angle of the first engaged disc,
stexs

  , where the entry angle of the first 

engaged disc is )(
min

z
stst

  , the exit angle of last engaged disc is

)(
max

z
exex

  . 

 

Rough set theory (RST) 

U: a non-empty finite set of objects  

A: a non-empty finite set of attributes 

d: decision attribute 
 

 

 

 

 



1 

 

 

Chapter 1  
 

Introduction 

1.1 Problem statement 

Tool condition monitoring (TCM) aims to identify suitable cutting tool conditions 

using intelligent sensor systems without interrupting the manufacturing process 

operation. A tool condition includes catastrophic tool failure, collision, progressive 

tool wear or tool chipping/fracture (Byrne et al., 1995). In TCM, suitable sensing 

methodology is to be used or developed to monitor these tool conditions. TCM as a 

monitoring system has the following monitoring scheme: 

• Sensor signal capture 

• Signal processing 

• Feature extraction 

• Decision making 

The application of this study is to use cutting force sensor to monitor tool wear in 

ball-nose end milling. The study of tool wear monitoring belongs to the research area 

of TCM (Dornfeld, 2003).  

In ball-nose end milling, the unavoidable tool wear development is one of the major 

factors that affects the workpiece quality and accuracy. This research is part of an 

effort to increase the effectiveness in ball-nose end milling by applying a model-based 

on-line tool wear monitoring method. According to ISO 8688-2 (1989), flank wear is 
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caused by the progressive loss of tool material at the tool flank during cutting 

processes. Although tool wear involves a combination of different wear mechanisms, 

the profile of the flank wear land, including the maximum width and the area of flank 

wear land in current engagement, is used to quantify and set the criterion for the 

determination of the tool life in this research. 

Generally, tool wear consists of an initial break-in stage, a regular stage and a fast 

wear stage just before tool breakage (Huang et al., 2007b). During the fast wear stage, 

the tool wear rate increases rapidly, and finally the tool loses a major portion of the 

tool edge, causing the failure in the cutting ability of the tool. In order to reduce 

production cost and improve product quality, the requirement from industry is to 

monitor the tool wear and warn the operators of the fast wear stage right before tool 

failure (Jerard et al., 2008). Therefore, compared with off-line tool wear 

measurement, on-line tool wear estimation has become a very important function in 

the ball-nose end milling process.  

Various sensor-based on-line tool wear estimation methods have been found in recent 

research literature (Dimla, 2000). The most commonly used approaches include 

monitoring cutting force, spindle power consumption, acoustic emission, and 

vibration. Cutting force is an important parameter in measuring the tool condition. 

The variation in the cutting force can be correlated to tool wear. Due to the 

intermittent nature of milling process, the cutting force measurement has been shown 

to be one of the most practical approaches to monitor tool conditions in milling. This 

method comprises a number of stages, including signal processing, feature extraction 

and tool wear estimation. 

The main challenge in the monitoring of the ball-end milling process is the varying 

cutting force due to the continuous change in tool-workpiece engagement. As the tool 
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path for machining is facilitated by the use of the CAD/CAM system, the cutting 

process along the tool path can be simulated before the actual cutting is performed on 

the milling machine. After the cutting parameters are extracted through the 

simulation, the dynamic cutting force can be analyzed from a mechanistic milling 

force model by the use of geometrical modeling techniques. A mechanistic model has 

been established in this research to predict the cutting force at the simulation stage 

when the tool moves along a tool path on the sculptured surface. 

Signal processing and feature extraction  aim to analyze and process cutting forces to 

find reliable signal patterns indicating tool wear states (Prickett and Johns, 1999). As 

tool-workpiece contacts in the milling process have a periodic nature, signal 

processing and feature extraction can be conducted using either frequency domain 

method or wavelet transform method. However, the frequency domain method needs 

sufficient time window on the signal to fulfill the frequency resolution in the power 

spectrum, and may not be suitable for ball-nose end milling applications. The wavelet 

transform method requires smaller time window than the frequency domain method, 

but it can still analyze the frequency pattern of the periodic cutting force signal. The 

adaptive window width in wavelet transform is an advantage for analyzing and 

monitoring the rapid transient of small amplitude of cutting force signal when cutting 

engagement changes along the sculptured surface tool path.  

Tool wear estimation is to interpret the information after the cutting forces are 

processed (Prickett and Grosvenor, 2007). In this research, machine learning methods 

are proposed for tool wear estimation to map the features (input) to tool wear level 

(output) by training via examples. The output shows non-linear relations between the 

input features and tool wear to estimate tool wear in milling applications.  
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1.2 Motivation 

Tool condition monitoring (TCM) is necessary as the surface quality and workpiece 

accuracy are affected by unavoidable tool wear development besides collisions or tool 

breakage. From literature, TCM for ball-nose end milling is one of the least 

researched areas and solutions for ball end finishing operations on sculptured surface 

are still not available in the market (Dornfeld, 2003). Rehorn et al. (Rehorn et al., 

2005) reviewed tool condition monitoring (TCM) researches performed in turning, 

face milling, drilling, and end milling. After analyzing TCM researches organized by 

machining operation, they also found that monitoring of end milling operations is the 

least studied in the four types of machining. 

According to Rehorn et al. (2005), tool condition monitoring in ball nose end milling 

is more complex than that in turning, face milling, and drilling. This conclusion is 

also supported in another paper (Dornfeld, 2003). Most of the ball-nose end milling 

applications are machining of complex sculptured surface, especially at finishing 

stage, which is a very demanding process in mould and die, aerospace, and medical 

applications. Compared with most recent tool condition monitoring (TCM) methods 

applied to machining, such as turning, face milling, and drilling, the complexity in the 

design of TCM for ball nose end milling is: 

1) The ball-nose end milling is frequently applied for machining the sculptured 

surface of workpiece with very complex geometry. Compared with turning, 

drilling, and face milling, the complexity of TCM method is that the cutting 

engagement always changes due to the geometrically complex surfaces 

typically encountered. The standard fixed threshold method is not suitable for 

ball nose end milling. 
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2) Most of the applications of ball-nose end milling are very flexible production, 

such as mould and die production and applications in aerospace industry. In 

this production environment, the workpieces are manufactured in small batch 

sizes or one-off production. Consequently, machining conditions change 

frequently in these applications. Most of commercially available TCM systems 

are mainly applied in mass production with limited changes of machining 

conditions. Therefore, flexibility is one of the reasons why there is a lack of 

tool condition monitoring solutions for ball-nose end milling. 

3) As ball-nose end milling is normally one-off or small batch machining, trial 

machining of some workpieces is time-consuming and very expensive. 

Therefore, there is a lack of the data of test cuts for different cutting condition.  

4) Another complexity is reflected in the small process forces compared with 

other machining. 

Most of present monitoring systems only determine the presence of the fault, that 

means the decision is either tool worn or tool not worn (Teti et al., 2010). In common 

industrial practice, the master machinists are able to predict the tool breakage by 

listening to the cutting or inspecting the chips produced during cutting. In most cases, 

tool wear does not mean the end of useful tool life. If the tool wear is tolerable, the 

machinist may decide to continue using the tool in subsequent tool path. Therefore, 

tool wear monitoring methods need to be developed to overcome the limitation of 

current monitoring systems. In this way, instead of the master machinist monitoring 

the tool wear constantly, the threshold-based tool wear monitoring system can 

monitor the tool condition in real-time. The machinist will be alerted when the 

machining process needs to be supervised closely when tool wear is over certain limit.  
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As discussed in section 1.1, presently, sensor based on-line tool wear monitoring 

solutions in ball-nose end milling are still lacking. There is a need to explore a method 

to estimate tool wear using cutting force. On the other hand, in ball-nose end milling 

sculptured surface operation, the engagement between tool and workpiece varies in 

the milling process. As a result, the cutting forces change with the tool path along the 

sculptured surface. That means the change of the surface geometry has the same effect 

as the tool wear on the conventional monitoring indices. Therefore, conventional 

monitoring indices are not sensitive enough to tool wear in sculpture milling process. 

As cutting forces are indirect indication of tool wear, to reliably relate force signals 

with tool wear is a challenge in this research area. In the monitoring of sculptured 

surface machining process, conventional features extraction methods are not suitable 

for use to monitor the tool wear, as the cutting engagement condition changes 

continuously. 

Few researches have been reported using wavelet methods in tool wear estimation. 

When cutting engagement changes along the sculptured surface tool path, the adaptive 

window width in wavelet transform is an advantage for analyzing and monitoring the 

rapid transient of small amplitude of cutting force signal. 

1.3 Objectives and scope of work 

The aim of the study is to develop model-based tool condition monitoring methods for 

ball-nose end milling. The methods will combine wavelet-based feature extraction 

and model-based engagement analysis techniques to monitor tool wear in ball-nose 

end milling. The specific objectives are: 

(1) To simulate cutting forces in ball-nose end milling using a mechanistic model; 
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(2) To extract features from the force signals which are sensitive to flank wear 

based on the cutting force model; 

(3) To apply suitable machine learning methods to determine the tool wear values 

with the combination of the simulated features and the measured features. 

The measured and simulated instantaneous cutting forces during the milling process 

are processed on-line to obtain measured and simulated feature vectors. The residual 

feature vectors can be used for tool condition identification by machine learning 

methods. Cutting force modelling and wavelet signal processing techniques can be 

explored to extract sensitive monitoring features. Presently, several cutting force 

models and simulation methods have been developed in sculptured surface 

machining. These methods are only applied prior to the cutting process to optimize 

the milling strategies and cutting parameters. Combined with the geometric modelling 

of the surface, the cutting engagement along the cutting tool path can be extracted, 

and the dynamic cutting force can be simulated using milling force model. 

The development of a model-based tool condition monitoring method for ball-nose 

end milling is proposed in this research. This method plays an important role in the 

reduction of production cost and the improvement of product quality, particularly in 

mould and die and aerospace industry. 

To achieve the objectives, the scope of work includes: 

(1) Designing experiments for development of tool condition monitoring methods. 

In the experiments, cutting forces are measured through the workpiece using a 

force dynamometer and tool wear is quantified by studying flank wear. 

(2) Monitoring and determining tool wear with a cutting force model. The cutting 

force along the machining path is simulated by a discrete mechanistic model. 
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(3) Determining effective quantitative monitoring indices that reflect the transient 

nature in ball-nose end milling sculptured surface. Features for tool wear 

estimation are extracted by using wavelet transform. 

(4) Support vector machines for regression (SVR) and other suitable neural 

networks will be studied and used for tool wear estimation. 

1.4 Organization of the thesis 

This thesis is organized into six chapters as follows: 

 Chapter 2 is a review of literature on tool condition monitoring, covering 

sensors for tool condition monitoring, cutting force modeling for ball-nose end 

milling, signal processing, feature extraction and selection and tool wear 

monitoring methods. 

 Chapter 3 presents a tool wear estimation framework. The approach is based 

on a proposed tool wear modelling framework comprising of three parts: 

cutting force simulation, discrete wavelet analysis of cutting force sensor 

signal, and feature-based tool wear estimation model. 

 Chapter 4 describes a feature selection method to improve the tool wear 

estimation accuracy. Rough set theory is used to reduce attributes of the 

decision table which is the input of the tool wear estimation model. 

 Chapter 5 presents the development of the tool wear estimation framework in 

ball nose end milling of the hemispherical surface which presents variable 

tool-workpiece engagement. 
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 Chapter 6 concludes the thesis with a summary of the contributions and 

suggestions for future work.  
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Chapter 2  
 

Literature Review  

2.1 Overview  

In this chapter, tool condition monitoring researches are reviewed covering sensors 

for tool condition monitoring, cutting force modeling for ball-nose end milling, signal 

processing, feature extraction and selection, and decision making for tool condition 

monitoring methods. References related to tool wear monitoring in milling are 

emphasized in the literature review. The literature review is arranged in the following 

sections:  

2.2 Tool condition monitoring system   

Firstly, commercial tool condition monitoring systems are introduced in this 

section. Secondly, tool condition monitoring methods in ball-nose end milling 

are presented. 

2.3 Sensors in tool condition monitoring 

As the interactions between the machines, workpieces, human operators and 

environment in machining are very complex, employing appropriate sensors is 

very important for sensor-based tool condition monitoring systems to ensure 

effective production and protect operators and the environment. Various 

sensing methods for tool condition monitoring in milling are reviewed.  In 

those applications, sensors are employed to monitor tool condition by 

measuring cutting force, spindle power consumption, and vibration. 
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2.4 Cutting force model for ball-nose end milling 

The aim of this study is to investigate model-based tool condition monitoring 

methods for ball-nose end milling. Therefore, empirical cutting force model 

and mechanistic cutting force model methods for ball-nose end milling are 

introduced in this section. 

2.5 Signal processing and feature extraction 

In TCM applications, tool condition is monitored by capturing sensor signals 

on-line. As sensor signals are convoluted with noise from the machine, 

appropriate feature extraction methods need to be explored to maximize the 

information utilization of sensor signals. These features are used as inputs of 

the decision making module. Various feature extraction methods in the 

literature are introduced in this section. Features can be extracted from sensor 

signals in time domain, frequency domain and time-frequency domain. In time 

domain, statistical features such as mean, variance, RMS are used as real-time 

monitoring indices. If the sensor signal has periodic nature, features can be 

extracted in frequency domain in a specific frequency band. For those sensor 

signals with rapid transient nature, time-frequency domain features such as 

wavelet coefficients are more sensitive due to adaptive window width. The 

similarity between the wavelet coefficients of measured signal and reference 

signal is a kind of sensitive feature. The similarity can be calculated in many 

ways, such as Euclidean distance, Mahalanobis distance (MD), and correlation 

distance. 

2.6 Feature selection 
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In the feature extraction, the features are extracted from cutting force signals 

for tool wear estimation. The sensitivity of the features to the tool wear needs 

to be evaluated in order to select high sensitivity features and avoid redundant 

features. 

2.7 Decision making 

The decision making function is to build models between the extracted 

features and tool conditions. Some decision making methods for TCM, such as 

threshold method, regression method, and hidden Markov model are 

introduced. 

2.8 Neural network methods for tool condition monitoring 

Neural network approaches have been used in tool condition monitoring 

because of their learning capability. Five types of neural networks used in tool 

condition monitoring are introduced in this section: multilayer perceptron 

(MLP) network, radial basis function (RBF) network, support vector machine 

(SVM), adaptive resonance theory (ART2), and self-organizing map (SOM). 

 

2.2 Tool condition monitoring 

Current commercial tool condition monitoring systems can monitor tool breakage, 

tool presence, tool wear and collision in real time (Jemielniak, 1999). Some of the 

major companies that provide tool condition monitoring systems are Montronix, Inc., 

Nordmann GmbH, Prometec GmbH and Marposs S.p.A. 
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Normally, those commercial tool condition monitoring systems use many different 

sensor types. As reliability is the main concern in the industry, only the most reliable 

sensor signals, such as power, vibration and force signals are used.  

The most common monitoring strategies are based on limits and enveloping functions 

(O'Donnell et al., 2001). These strategies are suitable for monitoring mass production 

processes in real time. Before beginning a new batch of the machining operation, a 

typical machining operation with new cutting tool and new part are conducted while 

the sensor signals are recorded and stored as reference signals. Based on the reference 

signals, certain limits and reference pattern are recognized and set up. When the 

machining operation is conducted, the real-time sensor signals are compared with the 

reference signals. The tool condition monitoring system will take appropriate action in 

real time based on the comparison result. 

For the implementation of tool condition monitoring, the TCM manufacturers provide 

in-process tool monitoring solutions that detect changes in the monitored signals at 

specialized position on the machine. The changes of these signals are sensitive to 

determine process changes that occur in the manufacturing process. For example, 

Marposs S.p.A. provides a monitoring system to monitor tool breakage by continual 

monitoring of the force and spindle power. However, the performance of these 

systems relies upon the operator and engineer’s experience on how to determine the 

correlation between tool condition and the sensor signals. Sometimes the monitoring 

system reports alarm due to some change in the process but the cause cannot be 

identified. Current commercial machining process monitoring applications are not 

able to handle more complex processes, such as sculptured surface machining. 

Two tool condition monitoring methods using cutting force measurements in ball-

nose end milling are introduced in this section. One of the methods detects the tool 
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breakage using a micro-genetic algorithm (GA) during ball-nose end milling 

operations (Zhu et al., 2003), while the other method recognizes the excessive tool 

wear through the on-line calculation of the model coefficients (Jerard et al., 2008).  

Zhu et al. (2003) undertook an elaborate experimental investigation into the 

development of a model-based tool fault diagnosis methodology for free-form surface 

milling process. The tool faults in their work refer to tool run-out, tool chipping and 

tool breakage in roughing stage. An experimental test bed consists of a horizontal 

machining centre with a Kistler 9257A 3-component dynamometer. Test cuts were 

conducted using four-flute carbide ball end mill of diameter 19.05 mm to machine 

AISI 1018 Steel. A mechanistic cutting force model was developed to simulate the 

cutting force. Let θ be the rotation angle, the mechanistic force model can be 

illustrated as follows (Zhu et al., 2001): 

 

( ) [ , , , ( , , , )]

( ) [ , , , ( , , , )]

( ) [ , , , ( , , , )]

jk jk k
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Fx dF K n K f K t C H

Fy dF K n K f K t C H
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   (2.1) 

where ρ is the amount of parallel axis offset runout in mm. λ is the angle measured at 

the bottom of the cutter between the direction of the offset and the nearest tooth. CH
k
  

is the chipping magnitude in mm at the k
th

 flute.  

 

 

 

 

 

 

Figure 2.1 Definition of run-out (Zhu et al., 2003) 
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In the expression of the model, after the coefficients (Kn, Kf, K) have been determined 

in model building experiments, the cutting force at each element (k
th

 flute, j
th

 disc) is a 

function of undeformed chip thickness (tc). As the influence of tool run-out and 

chipping/breakage (ρ, λ, CH
k
) is incorporated into the calculation of the undeformed 

chip thickness (tc), this model can be used for determining the tool states by neural 

networks searching algorithm.  

A model-based tool fault diagnosis method using a micro-genetic algorithm (GA) is 

proposed by Zhu et al. (2003).When the measured cutting force and simulated cutting 

force are processed through wavelet transform, the approximation coefficients Ap 

representing the signal energy up to four times tooth passing frequency is used as 

feature vector. The deviation between the simulated feature vector and the measured 

feature vector is as follows 
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simulated feature vector, m is the length of the feature vector,   is the deviation 

between the simulated feature vector and the measured feature vector. 

Cutting force was processed through wavelet transform. After wavelet decomposition, 

the approximation coefficients at level p were included in the feature vector in (2.2). 

As the fault information is concentrated in cutting force in the region of low spindle 

frequency harmonics, the approximation coefficients at level p are selected as features 

to represent the force signal energy up to four times tooth passing frequency. In Eq 

(2.2), 
p

A  is the feature vector of the approximation coefficients at level p after 

wavelet decomposition.  
e

p
A is the measured feature vector; s

p
A  is the simulated 



16 

 

 

feature vector. The relationship between the length of the feature vector (m) and the 

sampling length of the cutting force (n) is: p
nm 2/ . 

There are two fault variables in the force model, namely, tool run-out (ρ, λ) and 

chipping/breakage (CH
k
). For a certain cutting condition, simulated feature vector 

with different values of fault variables can be simulated using the cutting force model. 

Then a search method, such as Genetic Algorithm (GA), can be employed to find the 

values of fault variables to minimize the deviation in (2.2). In this way, the current 

fault magnitude can be estimated. 

Jerard et al. (2008) explored a tool wear estimation method using the coefficients of a 

tangential cutting force model. They proposed an online calibration method to 

monitor tool condition by observing the patterns of the coefficients.  

The cutting force model is developed by slicing the cutter into a series of axial discs. 

Each flute of the tool is divided into a few elemental cutting edges and the cutting 

force is summed up from each elemental cutting edge. From geometrical point of 

view, the milling operation on each elemental cutting edge is oblique cutting; so the 

cutting force on the elemental cutting edge can be considered as a resultant force of 

three force components. The three force components are differential cutting forces in 

tangential, radial and axial direction. The instantaneous milling force at a specific disk 

in tangential direction can be shown to be (Altintas, 2000): 

 ( ) ( )
t te tc

dF K dS K t db       (2.3) 

where 
t

dF  is the elemental cutting forces,   is rotation angle, dS is the differential 

length of the curved cutting edge segment, )(t  is the undeformed chip thickness 

normal to the cutting edge, db  is the chip width in each cutting edge discrete element,  
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tc
K  is the tool/material cutting energy coefficient in the tangential direction,  

te
K  is 

the edge or rubbing coefficient in the tangential direction. 

In the cutting force model, the cutting force includes the shearing force component 

and the ploughing (or rubbing) force component. The shearing force component is the 

force required to remove the chip. The ploughing force is the force acting on the tool 

edge and tool flank face (tool-workpiece interface region). 

The experimental results with a HSS flat end mill (Xu et al., 2007) showed that as the 

flank wear land expands, the edge coefficient (
te

K ) increased while cutting energy 

coefficient (
tc

K ) remaining roughly constant. On the other hand, cutting energy 

coefficient (
tc

K ) increased as edge chipping and breakage occurs. When the tool wear 

develops, the ploughing force at the flank of the cutting edge will increase due to the 

friction between the flank surface and the workpiece. The shearing force will change 

when the tool wears severely.  

The research to incorporate tool wear into the cutting force model is still in progress; 

this can be understood by the statement (Jerard et al., 2008): “Our current research is 

focused on developing reliable correlations between the coefficients and the type and 

extent of tool damage.” 

2.3 Sensors in tool condition monitoring 

A large variety of sensors and various sensing methods for in-process monitoring tool 

wear and breakage are found in recent research literature (Dimla, 2000). Indirect 

measurement is the most commonly used approach, which includes monitoring 
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cutting force, spindle power consumption, acoustic emission, and vibration (Chen and 

Jen, 2000).  

As the interactions between the machines, workpieces, human operators and 

environment in machining are very complex, employing appropriate sensors is very 

important for sensor based tool condition monitoring systems to ensure effective 

production and protect operators and the environment. In terms of sensor requirement 

for tool condition monitoring, sensor measurement must be as close as possible to the 

point of metal removal; on the other hand, sensor must not restrict the working space 

of the milling machine.  

The spindle power signal is an indirect way to measure the cutting force. It is 

considered to be robust. In some applications, the power sensor is not suitable due to 

the large effects of the inertia and friction in the spindle. Amer et al. (2006) used 

existing spindle speed and spindle load signals from the machine to monitor tool 

breakage in the end milling process. 

Vibration monitoring techniques applied to the detection of tool breakage have been 

reported by several investigators. Some researchers suggested power spectrum of 

vibration data to monitor the tool breakage in end milling process (Huang et al., 

2008). Chen and Chen (1999) developed an on-line tool breakage monitoring system 

using an accelerometer in an end milling operation. Tests were conducted on an 

aluminum work piece utilizing high-speed steel cutting tool at different spindle speed, 

feed rates and depth of cut. They found that when tool breakage occurs, the power 

magnitude at 2nd harmonics of spindle frequency harmonics (2ωs) becomes 

significant. Based this observation, they proposed the ratio of the two peak magnitude 

(P(2ωs)/P(ωs) ) as threshold to detect the tool breakage at various conditions. Zhang 

and Chen (2008) used vibration signal analysis in time domain and frequency domain 
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to detect tool wear and breakage in end milling process. A microcontroller based data 

acquisition system was developed for tool condition monitoring. Inspection of the 

experimental results indicated the vibration amplitudes in time domain and the 

frequency peaks at harmonic frequency bands to be key indicators of tool condition. 

Because the vibrations in machining processes are produced by various mechanisms, 

one of the main difficulties of detecting tool breakage with vibration is to identify the 

monitoring index that is influenced by tool breakage. From the literatures the 

vibration pattern and frequency range sensitive to tool states are entirely different for 

each individual case, although all the cases are end milling process. Presently, 

vibration monitoring is only successfully used in specific end milling application with 

fixed cutting conditions. 

Cutting force is an important parameter to measure the tool condition. The variation in 

the cutting force can be correlated to tool wear. Several researches have shown that 

the cutting force measurement is one of the most practical approaches to the tool 

condition monitoring in milling. The cutting force may be measured directly from 

force sensor (Du, 1999), or may be measured indirectly by measuring spindle power, 

torque or current. Ritou et al. (2006) presented a versatile monitoring method that use 

the link between radial eccentricity and cutting forces as indicator to monitor milling 

tool condition. From literatures, cutting force signals measured using dynamometers 

is widely accepted (Prickett and Grosvenor, 2007). A dynamometer will be used in 

this research to monitor the tool condition by using cutting force signals.  
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2.4 Cutting force model for ball-nose end milling 

2.4.1 Empirical modeling of ball nose end milling 

Before ball-nose end milling force modelling, a geometric model must be established. 

The geometric model determines the contact area between the tool, chip and 

workpiece for each machining path from the tool data and CAD/CAM data (Chang et 

al., 2006). The resultant milling force is distributed over the contact area (Choi and 

Jerard, 1998). The cutting force model uses the contact area to determine the cutting 

forces on the tool by slicing the tool into small discs. 

Empirical model is a kind of the discrete cutting force models, which is developed by 

slicing the cutter into a series of axial discs. The tool geometric model used in 

empirical model is: each flute of the tool is divided into a few elemental cutting edges 

and the cutting force is summed up from each elemental cutting edge. 

Feng and Menq (1994) presented the estimation of cutting force as  

 m
F Kbt  (2.4) 

where F is the principal cutting force responsible for the total energy consumed, K is 

the cutting mechanics parameter, b is the width of cut, t is the undeformed chip 

thickness, 1 > m > 0 for most metallic materials, the size effect is explicitly 

characterized by parameter m.  

In the above expression, m is the parameter characterizing the size effect of the 

workpiece material(Feng and Menq, 1994). It is assumed to be constant for a 

particular material. Size effect refers to the increase of the specific cutting energy at 

lower value of undeformed chip thickness. Researchers believe that the tool flank 

friction and ploughing force are main factors contributing to the size effect (Feng and 
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Menq, 1994). As the cutting edge of ball nose end mill can be represented by a 

cylindrical surface between the flank face and the rake face, there exists a ploughing 

force that acts on the tool edge and the tool flank surface. The existence of the 

ploughing force can explain the size effect: ploughing force is constant and becomes 

proportional of the total cutting force as chip thickness decreases. Because the 

undeformed chip thickness is usually very small in ball nose end milling application, 

size effect must be taken into account in ball nose end milling cutting force model. 

The cutting force on each engaged small disc is combined by the tangential and radial 

components. The empirical cutting force model is expressed as follows (Feng and 

Menq, 1994): 

  ( ) ( )
tm

t t
dF K z dz t     (2.5) 

  ( ) ( )
rm

r r
dF K z dz t     (2.6) 

where dFt and dFr are tangential and radial cutting forces on each engaged disk,  dz is 

the width of the cut of the disk along the z direction, ϕ is instantaneous immersion 

angle, t(ϕ ) is the undeformed chip thickness, 
t

m , 
r

m  are constants represented the 

size effect.  

Kt and Kr characterize the cutting mechanics of the engaged disc, and can be 

approximated by third order polynomial expressions (Feng and Menq, 1994): 
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where z is the axial distance between tool tip and the engaged disc, 

R is the cutter radius, 

3210
,,, aaaa  are the coefficients of the polynomial, 

3210
,,, cccc  are the coefficients of the polynomial. 

2.4.2 Mechanistic cutting force model 

In order to obtain the reference cutting force for the monitoring of sculptured surface 

machining process, as the engagement condition changes continuously, a 

conventional method is to divide the surface into a number of regions and to record 

cutting force when cutter is in normal condition (Zhu et al., 2003). Based on the 

reference signals from the milling experiments, different features are extracted for 

monitoring different cutting process segments in the whole milling process. As this 

method needs trial machining of some workpieces as pre-recorded reference, it is 

time-consuming and not suitable for one-off and small batch milling applications 

typical in sculptured machining operations. To avoid the huge amounts of empirical 

data collection, cutting force models can be used for tool condition monitoring in 

sculptured surface machining. 

A few mechanistic models have been developed by researchers in previous 

researches. Lee and Altintas (1996) extended the unified mechanics model to the 

helical ball-end mill. The flute is divided into small oblique cutting edges and the 

geometry of each elemental oblique cut is related to the conventional practical 

machining variables. These models yield accurate cutting forces in specific cutting 

conditions. However, most consider only the horizontal surface machining. As 

sculptured surface machining is the main manufacturing application for ball-end 
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mills, Lamikiz et al. (2004) extended semi-mechanistic model to the case of curved 

surfaces which are closer to applications used in industry for the production of parts 

with complicated free-form surfaces.  

To calibrate parameters in the cutting force model, there are two main types of force 

model building approaches in the literatures. One approach is based on oblique 

cutting analysis to make use of practical orthogonal cutting database. Lee and Altintas 

(1996) developed a unified mechanics model for helical ball-end mill geometry. The 

coefficients in the model are obtained from the orthogonal cutting database by using 

the classical oblique transformation method. Another approach is to determine the 

coefficient by direct calibration test. Lamikiz et al. (2004) carried out horizontal slot 

milling characterization test. The average forces were measured and the coefficients 

were obtained by least square adjustment. 

As expensive and time-consuming model calibration is required for most of the model 

building process, Jerard et al. (2005) presented a calibration method of a tangential 

force model by using motor spindle power, as motor spindle power can be easily 

measured without affecting the machining process. Zuperl and Cus et al. (2004) used 

supervised neural networks to predict cutting forces for ball-end milling operation. A 

neural network algorithm is developed for use as a direct modelling method, based on 

a set of input cutting conditions, namely, radial/axial depth of cut, feedrate, and 

spindle speed. Other parameters such as tool diameter, rake angle, etc. are kept 

constant. Huang et al. (2007b) proposed a fault detection method based on a cutting 

force observer model in CNC milling centre. A dominant model plus uncertain terms 

was derived from the model set and used as an observer. 
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2.4.3 Cutting force simulation 

The geometric simulation is used to determine the intersection between the tool and 

workpiece when machining the sculptured surface. This instantaneous tool immersion 

information is necessary for calculating the instantaneous cutting force. For example, 

Saturley and Spence (2000) presented a method using ACIS solid modeling kernel to 

simulate the volume swept by the tool. 

1) Estimation of cutter contact area 

When a sculptured surface, such as the surface of a die, needs to be machined, a 

collection of geometric models will be created in CAD to describe the surface. Then a 

series of tool paths represented by CNC codes will be generated by CAM for ball-

nose end mill to machine the surface. Therefore, surface representation can be derived 

from the surface geometric models to simulate the milling engagement (Kim et al., 

2000). 

One of the suitable surface representations is Z-map. A Z-map is a discrete non-

parametric surface representation. It is a 2D array storing the Z-values of the surface 

at grid points on the XY-plane. The Z-map data are obtained by Z-map sampling on 

the sculptured surface geometric model. 

The Z-map representation is defined as follows (Choi, 1991): 

 { ( ), ( ), ( , )}  [0, ], [0, ]x i y j z i j for i I j J   (2.9) 

where i, j are grid indices and I, J are positive grid limits. 

Let the size of a square grid is g, XY coordinates are expressed as 

 ( ) (0)  ,   ( ) (0)x i x g i y j y g j       (2.10) 
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The definition shows that the die and mold surfaces can be modeled as Z-maps. The 

data structure can be used to develop efficient algorithms to calculate the tool-

workpiece boundary to simulate the ball-nose end mill plunging into the part surface. 

2) Cutting force simulation 

A cutter plane is defined as a plane perpendicular to the cutter axis in the cylindrical 

portion. The cutter contact area can be obtained by comparing the Z-map of the 

surface and the Z axis value of the cutter. The cutting edge need to be projected onto 

the cutter plane to determine the engagement of the cutting edge (Kim et al., 2003). 

Assume that the helical ball-end milling cutter is ground with a constant helix lead 

and a point P located on the helical flute has Cartesian coordinate ),,( zyx . If the helix 

angle of the flutes at the ball-shank meeting boundary is
0

 , the rotation angle   at 

point P is as follows (Kim et al., 2003): 

 
0

(1 cos( )) tan( )       (2.11) 

Then the point P can be projected onto the cutter plane and the x, y coordinates can be 

calculated as follows (Kim et al., 2003): 

 
0 0

cos cos( (1 cos( )) tan( ))x R        (2.12) 

 
0 0

cos sin( (1 cos( )) tan( ))y R        (2.13) 

If the calculated position is within the cutter-workpiece contact area, the cutting edge 

on this disk engages in the cutting process. Then instantaneous cutting forces are 

calculated by numerical integration (Kim and Chu, 2004). 
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2.5 Signal processing and feature extraction 

As the cutting force signals in the ball-nose end milling process are very noisy, they 

need to be processed to identify the tool wear status. Many research works have been 

conducted to process sensor signals in time domain, frequency domain and time-

frequency domain. 

In time domain signal processing approaches, it is assumed that the change of the 

sensor signals is in a steady manner. Although the time domain method is easy to 

implement compared with frequency domain and time-frequency domain, it is not 

sensitive to tool wear as cutting engagement always changes. As tool-workpiece 

contacts in milling process have periodic nature, frequency domain and time-

frequency domain can be used to analyze and process cutting forces, so that some 

reliable signal patterns indicating the tool states can be found (Prickett and Johns, 

1999).  

Frequency domain analysis techniques in tool condition monitoring have been 

adopted for some milling applications with fixed engagement by different researchers 

(Siddiqui et al., 2007). Sarhan et al. (2001) investigated the effect of wear variation on 

the magnitude of the cutting force harmonics in end milling. Their results showed that 

using the frequency domain signal processing could reduce the effect of noise on the 

correlation between cutting force and tool wear. Suprock et al. (2007) analyzed the 

combination of force signal and vibration signal to track the health of cutting tools. 

They suggested that the magnitude of certain harmonics of the cutting force increased 

significantly with tool wear. As frequency domain method needs certain time window 

on the signal to fulfill the resolution of the frequencies in the power spectrum, it is 

only suitable for near constant engagement conditions. 
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Frequency domain techniques such as spectrum analysis have been adopted to form 

monitoring indices to monitor tool breakage. Table 2.1 shows the observation by Zhu 

et al. (2003), which can be used to detect tool run-out and chipping/breakage. The 

monitoring index is calculated along the tool path based on the cutting force 

simulation. The reason of the observation is: in milling operation, each tooth of the 

tool enters and exits the workpiece once every revolution. When the tooth of the 

cutter contacts the workpiece, the cutting action causes a periodic impact force on the 

contact area with tooth passing frequency on every rotation. If one of the teeth is 

broken, the following tooth will have more loads to remove extra materials, and the 

cutting force pattern will change according to the loads change.  

Table 2.1 Observation of the sum of power spectrum components 

 

Tooth passing 

frequency ωs  2ωs  3ωs  

Normal x       

Run-out   x   x 

Chipping     x   

Run-out & chipping   x x x 

“x” means the power components become significant at such frequency. 

ωs is the spindle frequency. 

 

In recent years, time-frequency analysis techniques, such as the Short-Time Fourier 

Transform (STFT), wavelet transform, and Hilbert-Huang transform (HHT) have 

been investigated in feature extraction from non-stationary, non-linear (transient) 

signals. These methods are useful to form monitoring indices to monitor tool 

condition.  

Traditional signal processing approaches are suitable for stationary cutting force 

signals. However, due to the nature of ball-nose end milling processes, the cutting 

force signals are usually non-stationary (Zhu et al., 2009b). In cases where the 

engagement condition of sculptured surface always changes, time-frequency features, 
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such as wavelet transform (WT), are more effective than frequency domain features. 

WT requires smaller time window than frequency domain features, but it can still 

analyze frequency pattern of the periodic cutting force signal. Klocke et al. (2000) 

evaluated the cutting force signals in time, frequency and wavelet domain for 

monitoring ball-nose end milling. They found that the wavelet coefficients were the 

most sensitive features to the occurrence of tool wear. Choi et al. (2004) used the root 

mean square (RMS) value of the wavelet coefficients of resultant cutting force for 

tool wear estimation in end milling. Although very few researches were reported 

using wavelet in tool wear estimation, these researches were significant as they tried 

to make use of the adaptive window width in wavelet transform to analyze and 

monitor the rapid transient of small amplitude of cutting force signal when cutting 

engagement changes along the sculptured surface tool path. 

Due to the complexity of the ball-nose end milling process, the cutting force signals 

may not indicate the cutting conditions directly. Features from the cutting force 

signals need to be extracted to identify the tool conditions. 

Ghosh et al. (2007) extracted different features from root mean square (RMS) of 

cutting forces to estimate tool wear in face milling. But this method is only suitable 

for very steady machining process such as face milling.  Bhattacharyya et al. (2007) 

found that the correlation between tool wear and average signal energy (ASE) of 

cutting force was very high. But this correlation is not linear and the result can be 

easily affected by noise. Zhou et al. (2009) selected time domain and frequency 

domain cutting force features: average force, total amplitude, standard deviation , and 

total harmonic power. Li et al. (2009) used four time domain cutting force features as 

input of the tool wear estimation model: maximum force, average force, total 

amplitude of force, and standard deviation of force. These features were selected from 
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sixteen features using a complex feature selection method; however, the experimental 

data were not sufficient. 

2.6 Feature selection 

In the feature extraction, the features are extracted from cutting force signals for tool 

wear estimation. The sensitivity of the features to the tool wear needs to be evaluated 

in order to select high sensitivity features and avoid redundant features. For example, 

Dong et al. (2006) extracted some features from cutting force signals of face milling. 

They used automatic relevance determination (ARD) algorithm to select relevant 

features to estimate tool wear. Zhou et al. (2009) developed a dominant feature 

selection method to reduce feature space. 

Presently, rough set theory (RST) has been explored by researchers to eliminate 

redundant features from the original set of features. RST was introduced by Zdzisław 

Pawlak (Pawlak, 1991) to deal with imprecise or vague concepts. It can be used as a 

data mining tool to explore the hidden patterns in the data set. It has been used in fault 

diagnosis to reduce the number of conditional attributes (Huang et al., 2005, Shen et 

al., 2000). It is based on equivalence relations in the classification of objects. 

Therefore, rough set theory (RST) was explored as a tool in this work for selection of 

training data set and reduction of feature space. 

Swiniarski and Skowron (2003) showed that rough set method was able to reduce the 

pattern dimensionality substantially for a classification of face images. 

The feature selection method using rough set is to construct a discernibility function 

from the data set and to find minimal reducts (Wang et al., 2007b). 
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To use RST for feature selection, the decision table can be used to find reducts and 

one of the reducts can be used to replace the original table. Normally, a reduct with 

minimal number of attributes is used as feature selection results (Thangavel and 

Pethalakshmi, 2009). The research topic is how to develop an effective algorithm to 

find reducts based on cutting force features. 

The advantage of RST is the abilities of dealing with uncertainty inputs (Widodo and 

Yang, 2007). Therefore, RST is suitable for the constant changing of the engagement 

when cutting sculptured surface. An integrated feature selection methodology of 

rough set theory and support vector machine is proposed in this research. 

2.7 Decision making 

After the cutting force signals are acquired from the sensors, it is necessary to 

interpret the data for on-line tool wear monitoring in milling processes. A threshold-

based cutting tool fault detection method has been developed based on the cutting 

force model (Huang et al., 2007a). The threshold curve can be obtained off-line based 

on the process model as the cutting engagement conditions along the tool path are 

determined at the simulation stage. This is an adaptive threshold value which can be 

developed through the cutting force model without a trial cut under varying cutting 

conditions. The measured cutting forces are monitored on-line to detect the faults by 

comparing them with the threshold curve at machining stage.  

The regression method is one of the important methods used to estimate tool wear. 

Bhattacharyya et al. (2007) used average signal energy features to train multiple linear 

regression (MLP) model to estimate the tool wear in face milling process. Zhou et al. 

(2009) proposed a recursive least squares (RLS) method to build a tool wear 
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regressive model. While the general regression methods are very accurate, they are 

only suitable for steady cutting operation such as face milling process. 

A hidden Markov model (HMM) is a statistical Markov model that consists of a finite 

set of "hidden" states that are traversed according to certain state transition 

probabilities. HMM is able to capture the dynamics of a sequence of signatures by 

state transition probabilities. HMM is used to model the sensor features to monitor the 

tool condition. Zhu et al. (2009a) proposed an appropriate selection of continuous 

HMM structure for multi-category tool flank wear state identification in micro-milling 

based on cutting force. To build a noise-robust solution, the HMM outputs are 

connected via a medium filter to minimize the possible  premature state changing due 

to noisy signal in the left–right HMMs. In machining, there are three tool wear states: 

initial tool wear, gradual tool wear, and accelerated tool wear. Tool wear always 

increases from initial tool wear to accelerated tool wear. Hence the left-right HMM 

was chosen in their study. Tool state in the left-right HMM can transit to itself and 

later state, but not to the former state. In the multi-rate modeling, tool state of the 

classification may enter into the next state because of the noise and cannot change 

back to correct state. To eliminate this problem, a 15-point moving medium filter is 

introduced in the HMM recognition.  The consecutive 15-state estimations are held to 

find the medium of these 15 estimates. The final tool wear state is the medium state. 

2.8 Neural network methods for tool condition monitoring 

An artificial neural network (NN) is a computational model of human brain (Teti et 

al., 2010). It is a massively parallel distributed processor. It is made up of 

interconnected neurons for storing knowledge and making the knowledge available 
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for use. In neural network, the acquired knowledge is stored in interneuron connection 

strengths which is called synaptic weights (Haykin, 1999). Knowledge is captured 

from examples through a training process. The synaptic weights of the network are 

modified in the training process. There are two types of training process: supervised 

training and unsupervised training. Supervised training means that some neural 

network can be trained by labeled training samples. The set of training samples 

contains elements which consist of paired values of the independent (input) variable 

and the dependent (output) variable. The synaptic weights of the network are 

modified to minimize the difference between the desired output and the actual output 

of the network. After training, the neural network should produce reasonable outputs 

for inputs not encountered during training. 

Neural network approaches have been used in tool condition monitoring because of 

their learning capability. Li et al. (Li et al., 1998) developed a parallel multi-ART2 

neural network was developed to detect tool failure and chatter in turning. Kuo and 

Cohen (Kuo and Cohen, 1999) integrated artificial neural networks (ANN) and fuzzy 

logic to build a fuzzy neural network (FNN) model to estimate tool wear in turning. 

Balazinski et al. (Balazinski et al., 2002) applied an artificial neural network-based 

fuzzy inference system to monitor tool condition in turning. Salgado and Alonso 

(Salgado and Alonso, 2007) used least squares version of support vector machines 

(LS-SVM) for on-line tool wear monitoring in turning. 

Five types of neural networks used in tool condition monitoring are introduced in this 

section: multilayer perceptron (MLP) network, radial basis function (RBF) network, 

support vector machine (SVM), adaptive resonance theory (ART2), and self-

organizing map (SOM).  
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Multilayer perceptron (MLP) network is a multilayer feed-forward network consists 

of an input layer of source nodes, one or more hidden layers of computation nodes, 

and an output layer of computation nodes. Smooth nonlinear activation functions are 

used in the network. MLP network is trained in a supervised manner with back-

propagation algorithm. Back-propagation learning consists of a forward pass and a 

backward pass through the different layers of the network. In the forward pass, an 

input vector is applied to the network, and an error signal is produced by subtracting 

the actual output of the network from a desired output. In the backward pass, the error 

signal is used to adjust the synaptic weights in accordance with an error-correction 

rule. MLP has ability to solve problems stochastically, which is very useful in tool 

condition monitoring research to get approximate solutions for complex machining 

processes. 

Chen et al. (Chen and Jen, 2000) developed a tool condition monitoring system using 

MLP. This system is to monitor tool wear in milling using cutting force and vibration 

signals. Features were extracted from average value, variation of amplitude, and 

variation of fluctuating local frequency. The input of the neural network was designed 

to have 13 input variables including features, operating parameters, and wear grade. 

In their study, they found that the three-layer architecture had lower training 

efficiency and test performance than the four- and five-layer architectures. They also 

used MLP to evaluate five different data fusion methods.  The training efficiency and 

test performance of different data fusion methods were compared by evaluating the 

convergence speed and the test error. The convergence speed was quantitatively 

evaluated by comparing the required number of training cycles for approaching an 

allowable average error. The test error was the error being converged for the same 

number of training cycles with the inputs from different data fusion method. The 
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average and standard deviation of the test error were calculated to evaluate the test 

performance of different data fusion method. Ghosh et al. (2007) developed an MLP 

model for tool wear estimation in face milling. Their results showed good accuracy in 

estimating tool wear using the RMS of cutting forces. Their study also revealed that 

neural network based model has limitation in machining application as the data set is 

small. In order to overcome the drawback of MLP, Li et al. (2009) proposed a fuzzy 

neural network modeling method for tool wear estimation in ball nose end milling an 

inclined surface. However, this method is only applicable for fixed cutting 

parameters. 

A radial basis function (RBF) network is an artificial neural network that uses radial 

basis functions as activation functions. The design of radial-basis function network 

can be viewed as a curve-fitting problem in a high-dimensional space. RBF is a feed-

forward networks with three layers in the most basic form. The input layer is made up 

of source nodes. The second layer is the only hidden layer of high dimensionality that 

implements a set of radial basis functions (e.g. Gaussian functions). The output layer 

is a linear combination of radial basis functions. The network training is divided into 

two stages: first the weights from the input to hidden layer are determined, and then 

the weights from the hidden to output layer. The training is to find a surface in a 

multidimensional space that provides a best fit to the training data. The tool wear 

prediction capabilities of the RBF network have been studied using Gaussian 

functions as the activation function. 

Kuo and Cohen (Kuo and Cohen, 1999) tried to correlate tool flank wear in turning to 

the signals of multiple sensors: acoustic emission, vibration, and cutting force. 

Features were extracted by the time series analyzer and the frequency analyzer. They 

employed a radial basis function (RBF) network for recognizing the extracted features 
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for each sensor. The features and cutting time, speed, and feed were used as the inputs 

to the RBF network. The basis function in the hidden layer was the Gaussian function 

which produced a localized response to the input. The output formed a linear 

combination of the basis (kernel) functions computed by the hidden units. For 

example, the RBF network architecture consisted of eight input units for the features 

from the frequency analyzer. The inputs were connected to sixteen hidden units. The 

hidden units were connected to one tool wear output unit. They evaluated the root 

mean square error (RMSE) values between the tool flank wear modeled with a 

candidate feature and the measured tool flank wear value. If the RBF network can 

learn from one set of features with fast speed and predict tool flank wear in better 

accuracy than other feature sets, this set of features were selected for tool wear 

modeling.  

Support vector machine (SVM) is another possible way for tool condition monitoring. 

SVM is based on statistical learning theory (Vapnik, 1998). In a recent publication, 

Cho et al. (2005) applied support vector machines for regression (SVR) to determine 

tool breakage. In their research, SVR was used to model the power and maximum 

cutting force in an end milling application. They found that the SVR approach was 

better than multiple variable regression (MVR) approach. Bhattacharyya and 

Sanadhya (2006) used SVR method to model the correlation between the cutting force 

signal and the tool wear. Although this method was only explored when cutter-

workpiece contact area was fixed, it shows a potential that the method could be 

applied at sculptured surface milling when cutter-workpiece contact area was changed 

continuously. Dong et al. (2006) implemented two nonlinear regressive models to 

describe the dependence of flank wear (VB) on cutting force feature vectors in face 

milling applications. They compared the performance of Bayesian multilayer 
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perceptrons (BMLP) and Bayesian support vector machines for regression (BSVR), 

and found that BSVR method was more accurate than BMLP in estimating flank 

wear.  

Sun et al. (Sun et al., 2004b) proposed a tool condition monitoring method using 

support vector machines (SVM) based on acoustic emission (AE) sensing. This 

method can perform multiclassification of tool flank wear states in turning. In 

machining, tool wear process has 3 states: initial tool wear (sharp state), gradual tool 

wear (usable state), and accelerated tool wear (severe worn state). Binary 

classification of tool states (normal tool state and worn tool state) may not reflect this 

wearing process. Hence multiclassification of tool conditions can improve the 

reliability and validity of tool condition identification. Two different losses due to 

misclassification were analyzed. Under prediction can result in early tool changing. 

Over prediction can result in damage of the workpiece by using a worn tool in 

machining. Hence the losses from different class due to misclassification are different. 

They designed a revised SVM algorithm with two regularization parameters in 

objective function to punish the classification error of two classes respectively. This 

design introduced the potential manufacturing loss into the SVM algorithm. It 

overcomes the limitation of standard SVM algorithm which assumes that the losses 

are the same. In their study, one-versus-one method was adopted to perform the 

multiclassification of tool states. One-versus-one method is suitable for practical use 

as it has good testing accuracy and fast training time.  Three binary revised SVM 

classifiers are utilized for every pair of three tool wear states. A "Max-Wins" voting 

strategy is used to implement the one-versus-one method to perform the 

multiclassification of tool conditions. 
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The ART2 is an unsupervised neural network with an adaptive resonance theory 

(ART) architecture. The system consists of two layers, an input representation layer 

F1 and a category representation layer F2. They are linked by feed-forward and 

feedback weight connections. After an input pattern is presented to F1 layer, it 

undergoes a process of activation. The result is sent to F2 layer to produce activation. 

The best matching pattern is the winner in stored pattern at F2 layer. The best 

matching pattern is then sent back to the F1 layer through feedback weights. If the 

winner pattern matches the input pattern, the neural network enters a resonant state to 

adapt the stored winner pattern. If the winner pattern does not match the input pattern, 

the neural network will assign an uncommitted node on the F2 layer to this new input 

pattern. 

Niu et al. (Niu et al., 1998) applied adaptive resonance theory (ART2) neural network 

to identify tool wear status in turning process over a wide range of machining 

conditions. They analyzed acoustic emission signals using wavelet packet 

decomposition method to extract spectral and statistical features. This application 

shows that unsupervised classification and clustering methods are useful when wear 

measurement is not available to form training pairs. 

A parallel multi-ART2 neural network (Li et al., 1998) was developed to recognize 

tool conditions and machining chatter in turning operations. The parallel multi-ART2 

neural network consists of four parallel ART2 sub-networks with the binary outputs. 

These sub-networks are employed to identify four categories of states: machining 

chatter, tool failure, simultaneous severe tool wear and chatter, and normal. That 

means one sub-network is employed to identify one category of state. During the 

training process, the test samples are grouped according to different categories to train 
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respective sub-network. After training, the F2 cells within one ART2 sub-network 

characterize the typical cases of one respective category. 

For single ART2 neural network, a single vigilance threshold needs to be set to 

classify four complex categories. However, for parallel multi-ART2 neural network, 

four finer vigilance thresholds for the four ART2 sub-networks are employed. In this 

way, parallel multi-ART2 neural network overcomes the limitation of single ART2 

neural network and can be more reliable identification of a variety of complex 

patterns. 

Self-organizing map (SOM) is a special class of artificial neural networks in which 

the neurons are placed at the nodes of a lattice. The coordinates of the neurons in the 

lattice are indicative of intrinsic statistical features contained in the input patterns 

(Haykin, 1999). A topographic map is formed by transforming high-dimensional input 

patterns into a low-dimensional discrete map where the location of a unit represents 

the density of the input data. The feature map provides a good approximation to the 

input space. 

Wang et al. (Wang et al., 2007a) proposed SOM for online monitoring of tool wear. 

In their study, SOM was used to map the patterns of force features to an output unit, 

and the flank wear was estimated accordingly.  

The SOM network was trained in a batch mode after each cutting pass using cutting 

force features and measured tool wear. Two features were extracted from cutting 

force. The cutting force features were extracted using the average force and the 

standard deviation over one rotation. The features are extracted pass by pass. The 

measured wear values were obtained by interpolating the vision-based measurements. 
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The vision-based tool wear measurement was obtained by processing the tool images 

captured in-cycle.  

The output of SOM is wear increment value with respect to the measured wear value 

at the beginning of each pass. The wear value at the beginning of each pass is 

measured by an automatic vision-based image-processing technique. The predicted 

absolute wear is the sum of the wear increment value and the initial measured wear 

value of each pass. 

One of the advantages of this application is that only a small portion of input features 

are needed for supervised learning together with the outputs. Other input data can be 

used in unsupervised learning. They used labeled and unlabeled input data for 

asymmetric mapping. Labeled data consists of force features and wear increment 

value. Unlabeled data consists of force features only. 

Another advantage is on-line training. As the worn tool is replaced before the end of 

the tool wear stable stage, the force signal at this stage is stable and the force features 

in the previous machining pass can be used to train the SOM network for the flank 

wear estimation in the succeeding machining pass. In this way, the training can be 

conducted on-line and cutting conditions are not involved in the training. 

In summary, the use of indirect tool condition monitoring methods requires accurate 

predictive models that link the undetectable tool wear to the detectable sensory signal 

in the machining process (Teti et al., 2010). Empirically based on-line TCM systems 

are dependent on large amounts of experimental data and do not take account of the 

complex nature of the metal cutting operation (Dimla Jr et al., 1997). On the other 

hand, neural network is an effective method to monitor tool condition for small size 

productions, especially in milling (Dornfeld, 2003). Neural networks are robust and 
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capable of non-linear modelling because of their learning capability. Neural network 

methods have a mathematical background and theory to get approximate solutions for 

complex machining processes. Some merits of neural network methods in tool 

condition monitoring applications are data-driven nature, noise suppression 

capabilities, and fault tolerance and adaptability.  

As tool wear is a highly non-linear process, methods based on neural network are 

explored in this study to find a viable and reliable way to monitor tool wear. Among 

the NN methods reviewed in this section, support vector machine (SVM) could be a 

suitable method to be applied in the milling tool wear monitoring to take advantage of 

prior knowledge of tool wear and construct a hyper-plane as the decision surface (Sun 

et al., 2004a). As a supervised method, SVM guarantees that the local and global 

optimal solutions are exactly the same (Widodo and Yang, 2007). SVM can be used 

for classification and regression analysis. SVM for regression (SVR) is a new 

generation of machine learning algorithm which was developed by Vapnik et al. 

(1998).  It is a well-established universal approximator of any multivariate function. 

Compared with multilayer perceptron (MLP) network, SVR has better generalization 

and higher accuracy for a smaller number of samples. It also overcomes the over-

parameterization and non-convergence problems (Bhattacharyya and Sanadhya, 

2006). In this study, SVR has been selected to establish the non-linear relation 

between the cutting force and tool wear. 
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Chapter 3  
 

Model-based Tool Wear Monitoring  

3.1 Introduction 

In this chapter, a model-based tool condition monitoring approach is presented for 

ball-nose end milling. This approach is based on a proposed tool wear modelling 

framework comprising of three parts: cutting force simulation, discrete wavelet 

analysis of cutting force sensor signal, and feature-based tool wear estimation model. 

A discrete mechanistic model is used to simulate the cutting force along the tool path 

to provide reference features. This model is developed by slicing the cutter into a 

series of axial discs. Each flute is divided into a few elemental cutting edges and the 

cutting force is aggregated from that for each elemental cutting edge. To deduce the 

tool wear from the cutting force, suitable features are extracted from the measured 

cutting force and the simulated cutting force. As the engagement condition of the 

sculptured surface changes, a time-frequency monitoring index based on wavelet 

transform has been developed. Daubechies wavelets are employed and derived from 

the cutting force during ball-nose milling. The residuals of the wavelets between the 

simulated force and the measured force signals are used for feature extraction. 

Machine learning methods are investigated. By training through examples, a machine 

learning method can be used to map suitable features (input) derived from the cutting 

force to the tool wear level (output). Among the machine learning methods, support 

vector regression (SVR) is a new generation of machine learning algorithm which was 

developed by Vapnik et al. (Widodo and Yang, 2007).  It is a well-established 
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Figure 3.1 Model-based tool condition monitoring 

 

universal approximator of any multivariate function. Consequently, as a supervised 

method, SVR has been selected to establish the non-linear relation between the 

cutting force and tool wear, taking advantage of prior knowledge of the tool wear. 

3.2 Model-based tool wear monitoring framework 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 shows the proposed structure of model-based tool condition monitoring 

system. The research effort will focus on following techniques for tool condition 

monitoring:  

(1) A cutting force model (Subrahmanyam et al., 2007) is adopted to simulate the 

cutting force when the tool moves along a tool path on sculptured surface. 

This provides the reference cutting force when the tool is in normal condition. 

The milling process is simulated by the use of geometrical model and cutting 

parameters along the tool path, such as the feed rate, depth of cut and cutting 
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speed. By using simulation, huge amount of experimental data collection can 

be avoided. 

(2) The measured and simulated cutting forces are processed by wavelet 

transform.  

(3) Features are extracted from the wavelet coefficients of the measured cutting 

force and simulated cutting force. Suitable features are those that are sensitive 

to tool wear when ball-nose end milling sculptured surface. 

(4) Neural network applications are proposed to map the features (input) to tool 

wear level (output) by training via examples. Support vector machines for 

regression (SVR) is employed in this work. In order to perform tool wear 

estimation, SVR is trained by a training data set. Pairs of feature vector and 

tool wear value form the training data set. 

 

3.3 Cutting force simulation using discrete mechanistic 

cutting force model 

3.3.1 Mechanistic model 

Lee and Altintas (1996) suggested that the resultant milling force can be resolved into 

a cutting force component and a ploughing force component to more accurately 

predict the cutting forces. The cutting force component is the force required to remove 

the chip. The ploughing force is the force acting on the tool edge and tool flank face 

(tool-workpiece interface region). The instantaneous milling force at a particular 

rotation angle   is: 



44 

 

 

 ( , ) ( )
e c

dF z K dS K t db       (3.1) 

where dF  is the elemental cutting forces, dS is the differential length of the curved 

cutting edge segment, )(t  is the undeformed chip thickness normal to the cutting 

edge, db  is the chip width in each cutting edge discrete element. 

In this model, Ke is the ploughing force coefficient, Kc is the shearing coefficients. As 

“size effect” has been represented by ploughing force component, Kc does not vary 

with chip thickness. The calibration process is simplified significantly by this 

assumption.  

The discrete cutting force models are developed by slicing the cutter into a series of 

axial discs. Each flute of the tool is divided into a few elemental cutting edges and the 

cutting force is summed up from each elemental cutting edge. From geometrical point 

of view, the milling operation on each elemental cutting edge is oblique cutting; so 

the cutting force on the elemental cutting edge can be considered as a resultant force 

of three force components. The three force components are differential cutting forces 

in tangential, radial and axial direction, and can be expressed as a function of cutter 

rotation angle and axial position.  
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 (3.2) 

where 
t

F , 
r

F , 
a

F  are elemental tangential, radial, and axial cutting forces, 

),,(
aerete

KKK  are edge force coefficients, ),,(
acrctc

KKK  are shearing coefficients, 

dS is the differential length of the curved cutting edge segment, )(t  is the 

undeformed chip thickness normal to the cutting edge, db  is the chip width in each 

cutting edge discrete element. 
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Figure 3.2 Ball-nose end mill geometry 

 

The assumption in this model is that the individual movement of the cutter is at a 

constant orientation. For 3-axis milling case, this can be represented by a constant 

tilted surface on the workpiece. This assumption is based on the reality that the typical 

orientation change between individual movements is small and continuous. 

The differential length of the curved cutting 

edge segment can be calculated from the 

geometric model of a ball-end mill. Assume 

that the helical ball-end milling cutter is 

ground with a constant helix lead and a point 

P located on the helical flute has Cartesian 

coordinate ),,( zyx . If the helix angle of the 

flutes at the ball-shank meeting boundary is

0
 , the lag angle   between the tool tip 

(z=0) and point P is 

 0

0

tan( )z

R





  (3.3) 

Let   be the rotation angle at tool tip, the instantaneous angle of immersion of the 

given disc is 

      (3.4) 

therefore, if the number of teeth of the tool is n, the instantaneous angle of immersion 

of ith tooth is 

 
0

0

2
( , ) tan ( 1)

i

z
z i

R n


        (3.5) 
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On the other hand, P ),,( zyx can be associated to a spherical coordinate ),,(
0

R , 

where 
0

R  is the ball radius of the cutter,  is measured from the –z axis, and   is 

measured clockwise from the +y axis.  is calculated as follows, 

 0

0

0

arccos  w here 0
R z

z R
R


 

   
 

 (3.6) 

The undeformed chip thickness is essential to the cutting force model. When the 

cutting edges engaged with the workpiece, the undeformed chip geometry can be 

determined by the feed per tooth and the tool geometry (Lamikiz et al., 2004). 

In milling operation a CNC program controls the motion profile of the tool centre; in 

the mean time, the points on the cutting edges rotate about the centre of the spindle. 

According to Kaczmarek (1976), the shape of the tooth path in relation to the 

workpiece, which is a composition of the rotary motion of the cutter and the feed 

motion, is a trochoid. However, in most actual ball-end milling operations, when the 

cutting speed is much larger than the tool moving speed, the tool is assumed to follow 

a circular tooth path. Based on this assumption and the ball-end mill geometric model, 

the instantaneous undeformed chip thickness )(t  and the chip width db can be 

determined as follows: 

 ( ) sin( ) sin( )
t

t f      (3.7) 

where 
t

f  is the feed rate (mm/rev-tooth),   is the instantaneous angle of immersion,   

  is the angle between a point on the flute and the z-axis in the vertical plane. 

 
sin( )

dz
db


  (3.8) 

where   is the angle between a point on the flute and the z-axis in the vertical plane, 

dz is the thickness of each disc.  
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The resultant forces in Cartesian coordinates are 
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 (3.9) 

The total cutting forces acting on one flute j is 
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3.3.2 Model building using average force 

In ball-end milling, the cutter edge length changes according to the local helix angle. 

If the tool is sliced into small discs with constant height along the Z-axis, the length of 

the cutter edge increases rapidly as the Z-axis position of the disc element approaches 

zero, consequently, the contact area of the flank face with the workpiece increases 

accordingly. In the case of horizontal slot machining on horizontal surface, the 

ploughing force increases as the Z-axis position approaches the bottom disc. To avoid 

edge rubbing at the bottom disc of the ball-end mill, an inclined surface was used to 

build the cutting force model.  

As the cutter travels along the path on the sculptured surface, chip thickness and 

cutting force direction varies with the changes of the intersection of the cutter and the 

workpiece, while the cutting force magnitude varies with the change in the chip load. 

In order to predict the chip load and the cutting forces, the entry angle 
st

  and the exit 
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angle
ex

 , which change continuously, are evaluated from the geometric intersection 

of the cutter and the workpiece. The engagement conditions (
st

 , 
ex

 ) lead to the 

prediction of varying chip thickness at each tool location as it rotates. Cutter and 

workpiece intersection boundaries along the tool path must be identified for the 

prediction of cutting forces. 

It is desired to determine ball-nose end milling cutting force model coefficients by 

using fundamental orthogonal cutting parameters if those parameters are available in a 

data base. However, in some practical cases, it may not be possible to create a time-

consuming orthogonal cutting data base to determine the calibration coefficients. 

Therefore, the mechanistic approach is still widely accepted as a quick method of 

calibrating the cutting force model (Lamikiz et al., 2004).  

It is essential that a simple and non-invasive calibration method to be used when the 

models are used on the machine shop floor. There are two assumptions in the 

characterization tests. Firstly, edge coefficients which are related with friction can be 

considered as constant. Secondly, shear coefficients are dependent on Z axis. The 

approximation can be considered as linear coefficients and thus a Z-coordinate 

polynomial will be used to determine the axial calibration coefficient pattern. 

For a particular workpiece-cutter combination, the average force data measured in a 

set of model building experiments are required to identify the numerical values of the 

model parameters. The average cutting force per tooth period is independent of the 

helix angle. The integration for the average force of the measured force is done in one 

revolution. In order to get the calculated force, the cutting force is integrated axially at 

each incremental rotation angle, from the bottom disc to the upper disc at axial depth 

of cut. By comparing the calculated equation with the experimental average cutting 
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Figure 3.3 Discrete cutting edges 
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force values, the cutting force model coefficients can be identified. The average forces 

expressions are computed in following numerical way.  

As shown in Figure 3.3, let i 

be the index of the discs along 

the Z-axis direction, the disc 

locating angle at i-th disc 

)(i is the angle between a 

point on the flute and the Z-

axis in the vertical plane. At 

the sphere part, the discs are 

sliced uniformly in the locating angle; on the other hand, the thickness of each disc in 

Z-axis direction is not uniform. 

Let  be the uniform slicing in the disc locating angle, the chip width at each disc is 

 
0

b R      (3.13) 

where R0 is the radius of the ball. 

At i-th disc, the relation between the Z-axis coordinate z(i) and the locating angle )(i

( 2/)(0   i ) is 

 
0

( ) (1 cos ( ))z i R i    (3.14) 

The local radius at i-th disc is 
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The local helix angle at i-th disc is 
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 where 
0

  is the helix angle at flute and shank meeting point. 

Therefore, the length of the cutting edge at i-th disc can be determined as  

 0
( )

cos ( )

R
S i

i





 
   (3.17) 

As shown in Figure 3.4, tool rotation angle θ is measured clock wise from +y-axis.  

Due to the helix angle, the lag angle between the flute at i-th disc and tool tip is  

 
0

0

( )
( ) tan

z i
i

R
   (3.18) 

Let j be the index of the tool rotation angle, 

when the tool rotation angle is θ(j), the 

instantaneous angle of immersion at i-th disc is: 

( , ) ( ) ( )i j j i     (3.19) 

Hence when the tool rotation angle is θ(j), the 

instantaneous undeformed chip thickness at i-th 

disc is 

( , ) sin ( , ) sin ( )
t

t i j f i j i     (3.20) 

where 
t

f  is the feed per tooth per revolution.  

When the tool rotation angle is θ(j), the cutting force at i-th disc can be expressed as 

follows: 

 ( , ) ( ) ( , )
t te tc
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Figure 3.4 Tool rotation angles 
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The average cutting force per tooth period can be expressed as follows: 

1 1
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In order to determine the engagement of the cutting, the overlapping of previous cut 

portion for subsequent pass need to be modelled (Subrahmanyam et al., 2007). The 

engagement area is divided into two areas to calculate the entry angle and exit angle. 
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Figure 3.5 Determine the boundary of integration 
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In order to simulate the cutting force, the entry angle and exit angle need to be 

determined. In Figure 3.5, the material is slanted by Φ degrees, and the highlighted 

area is the material to be removed. From this figure, L(z) is the shortest distance 

between the plane that pass through the spindle axis with normal line directed to the 

right and the material. 

In triangle ABC,  

 tanA C R   (3.27) 

 
1 cos

cos
k O A R R





 
    

 

 (3.28) 

Hence  

 
sin cos 1

cos
d p q R

 



  
     

 

 (3.29) 

Using congruency between triangle DEF and the triangle created from the L(z) line 

and point D, L(z) can be calculated as 

 0

0

( )
( )

z l
L z R

d d l




  
 (3.30) 

 
0

tanl d d R      (3.31) 

Using this value, the enter and exit angle can be calculated as 

 
( )

arcsin
( )

enter

L z

R z
   (3.32) 

 180
exit enter

    (3.33) 

Note that L(z) = 0 if z < l0 
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3.3.3 Experimental verification 

Workpiece material, cutting tool and equipment 

The experiments were conducted on a 3-axis milling machine as shown in Figure 3.6. 

The workpiece material was hardened Stavax mould steel and the hardness is 45 HRc. 

10mm insert based carbide ball nose end mills with 30° helix angle were used in the 

experiments. The cutting force was measured by a Kistler quartz 3-component 

platform dynamometer. The dynamometer was mounted between the workpiece and 

machining table as shown in Figure 3.7. The cutting forces in the X, Y and Z 

directions were sampled by PC208AX Sony data recorder as shown in Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.6 Milling machine for experiments 

Figure 3.7 Dynamometer and workpiece 
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Experimental parameters and procedure 

The model building experiments involved horizontal slot milling on a 45° inclined 

surface. Twenty eight cutting tests were conducted on a 3-axis milling machine with 

feed per tooth from 0.05 mm to 0.2 mm and the depth of cut from 0.2 mm to 0.5 mm.  

Verification results 

The cutting force model has been validated by comparing the simulated and the 

measured cutting forces. The cutting force can be estimated using the cutting force 

model for given cutting conditions. The results are shown in Figure 3.9. From the 

figure, the simulated cutting forces are in very close agreement with the measured 

cutting forces in cutting force waveform. The estimated tool entry and exit angle from 

the model are quite near to experimental data, that means the engagement and 

disengagement of the tool with workpiece was closely matched with the experimental 

result. 

Figure 3.8 Data acquisition system 
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Figure 3.9 Simulated and measured cutting force 

(DOC = 0.2 mm, feedrate = 0.2 mm/tooth/rev)  
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The comparison of the mean and maximum force of cutting force model with that of 

the experimental data is a way to validate the model (Subrahmanyam, 2009). The 

mean and maximum force features are calculated in one revolution rotation of the 

cutter. The mean cutting force is calculated as the mean force within tool entry angle 

and exit angle in one revolution. The ensemble average of the maximum force and 

mean force from fresh tool cutting experimental data are calculated as force features. 

In this experiment, the error was less than 10% in average. Kapoor et al. (1998) and 

Lazoglu and Liang (2000) suggested that the reasonable accuracy of the developed 

cutting force models is within 15% in average. From these results it can be said that 

the experimentally determined cutting force model coefficients are acceptable. 

3.4 Discrete wavelet analysis of cutting force sensor signal 

The continuous wavelet transformation is expressed as follows (Wang and Gao, 

2006): 

 
1

( , ) ( ) ,  {0},  
R

t b
C a b s t dt a R b R

aa


 
    

 
  (3.34) 

where s(t) is the signal, 






 

a

bt

a


1
is wavelet function, a is scale factor, b is shifting 

factor.  

In wavelet analysis, the scaling function   and the wavelet  generate a family of 

functions that can be used to break up or reconstruct a signal. If s(t) represents a 

cutting force signal in a finite time window [-t0, t0], when shifting factor is fixed, C(a, 

b) depends on s(t) in the time interval [b-at0, b+at0]. So decreasing scale factor will 

make the time interval shorter and gives better localization in the time domain. 
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Therefore, the adaptive window width in wavelet transform is an advantage for 

analyzing and monitoring the rapid transient of small amplitude of cutting force signal 

when cutting engagement changes along the sculptured surface tool path. 

The detailed discrete wavelet analysis (Hong et al., 1996) is described as follows: 

Assuming Vj is a multi-resolution approximation, ϕ and ψ are scaling function and 

orthogonal wavelet, respectively, and original signal f(x) is measurable and has a 

finite energy: 
1

( )
J

f x V  then f(x) can be decomposed: 
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and the inner product 
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By repetitively decomposing 
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 for J2 times,  
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(j = J1, J1+1… J2-1) 

According to Mallat pyramidal algorithm, original signal f(x) can be decomposed to 

different frequency bands by discrete approximation component and discrete detail 

components. Wavelet analysis can be considered as a series of band pass filters. It 

extracts information from the original signal f(x) by decomposing it into a series of 

approximations A and details D distributed over different frequency bands. Given the 

sampling frequency fs, the frequency of the signal f(x) is 0.5 fs. The bandwidths of the 

approximation A and detail D at the level l are
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respectively.  

Since Daubechies wavelets perform well in separating the frequency bands during 

signal decomposition, they are selected for feature extraction in this research. 
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3.5 Tool wear monitoring from cutting force feature 

3.5.1 Feature extraction 

In order to maximize the information utilization of cutting force signals, features are 

extracted from the wavelet coefficients. Tool wear states are reflected by the varied 

characteristics of the extracted features (Sun et al., 2006). According to the 

observation by Choi et al. (2004), the approximations in wavelet coefficients will 

reflect tool wear in end milling processing. After the signal is decomposed through 

wavelet transform, the signal energy is represented by the approximation coefficients.  

To obtain feature vectors from the cutting force model, the measured and simulated 

cutting force are processed through wavelet transform. The residual difference 

between the measured and simulated approximation coefficients can be a sensitive 

feature vector, which is used for the evaluation of the difference between measured 

force and simulated force. When the tool is in good condition, this measure has the 

lower value which shows the force signals are well matched. Three kinds of residual 

measurements are used in this work: 

Residual Maximum Approximation Coefficients (RMA): 

 (max( ) max( )) / max( )
m s s

RM A A A A   (3.49) 

Residual Average Approximation Coefficients (RAA): 

 ( ) /
m s s

RAA A A A   (3.50) 

Average Residual Energy (ARE): 
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   (3.51) 
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where Am( i ) and As( i ) are wavelet approximation coefficients from measured 

cutting force and simulated cutting force respectively, N is the total number of 

wavelet coefficients. 

The feature evaluation method in this work is to select those which give high 

correlation with the observed tool wear. As those features are not equally informative, 

the correlation coefficient is used to identify suitable features for tool wear estimation. 

Correlation coefficients between the feature (x) and measured flank wear (y) is 

calculated as 

 
1/ 2

cov( , )

[var( ) var( )]
xy

x y
R

x y
  (3.52) 

where cov(x, y) is the covariance between wear and the feature, var(x) and var(y) are 

the variance of x and y. The covariance function cov(x, y) is defined as 

 cov( , ) [( [ ])( [ ])]x y E x E x y E y    (3.53) 

where E is the mathematical expectation. 

The performances of the features are evaluated by correlation coefficients. This 

statistical method is a normalized measure of the strength of the relationship between 

the feature and tool wear. If certain feature corresponds to noise, not relevant to the 

tool wear process, the correlation coefficient will be small (i.e. uncorrelated data 

results in a correlation coefficient of 0). Features correlated to tool wear will have 

high correlation coefficient (≥0.8). 
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3.5.2 Tool wear estimation using support vector machines for 

regression (SVR) 

By training through examples, a machine learning method can be used to map suitable 

features (input) derived from the cutting force to the tool wear level (output). Among 

the machine learning methods, support vector regression (SVR) is a new generation of 

machine learning algorithm which was developed by Vapnik et al (Vapnik, 1995). It 

is a well-established universal approximator of any multivariate function (Haykin, 

1999). Consequently, as a supervised method, SVR has been selected to establish the 

non-linear relation between the cutting force and tool wear, taking advantage of prior 

knowledge of the tool wear. Therefore, in this work a nonlinear regressive model is 

proposed to describe the dependence of flank wear (VB) on cutting force feature 

vector (x):  

 ( )VB f v x  (3.54) 

where v is noise term which is independent of feature vector x. 

For a given set of training data 
N

iii
d

1
),(


x , where m

i
Rx is a sample value of the 

input feature vector x and di is the corresponding tool wear value in model output VB. 

Support vector machines for regression (SVR) is to provide an estimate of the 

dependence of VB on x (Haykin, 1999): 

 
1

0

( ) ( )

m

T

e j j

j

VB w  


  x w x  (3.55) 

where w is the weight vector, )(x denotes a set of non-linear transformation from the 

input space into the feature space of dimension m1. 

The estimate is constructed to minimize the cost function:  
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 are two sets of slack variables. 

Using the method of Lagrange multipliers, one may now state the dual problem for 

nonlinear regression using a support vector machine as follows: 

Given the training sample 
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subject to the following constraints: 

(1) 
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where C is a user-specified constant. 

In the training phase, training datasets are used to build SVR model for the estimation 

of the tool wear.  Firstly, the training datasets are used to tune the model parameters 

by k-fold cross validation method. Secondly, the training datasets are used to obtain 



63 

 

 

 
 
Figure 3.10 Ball-nose end milling an inclined surface 

 

the weights of the estimation function by optimization algorithm. After the SVR 

model has been built, the regression accuracy can be tested by the test datasets. 

3.6 Preliminary experimental results and discussion 

3.6.1 Experimental set-up 

To analyze the influence of wear on the cutting force in ball-nose end milling 

applications, ball-nose end milling was performed on an inclined surface (Klocke et 

al., 2000). The presented experiments will focus on milling an inclined surface with a 

fixed angle at different depth of cut and cutting speed. 

Workpiece material, cutting tool and equipment 

The experiments were 

conducted on a 3-axis milling 

machine. The workpiece 

material was hardened Stavax 

mould steel and the hardness is 

45 HRc. 10mm insert based 

carbide ball nose end mills with 

30° helix angle were used in the experiments. The cutting force was measured by a 

Kistler quartz 3-component platform dynamometer. The dynamometer was mounted 

between the workpiece and machining table. The cutting forces in the X, Y and Z 

directions were sampled by PC208AX Sony data recorder. The tool wear was 

measured by Olympus microscope. 
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Experimental parameters and procedure 

The milling process in the experiments is to create an oblique plane surface on a 

workpiece by ball-nose end milling operation. The geometric form is created by 

means of the tool path, not the cutter shape.  

The target of this experiment is to mill a 45° inclined surface. The tool moves forward 

to create one horizontal cut on the inclined surface. The horizontal cuts were repeated 

at fixed pitch and depth of cut. The experiments were performed at different feed rate, 

depth of cut, and spindle speed. The tool wear was measured at a fixed interval. Then 

the cutting was repeated again until the severe tool wear happened. The cutting forces 

in the X, Y and Z directions were sampled with 3,000Hz sampling rate. 

3.6.2 Energy distributions of cutting force 

As introduced in previous sections, the inputs of SVR model are feature vectors 

extracted from cutting force data. Feature extractions are conducted based on the 

discrete wavelet transform (DWT) techniques. To determine the useful frequency 

band of the decomposed data for feature extraction, energy distribution using DWT 

was evaluated. After the cutting force data are decomposed by DWT, the energy 

distribution can be described by Parseval’s theorem (Gaing, 2004):  
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     (3.58) 

 

Figure 3.11 shows the wavelet energy distributions of cutting force in X, Y and Z 

direction. As the sampling rate was 3000Hz in this experiment, the cutting force data 

were decomposed into the constituent parts at frequency bands A6: [1 Hz, 23 Hz], D6: 
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[24 Hz, 46 Hz], D5: [47 Hz, 93 Hz], D4: [94 Hz, 187 Hz], D3: [188 Hz, 375 Hz], D2: 

[376 Hz, 750 Hz], D1: [751 Hz, 1500 Hz]. The result showed that the energy level of 

the low frequency band (1-375Hz) was much higher than that of middle and high 

frequency band. This result is probably due to the fact that the energy of cutting force 

tends to be concentrated at tooth passing frequency and its low frequency harmonics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on this result, the wavelet transformation was repeated twice to obtain the 

coefficients in subsequent experiments. Through wavelet transformation, the 

Figure 3.11 Energy distributions of cutting force in X, Y and Z direction 
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experimental cutting force data were decomposed into the constituent parts at 

frequency bands [1 Hz, 375 Hz], [376 Hz, 750 Hz] and [751 Hz, 1500 Hz], 

respectively. In this way, cutting force data in low frequency band (1-375Hz) were 

extracted for feature extraction. In this study, the residual between wavelet 

approximations of the simulated force data and wavelet approximations of measured 

force data were used for feature extraction. 

3.6.3 Feature extraction 

 Table 3.1 shows the features that are used as inputs of SVR to monitor the tool wear. 

The features are energy related features based on the cutting force model. These 

features have been evaluated by correlation coefficients. As cutting force components 

are measured in X, Y and Z direction, a total of nine features are used to train and test 

the SVR model. 

Table 3.1 Features for tool wear estimation 

Index Definition 

X1 Residual Maximum Approximation Coefficients at X direction (RMA_X) 

X2 Residual Maximum Approximation Coefficients at Y direction (RMA_Y) 

X3 Residual Maximum Approximation Coefficients at Z direction (RMA_Z) 

X4 Residual Average Approximation Coefficients at X direction (RAA_X) 

X5 Residual Average Approximation Coefficients at Y direction (RAA_Y) 

X6 Residual Average Approximation Coefficients at Z direction (RAA_Z) 

X7 Average Residual Energy at X direction (ARE_X) 

X8 Average Residual Energy at Y direction (ARE_Y) 

X9 Average Residual Energy at Z direction (ARE_Z) 

In the objective function (3.57), ),(
ji

K xx  is the kernel function. It is to map the 

feature data from the original space into the high dimensional space (Sun et al., 

2004a). In this work, Gaussian kernel is chosen as the kernel function: 
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For different problem, the penalty parameter C, the error tolerance threshold ε and the 

value of σ from the kernel function have to be tuned to achieve good performance 

with SVR models. The optimum parameters for a given problem are found by grid 

search method using cross-validation (Duan et al., 2003). 

The generalization error is estimated by using k-fold cross validation:  

(1) Divide the training data set into k subsets (the folds) randomly. The subsets 

are mutually exclusive approximately equal size. 

(2) Train the SVR using k-1 subsets. 

(3) Test the SVR using the remaining 1 subset and obtain the error. 

(4) Repeat (step 2 and step 3) k times to ensure that each subset has been used to 

test SVR once. 

(5) Estimate the generalization error by averaging all the test errors over the k 

tests. 

In this way, each data subset of the whole data set has been predicted once for 

calculating the generalization error. In this work, 5-fold cross-validation on the 

training set is used to find the optimum parameters. The prediction accuracies for 

cross-validation are compared in terms of the averaged absolute estimation error: 

 1
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d
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 (3.60) 
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3.6.4 Tool wear estimation using support vector regression (SVR) 

To construct the SVR model, the training data sets were obtained under various 

cutting parameters used in the experiment. The remaining data sets using different 

cutting parameters were used for testing. Table 3.2 shows the cutting conditions used 

in the experiments. In the experiments, a total of 60 measurement samples (22500 

data in every sample) corresponding to various tool wear values were collected. 

Figure 3.12 shows a testing result of a tool wear estimation using the constructed SVR 

model. The result showed that the constructed SVR model performed well in this 

method, although the cutting conditions in the testing data set were not used in the 

training process. Therefore, this method has good performance in terms of 

generalization. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Comparison of the predicted tool wear and the measured tool wear 
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Table 3.2 Cutting conditions 

Feed per tooth 

(mm/tooth/rev) 

Depth of cut 

(mm) 

0.050 0.4 

0.075 0.4 

0.100 0.4 

0.125 0.4 

0.150 0.4 

0.050 0.5 

0.075 0.5 

0.100 0.5 

0.125 0.5 

0.150 0.5 

 

3.7 Conclusion 

A model-based tool wear estimation method is proposed to monitor ball-nose end 

milling process. Tool wear was monitored by capturing force signals on-line. As force 

signals were convoluted with noise from the milling process, cutting force signals 

were collected and processed using wavelet technique due to its adaptive window 

width.  

A mechanistic cutting force model has been built, and the simulated cutting forces are 

used as reference to extract the residual features. The residual features have been 

explored to maximize the information utilization of force signals. These features are 

used as inputs of decision making module. Support vector machines for regression 

(SVR) are trained by the feature vectors to build a tool wear estimation model to on-

line predict tool wear. The experimental results showed that the model based 

approach is feasible and effective.  
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Chapter 4  
 

Further Study and Enhancement of Model-based Tool 

Wear Monitoring  

4.1 Introduction 

As described in previous chapters, the tool wear estimation method includes three 

parts: cutting force data acquisition; feature extraction; and tool wear estimation using 

the support vector machines for regression (SVR). In the feature extraction, the 

features are extracted from cutting force data and used as inputs of the SVR for tool 

wear estimation. These features are evaluated by its correlation to tool wear based on 

the resulting correlation coefficient to select those that are strongly correlated to the 

tool wear development. Some features will provide overlapping or redundant 

information. On the other hand, as the tool wear process is complex and not linear 

relationship with these features, there exist higher-order interactions between some 

features. Hence a proper feature selection process is necessary before the features are 

used as inputs of the support vector machines.  

The target of feature selection is to identify effective features and remove conflicting, 

redundant and insignificant ones. The feature selection process consists of three major 

parts:  

(1) Decide a selection criterion to determine whether one feature subset is ‘better’ 

than another;  

(2)  Systematic search of feature subsets;  
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(3) Decide a stopping criterion that indicates when the search may be terminated.  

4.2 Problem formulation 

The purpose of using rough set theory (RST) is to reduce attributes of the decision 

table which is the input of the SVR model. This is to prevent over fitting and save the 

training time for SVR modeling. Another advantage is to improve the performance by 

removing conflicting attributes. After the features are described by the decision table 

using rough set, exhaustive calculation algorithm can be used to reduce the dimension 

of feature space. Genetic algorithm is another alternative method to find redundant 

features. 

4.3 Discernibility-based data analysis 

To select the relevant features, several approaches have been taken to evaluate the 

features including automatic relevance determination (ARD) (Sun et al., 2004a), 

singular value decomposition (SVD) (Zhou et al., 2009), and rough set theory (RST) 

(Shen et al., 2000). RST is used in this study by using discernibility matrices to reduce 

the dimension of feature space.  

Rough set theory (RST) is a data mining tool to explore the hidden patterns in the data 

set. It is based on equivalence relations in the classification of objects.  

One of the main advantages of rough set data analysis is that it only uses information 

inside the training data set, that is, it does not rely on prior knowledge, such as prior 

probabilities. Feature selection using rough sets only focus on the granularity structure 

of the data. The fundamental knowledge on rough set theory (RST) is introduced in 
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this section following the notion of an information system presented in the works of 

Shen et al. (2000). 

In rough set framework, knowledge (data) is represented by an information system. 

The information system S can be defined by a pair of non-empty finite set U and A, 

where U represents a set of objects in the information system and A represents a set of 

attributes to describe the object. Each object in set U is interpreted by the value of the 

decision attribute d. 

Let  ,S U A  be an information system,    1 1
,  . . . ,  ,  ,  . . . ,  

n m
U u u A a a 

.
 

A decision table can be constructed as a  1n m   table: each row is one of the 

objects in  1
,  . . . ,  

n
U u u , column 1 to m are labeled by attributes 

 1
,  . . . ,  

m
A a a , column m+1 is the decision attribute d. 

For any  1, ,i m   and  1, ,j n  , the intersection of the j-th row and the i-th 

column is the value of the attribute 
i

a  of object 
j

u , which is denoted as  i j
a u . 

For example, Table 4.1 represents 4 objects  1 2 3 4
, , ,u u u u  with 5 attributes 

 1 2 3 4 5
, , , ,a a a a a   

Table 4.1 Decision table 

  

Energy_x 

(a1) 

Energy_y 

(a2) 

Energy_z 

(a3) 

Max_x 

(a4) 

Max_y 

(a5) 

Tool wear 

(d) 

u1 1 0 2 1 0 0-0.1 

u2 0 0 1 2 1 0.1-0.2 

u3 2 0 2 1 0 0.1-0.2 

u4 1 2 2 1 0 0.2-0.3 
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Indiscernibility 

Let  ,S U A  be an information system, an equivalence relation  IN D B : 

 2
( ) {( , ) : , ( ) ( )}IND B x y U a B a x a y      (4.1) 

Lower and upper approximation 

Let  ,S U A  be an information system and let AB   and UX   

then B-lower and B-upper approximation of X is defined respectively as follows: 

 { / ( ) : }B X Y U IND B Y X    (4.2) 

 { / ( ) : }B X Y U IN D B Y X      (4.3) 

Discernibility matrix 

A discernibility matrix can be constructed based on the decision table. Each element 

jk
c A  consists of a set of attributes that can be used to discern between object 

j
u  

and 
k

u . 

  : ( ) ( )   for  , 1, 2,
jk j k

c a A a u a u j k n     (4.4) 

where ( )
j

a u  and ( )
k

a u  denote the value of the attribute of object 
j

u  and 
k

u  

respectively. 

 
jk kj

c c  (4.5) 

 0
jj

c   (4.6) 

If there are identical or contradicted object in the table, even all the features cannot 

distinguish the objects. As the decision table is generated during feature extraction 

process, it is easy to make sure that there is no identical or contradicted object in the 

table. Therefore, the problem of feature selection is as follows: 
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For a given decision table T, the elements of its discernibility matrix meet the 

condition: 0
jk

c  . 

4.4 Feature selection using rough set theory (RST) 

To use rough sets for feature selection, relevant features are searched for the object 

classification. Based on a set of reducts for a data set, some criteria for feature 

selection can be formed, for example, selecting features from a minimal reduct, i.e., a 

reduct containing minimal set of attributes (Swiniarski and Skowron, 2003). The 

research problem is on the development of an effective algorithm based on RST to 

reduce cutting force data or reduce non-relevant features. The definition is as follows: 

Let R A , 0 1   a real number, P is a set of pairs ( , )
j k

u u . Attributes from R 

separate at least  1 P  pairs from P. 

4.5 Experimental results and discussion 

Experimental set-up is introduced in Section 3.6. To determine whether RST can be 

used as a proper feature selection process, the original feature combination is reduced 

to a few different combinations of features by RST. Those combinations of features 

selected by RST were tested as input of SVR to estimate tool wear.  

Table 4.2 lists all the possible features corresponding to tool wear. Nine features, 

{ _ , _ , _ , _ , _ , _ , _ , _ , _ }RMA X RMA Y RMA Z RAA X RAA Y RAA Z ARE X ARE Y ARE Z

were used as original feature combination as input of SVR after normalization.  
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Table 4.2 Feature set that includes all the candidate features 

Index Definition 

X1 Residual Maximum Approximation Coefficients at X direction (RMA_X) 

X2 Residual Maximum Approximation Coefficients at Y direction (RMA_Y) 

X3 Residual Maximum Approximation Coefficients at Z direction (RMA_Z) 

X4 Residual Average Approximation Coefficients at X direction (RAA_X) 

X5 Residual Average Approximation Coefficients at Y direction (RAA_Y) 

X6 Residual Average Approximation Coefficients at Z direction (RAA_Z) 

X7 Average Residual Energy at X direction (ARE_X) 

X8 Average Residual Energy at Y direction (ARE_Y) 

X9 Average Residual Energy at Z direction (ARE_Z) 

 

In order to use rough set theory, all the feature data need to be discretized before the 

feature selection process. Table 4.3 shows the sample features, and Table 4.4 shows 

the corresponding discretized features.  

Table 4.3 Sample features before discretization 

RMA_X RMA_Y RMA_Z RAA_X RAA_Y RAA_Z ARE_X ARE_Y ARE_Z Wear 

0.235 0.271 0.316 0.259 0.215 0.329 0.393 0.381 0.559 0.084 

0.269 0.262 0.454 0.264 0.225 0.393 0.395 0.393 0.629 0.091 

0.376 0.388 0.497 0.307 0.275 0.440 0.476 0.516 0.706 0.098 

0.298 0.269 0.356 0.315 0.258 0.410 0.471 0.456 0.627 0.105 

0.308 0.316 0.444 0.300 0.299 0.475 0.439 0.484 0.690 0.112 

0.379 0.395 0.481 0.319 0.301 0.470 0.515 0.543 0.722 0.119 

 

Table 4.4 Sample features after discretization 

RMA_X RMA_Y RMA_Z RAA_X RAA_Y RAA_Z ARE_X ARE_Y ARE_Z Wear 

(0.2, 0.25] (0.25, 0.3] (0.3, 0.35] (0.25, 0.3] (0.2, 0.25] (0.3, 0.35] (0.35, 0.4] (0.35, 0.4] (0.55, 0.6] (0.05, 0.1] 

(0.25, 0.3] (0.25, 0.3] (0.45, 0.5] (0.25, 0.3] (0.2, 0.25] (0.35, 0.4] (0.35, 0.4] (0.35, 0.4] (0.6, 0.65] (0.05, 0.1] 

(0.35, 0.4] (0.35, 0.4] (0.45, 0.5] (0.3, 0.35] (0.25, 0.3] (0.4, 0.45] (0.45, 0.5] (0.5, 0.55] (0.7, 0.75] (0.05, 0.1] 

(0.25, 0.3] (0.25, 0.3] (0.35, 0.4] (0.3, 0.35] (0.25, 0.3] (0.4, 0.45] (0.45, 0.5] (0.45, 0.5] (0.6, 0.65] (0.1, 0.15] 

(0.3, 0.35] (0.3, 0.35] (0.4, 0.45] (0.25, 0.3] (0.25, 0.3] (0.45, 0.5] (0.4, 0.45] (0.45, 0.5] (0.65, 0.7] (0.1, 0.15] 

(0.35, 0.4] (0.35, 0.4] (0.45, 0.5] (0.3, 0.35] (0.3, 0.35] (0.45, 0.5] (0.5, 0.55] (0.5, 0.55] (0.7, 0.75] (0.1, 0.15] 
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After the feature selection process, two possible feature combinations were selected:  

Reduct1 { _ , _ , _ , _ , _ , _ }RMA Y RMA Z RAA Z ARE X ARE Y ARE Z  

Reduct2 { _ , _ , _ , _ , _ }RMA Y RAA X ARE X ARE Y ARE Z  

Figure 4.1shows the tool wear estimation results using all the nine features presented 

in Table 4.2. Figure 4.2 and Figure 4.3 display the tool wear estimation results using 

two selected feature combinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Measured and predicted tool wear based 

on all the candidate features (AAEE=0.0173) 

Figure 4.2 Measured and predicted tool wear based 

on selected feature set Reduct1 (AAEE=0.0126) 
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Averaged Absolute Estimation Error (AAEE) is used to compare the accuracy: 

 1

N

i i

i

VBm VBe

N





 (4.7)
 

where VBm and VBe are measured and estimated tool wear. 

A comparison of the results shows that the accuracy of tool wear estimation based on 

reduced feature combination was higher than that based on all the candidate features. 

The reduced feature combinations suggest that the energy features from the three axes 

cannot be eliminated. Apparently, the energy features are sensitive features for tool 

wear estimation. On the other hand, the maximum coefficient feature from the X axis 

was omitted in feature selection process. This result may be explained by the effect of 

cutting process direction on the signal strength. This may suggest that cutting 

direction should be taken into consideration when extracting features from cutting 

force data.  

Figure 4.3 Measured and predicted tool wear based 

on selected feature set Reduct2 (AAEE=0.0127) 
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4.6 Conclusion 

As the tool wear process is complex, there exist complementary, redundant and 

possibly conflicting interactions between some features in mapping their relation to 

the tool wear. Hence a proper feature selection process to identify an effective subset 

can improve efficiency and performance. In this investigation, the granularity 

structure of the cutting force features is studied using RST to find the optimal subset 

of features from the original set according to a given criterion.  
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Chapter 5  
 

Model-based Tool Wear Profile Monitoring  

5.1 Introduction 

Average flank wear and maximum flank wear are commonly used as monitoring 

criteria in tool wear monitoring researches. In ball nose end milling applications, as 

the engagement changes continuously, present cutter-workpiece contact area may not 

be at the maximum tool wear location. Therefore, there is a need to monitor the tool 

wear profile along the cutting edge.  

Subrahmanyam (2009) has developed a tool wear estimation model based on the 

geometrical model. However, the model depends upon the accumulated chip load and 

friction length information. In other words, the history of milling information must be 

recorded to predict future tool wear. This is suitable for new tool and is valuable in 

tool path planning to maximize the tool utilization and hence minimize the downtime. 

If a worn tool is used for machining, its history may not available and without the 

historical data, it is not possible to use the geometric tool wear model. In order to 

overcome this problem, this study focuses on monitoring the change of tool wear 

profile by monitoring the change of the cutting force based on the mechanistic cutting 

force model. 

According to the mechanistic model, the cutting force can be split into a cutting force 

component and a ploughing force component. The cutting force component is the 

force required to remove the chip. The ploughing force is the force acting on the tool 
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edge and tool flank face (tool-workpiece interface region). The ploughing force 

increases when flank wear increases due to the friction at flank wear area. Therefore, 

it is possible to monitor the change of the area of flank wear by using the residual 

cutting force. Therefore, the aim of this study is to be able to determine the tool wear 

profile along the cutting edge for tool wear monitoring using the cutting force. 

5.2 Problem formulation 

In sculptured surface machining process, in addition to operating conditions (cutting 

speed, feed rate and depth of cut) relating to ball-nose end milling, the cutting 

engagement condition changes continuously (Ng et al., 2000).  

Due to the geometrical nature of the ball-nose end mill, the angle between workpiece 

surface and the tool axis is less than 90°. In normal practice, workpiece surface tilt 

angle can be varied according to the sculptured surface geometry. The effect of the 

surface angle on the tool wear estimation need to be considered. Therefore, when 

considering tool wear characteristics for tool condition monitoring, different tool 

orientation and workpiece angle need to be considered.  

In this study, milling a hemispherical surface is designed for analyzing the cutting 

force signals in sculpture surface machining applications. In this experimental setup, 

there are two different tool orientations that can be tested in the experiments: 

horizontal downward; horizontal upward. In the designed milling process, the 

workpiece angle changes at different tool pass. Figure 5.1 shows an example of the 

change of workpiece angle when cutter orientation is horizontal downward. It also 

shows the different cutting condition at different path on the hemispherical surface. 
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Cutting force signals and tool wear measurement were obtained from the experiments 

under various machining conditions. 

5.3 Experiments for milling of hemispherical surface 

5.3.1 Workpiece material, cutting tool and equipment 

Figure 5.1 shows the experimental setup for milling of hemispherical surface. The 

experiments were conducted on a 3-axis milling machine. The workpiece material 

was stainless steel. 10mm insert based coated carbide single flute ball nose end mills 

with 30° helix angle were used in the experiments.  

As this research focused on the correlation between tool wear and cutting force, one-

flute cutter is preferred to ensure the measurements of cutting force and the tool wear 

are from same cutting edge. At the same time, the effect of run-out can be eliminated.  

The cutting force was measured by a Kistler 9255B quartz 3-component platform 

dynamometer. The dynamometer was mounted between the workpiece and machining 

table. The cutting forces in the X, Y and Z directions were sampled by PC208AX 

Sony data recorder. The tool wear was measured using a Keyence microscope. A 

fixture was designed to measure the tool wear profile along the cutting edge. 

5.3.2 Experimental parameters and procedure 

The milling process in the experiments is at the finish stage to mill a workpiece with 

hemispherical surface. Different machining experiments were conducted from top to 

bottom or from bottom to up. Table 5.1 shows the cutting conditions. 
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The tool moves forward to create one horizontal cut on the hemispherical surface. The 

horizontal cuts were repeated at fixed pitch and depth of cut. For each path, the 

experiments were performed at different feed rate and spindle speed. The pitch feed of 

each path was 0.35 mm. Depth of cut was 0.3mm. Feedrate range was 0.05 

mm/tooth/rev to 0.2 mm/tooth/rev. The cutting forces in the X, Y and Z directions 

were sampled with 3,000Hz sampling rate.  

 

Table 5.1 Cutting conditions 

Cutting Path Direction 

Top to bottom 

Bottom to top 

Top to bottom followed by top to bottom 

Top to bottom followed by bottom to top 

Bottom to top followed by top to bottom 

Bottom to top followed by bottom to top 

 

 

 

 

 

 

 

 

Figure 5.1 Milling hemispherical surface 
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5.4 Application of model-based tool wear monitoring 

framework  

As typical ball nose end milling applications are sculptured surface machining, 

model-based tool wear monitoring framework discussed in Chapter 3 is validated at 

machining a hemispherical surface workpiece. Machining a hemispherical surface 

workpiece enables different contact points to be controlled and made between the 

ball-nose cutter and the workpiece. In the experiments, cutter path direction changes 

while the cutter is moving around the workpiece. This is particularly useful for 

capturing the necessary experimental data. In model-based tool wear monitoring 

framework, a cutting force model is adopted to simulate the cutting force when the 

tool moves along a tool path on sculptured surface. This provides the reference cutting 

force when the tool is in normal condition. The milling process is simulated by the use 

of geometrical model and cutting parameters along the tool path, such as the feed rate, 

depth of cut and cutting speed. The framework employs the discrete wavelet 

decomposition techniques to extract the maximum time-frequency information from 

the measured and simulated cutting forces. Features are extracted from the wavelet 

coefficients of the measured cutting force and simulated cutting force. Suitable 

features are those that are sensitive to tool wear when ball-nose end milling sculptured 

surface. Relevant features are selected using discernibility-based data analysis based 

on rough set theory (RST). Support vector machine for regression (SVR) is proposed 

to map the features (input) to tool wear level (output) by training via examples. 

The implementation procedures are presented as follows: 

(1) Cutting force model building. The tool pass on the workpiece is shown in 

Figure 5.2. As shown in Figure 5.2, one tool pass is the complete circular 
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travel around the workpiece. After one tool pass is completed, the tool starts at 

next pass at fixed pitch feed until the end of the surface. The model proposed 

for inclined plane machining is used to estimate the cutting force by assuming 

the workpiece as straight inclined plane at the tool workpiece contact point 

(Subrahmanyam, 2009). The cutting force is estimated at tool contact point 

using given cutting conditions such as feed rate, depth of cut, cutter path 

direction and workpiece inclination angle. 

 

 

 

 

 

 

 

 

 

 

 

a. Mechanistic cutting force model. The differential cutting forces in 

tangential, radial and axial direction, and can be expressed as a 

function of cutter rotation angle and axial position: 

Figure 5.2  Tool pass on the workpiece 
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 (5.1) 

where 
t

F , 
r

F , 
a

F  are elemental tangential, radial, and axial cutting 

forces, ),,(
aerete

KKK  are edge force coefficients, ),,(
acrctc

KKK  are 

shearing coefficients, dS is the differential length of the curved cutting 

edge segment, )(t  is the undeformed chip thickness normal to the 

cutting edge, db  is the chip width in each cutting edge discrete 

element. 

b. Determine ball-nose end milling cutting force model coefficients. For a 

particular workpiece-cutter combination, the average force data 

measured in a set of model building experiments are required to 

identify the numerical values of the model parameters. The average 

cutting force per tooth period is independent of the helix angle. The 

integration for the average force of the measured force is done in one 

revolution. In order to get the calculated force, the cutting force is 

integrated axially at each incremental rotation angle, from the bottom 

disc to the upper disc at axial depth of cut. By comparing the 

calculated equation with the experimental average cutting force values, 

the cutting force model coefficients can be identified. 

c. From the experiments, the measured cutting force follows the X, Y and 

Z-directions of dynamometer. However, while machining on the 

hemispherical surface workpiece, the cutter is moving around the 

workpiece.  Hence the simulated cutting force is calculated at the tool 

moving direction around the workpiece. The measured cutting forces 
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are transformed to the same direction of simulated cutting force at the 

tool workpiece contact point. In this way, the simulated cutting force 

can be compared with the measured cutting force. 

(2) Signal processing using Wavelet. In order to maximize the information 

utilization of cutting force signals, features are extracted from the wavelet 

coefficients. Since Daubechies wavelets perform well in separating the 

frequency bands during signal decomposition, they are selected for feature 

extraction in this research. In this test, the wavelet transformation of cutting 

force was repeated twice to obtain the coefficients in subsequent experiments. 

Through wavelet transformation, the experimental cutting force data were 

decomposed into the constituent parts at frequency bands [1 Hz, 375 Hz], [376 

Hz, 750 Hz] and [751 Hz, 1500 Hz], respectively. 

(3) Feature extraction. Due to the fact that the energy of cutting force tends to be 

concentrated at tooth passing frequency and its low frequency harmonics, the 

energy level of the low frequency band is  much higher than that of middle 

and high frequency band. Cutting force data in low frequency band can be 

extracted for feature extraction. After the cutting force is decomposed through 

wavelet transform, the low frequency band of signal is represented by the 

approximation coefficients. Therefore, the wavelet approximations of the force 

data are used for feature extraction. Tool wear states are reflected by the 

varied characteristics of the extracted features. To obtain feature vectors from 

the cutting force model, the measured and simulated cutting force are 

processed through wavelet transform. The residual difference between the 

measured and simulated approximation coefficients can be a sensitive feature 

vector, which is used for the evaluation of the difference between measured 
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force and simulated force. When the tool is in good condition, this measure 

has the lower value which shows the force signals are well matched. Three 

kinds of residual measurements are used in this work: 

a. Residual Maximum Approximation Coefficients (RMA): 

 (max( ) max( )) / max( )
m s s

RM A A A A   (5.2) 

b. Residual Average Approximation Coefficients (RAA): 

 ( ) /
m s s

RAA A A A   (5.3) 

c. Average Residual Energy (ARE): 

 2 2

1

1
(( ( )) ( ( )) )

N

m s

i

ARE A i A i
N 

   (5.4)

 

where Am( i ) and As( i ) are wavelet approximation coefficients from 

measured cutting force and simulated cutting force respectively, N is 

the total number of wavelet coefficients.  

(4) Feature selection. Relevant features are selected using discernibility-based 

data analysis based on rough set theory (RST). According to the feature 

selection results discussed in Chapter 4, the most effective feature set includes 

following features: 

a. Residual Maximum Approximation Coefficients at Y direction 

(RMA_Y) 

b. Residual Maximum Approximation Coefficients at Z direction 

(RMA_Z) 

c. Residual Average Approximation Coefficients at Z direction (RAA_Z) 

d. Average Residual Energy at X direction (ARE_X) 
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e. Average Residual Energy at Y direction (ARE_Y) 

f. Average Residual Energy at Z direction (ARE_Z) 

This feature set is used as input of support vector machines to estimate the tool 

wear. 

(5) Decision making using support vector machine for regression (SVR). The 

application of SVR has been discussed in Chapter 3. In this test, Gaussian 

kernel is chosen as the kernel function: 

 

2

2
( , ) exp

2

i j

i j
K



 
  
 
 

x x
x x  (5.5) 

To construct the SVR model, the training data sets are obtained under various 

cutting parameters used in the experiment. There are total six datasets with 

different cutting conditions. Two datasets are used as training dataset, while 

the other four datasets are used as test dataset. 

When the tool mills the surface at a specific cutting pass, the tool wear area in 

current cutter-workpiece contact area is selected as a measure of tool wear 

level. After tool wear is generated by the milling at a specific cutting pass, the 

milling at the next pass will generate tool wear over the previous tool wear in 

the overlapped portion. The residual cutting force feature is correlated with the 

tool wear area in the tool-workpiece contact area at current pass. In order to 

extract training data from the test dataset, the current tool wear area in the 

tool-workpiece contact area is determined by interpolation method. 
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5.5 Experimental results and discussion 

5.5.1 Interpolation of tool wear for training data 

When the tool mills the surface at a specific cutting pass, the tool wear area in current 

cutter-workpiece contact area is selected as a measure of tool wear level. After tool 

wear is generated by the milling at a specific cutting pass, the milling at the next pass 

will generate tool wear over the previous tool wear in the overlapped portion. The 

residual cutting force feature is correlated with the tool wear area in the tool-

workpiece contact area at current pass. In order to extract training data from the test 

dataset, the current tool wear area in the tool-workpiece contact area needs to be 

determined. 

The tool wear was measured after the whole hemispheric surface was milled. As all of 

the cutting passes overlapped, the measurement of tool wear at certain angular 

location at the cutting edge would have been the cumulated effect of tool wear due to 

all of the cutting passes at the particular angular location. The measured tool wear is 

therefore not the tool wear profile when milling a specific pass. This means that the 

measured tool wear has to be decomposed tool wear profiles from each pass. 

The tool wear profile at the tool-workpiece contact area when milling a specific pass 

can be simulated by the geometric tool wear model. The value of tool wear area is 

used to train the SVR to build the tool wear estimation model. After training, the tool 

wear estimation model can be used to predict the tool wear area in the range of 

engaged cutting edge at specific pass. 
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Subrahmanyam (2009) has developed a tool wear estimation model based on the 

geometrical model. In general, the flank wear is developed in three stages: rapid 

initial stage, progressive wear stage, and rapid wear stage. This study investigates the 

change of tool wear profile in progressive wear stage as most of tool useful life is in 

this stage. In this stage, the tool wear increases steadily according to the chip load and 

friction length. Therefore, geometric tool wear model can be used to simulate tool 

wear profile at each pass.  

 

 

 

 

 

 

 

 

Figure 5.3 shows the cutting edge which is equally divided into a finite number of 

cutting edge elements represented in degrees. When milling one pass, the portion of 

the cutting edge that contacts with the workpiece comprises a certain number of the 

cutting edge elements. One element may contact with the workpiece at different pass 

due to the overlap of the contact area for the neighboring passes. By using the 

geometric tool wear model, the tool wear at each element can be simulated by the chip 

load and friction length. The tool wear value of all the cutting edge elements in 

current tool-workpiece contact area represents the tool wear profile at current pass. 

Figure 5.3 Cutting edge elements for ball nose end mill 
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Subrahmanyam (2009) has developed the equation for the model as follows: 

  3i i i i
tw k cl dt fl dt ttw

 


      
      (5.6) 

where 
( 1)

1

1
i

i t

ttw
k tw



 
  
  
 

 

‘twi’ is tool wear for ‘i
th

’ number of cutting edge, ‘twi(t-1)’ is tool wear for ‘i
th

’ cutting 

edge estimated in earlier pass. ‘cli’ and ‘fli’ are the total chip load removed by ‘i
th

’
 

cutting edge. The integrated value represents the accumulated chip load and friction 

length for entire tool path, and ‘k3’, ‘’, ‘’ ‘’ and ‘k’ are model parameters. 

The tool wear at current cutting edge element is estimated by three components: the 

chip load, the friction length and the tool wear feedback of previous pass. The change 

of engagement of each pass can be represented by the change of group of cutting edge 

elements. The change of cutting conditions for each pass, such as depth of cut, feed 

rate, inclination angle and cutter path direction, will be modeled as chip load and 

friction length at the geometric tool wear estimation model. 

Figure 5.4 shows tool wear profile simulation using geometric tool wear estimation 

model at specific cutting pass. As the cutting force measurement is pass-by-pass, the 

tool wear profile at each cutting pass need to be simulated so that the cutting force can 

be monitored pass-by-pass to estimate the value of tool wear area. 
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Figure 5.4 Tool wear profile simulation at specific cutting pass 

Figure 5.5 Tool wear areas when milling hemispherical surface using a new tool 
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5.5.2 Tool wear estimation 

Figure 5.5 and Figure 5.6 show the tool wear area at the end of specific cutting passes. 

In the figures, the rectangle shows the angle range of tool-workpiece contact area. The 

value of tool wear area in the cutter-workpiece contact area can be predicted using 

residual cutting force features. Figure 5.7 shows the tool wear area prediction result 

when milling hemispherical surface from top to bottom using a new tool. Figure 5.8 

shows the tool wear area prediction result when milling hemispherical surface from 

bottom to top when using a worn tool. The worn tool has been used to mill the 

hemispherical surface from top to bottom. 

Figure 5.6 Tool wear areas when milling hemispherical surface using a worn tool 
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Figure 5.7 Tool wear estimation when milling hemispherical 

surface using a new tool 

Figure 5.8 Tool wear estimation when milling hemispherical surface 

using a worn tool 
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Comparing Figure 5.5 and Figure 5.6, the tool wear distribution in the cutter-

workpiece contact area is quite different. It may affect the accuracy of the results of 

tool wear profile prediction. When the tool wear distribution is not uniform in current 

cutter-workpiece contact area, the tool wear prediction may be less accurate. 

5.6 Conclusion 

This study is to monitor tool wear profile along the cutting edge using cutting force. 

The residual cutting force feature is correlated with the tool wear area in current 

engaged cutting edge. Firstly, this method has considered the accumulated tool wear 

from different cutter-workpiece contact area. Secondly, the effective chip load at 

different section in the same contact area is different for each specific tool pass. The 

geometric modeling method was used to evaluate the chip load of the contact section 

of the cutting edge with workpiece. Thirdly, overlapped cutting passes are considered 

in this method. Fourthly, two different tool orientations have been tested in the 

experiments: horizontal downward; horizontal upward. 
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Chapter 6  
 

Conclusions and Recommendations  

6.1 Conclusions 

Using sensors to estimate tool wear is a very important function to improve workpiece 

quality and accuracy in ball-nose end milling process. Among various sensors, cutting 

force sensor is the most suitable sensor in end milling process. This research proposed 

a model-based tool wear estimation framework using cutting force to monitor ball-

nose end milling process. This framework should help contribute to the reduction of 

production cost and the improvement of product quality in mould and die industry. 

The proposed framework comprised three parts: feature extraction from cutting force 

data; feature selection; tool wear estimation using support vector machines for 

regression (SVR). The following are the contributions reported in this thesis: 

1.  One key contribution in this study is the development of a model-based method to 

extract the features from cutting force data and use the features extracted as inputs of 

the SVR for tool wear estimation. Feature extractions were conducted based on the 

discrete wavelet transform (DWT) techniques. Cutting force data were collected and 

processed using wavelet technique. To determine the useful frequency band of the 

decomposed data for feature extraction, energy distribution using DWT was 

evaluated. Support vector machines for regression (SVR) were trained by the feature 

vectors to build a tool wear estimation model to on-line predict tool wear. The 

experimental results show that the model-based approach is feasible and effective.   
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2.  This study has identified and developed energy related features as effective 

features for input to the SVR. Another contribution of the study is in the development 

of a method for the selection of relevant and effective features to improve the 

efficiency and accuracy of the aforementioned approach. An integrated feature 

selection methodology based on rough set theory (RST) and support vector machine 

for regression (SVR) has been proposed in this study. The results showed that it is 

possible to use RST to reduce feature space and improve the accuracy of tool wear 

estimation. In this method RST is applied for the first time in feature selection in tool 

wear estimation. Presently, different approaches have been used to find reducts in 

RST. In future study, the optimal reducts seeking approach can be explored. 

3.  Based on the extracted features from cutting force data, a machine learning method 

has been investigated to build an efficient regression model for tool wear estimation. 

The machine learning method used in this work is support vector machines for 

regression (SVR). In this study, kernel selection methodologies were explored to find 

optimal kernel, including the type of kernel and kernel parameters. Experimental 

results showed that the proposed method can effectively estimate the tool wear to 

improve the machining quality. Compared with artificial neural networks (ANN) 

method, SVR overcomes the over-parameterization and non-convergence problems. 

When the size of training data set was small, the accuracy of tool wear estimation 

using SVR was better than ANN method. The reason could be that the SVR takes 

advantage of prior knowledge of tool wear and construct a hyper-plane as the decision 

surface. Experimental results also showed that the SVR performances were quite 

different when four kinds of kernel were used for tool wear estimation applications. It 

can be observed from the results that kernel selection is one of the main reasons that 

affect the tool wear estimation performance. 
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4. Reliability is the main concern for preventing widespread adoption of tool 

condition monitoring techniques. Most of present monitoring systems only determine 

the presence of the fault, that means the decision is either tool worn or tool not worn 

(binary identification) (Teti et al., 2010). In industrial environment, many unpredicted 

factors, such as stochastic influence from workpiece composition, vibration, and 

machine noise, may cause interference to the results of tool condition monitoring.  

Hence the false prediction is unavoidable. It is very difficult to identify the false 

prediction for tool condition monitoring system with binary identification. In order to 

improve the reliability of tool condition monitoring system, multi-classification of 

tool state or tool wear estimation methods are explored to avoid the unnecessary tool 

replacement or workpiece damage. In common industrial practice, tool wear does not 

mean the end of useful tool life in most cases. If the tool wear is tolerable, the 

machinist may decide to continue using the tool in subsequent tool path. Tool wear 

monitoring methods can help machinists to monitor the tool wear process from initial 

wear state to severe wear state. In this way, instead of providing binary identification 

of tool state (tool worn or tool not worn), the threshold-based tool wear monitoring 

system monitors the tool wear in real-time. The machinist can be alerted if the 

machining process needs to be supervised closely when tool wear is over certain limit. 

In summary, tool wear monitoring methods have been developed to overcome the 

limitation of binary identification and to improve reliability. 

5. Another important concern for industrial application is the deployability of TCM 

system. As large number of test cuts is required to build a TCM system, the 

requirement on test cuts makes TCM system only suitable for large scale production. 

Ball-nose end milling is normally one-off or small batch milling application. Trial 

machining of some workpieces is time-consuming and very expensive for one-off or 
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small batch milling applications. As the data of test cuts are difficult to obtain, the 

TCM system is not easy to be adopted in the industrial applications. To avoid the 

large amounts of empirical data collection, cutting force model based tool condition 

monitoring has been explored in this study.  

6.2 Recommendations for future work 

6.2.1 Inexpensive alternative sensors 

The cost is one of the factors affecting the application of tool condition monitoring 

system (TCM) in industry. In order for industry to adopt sensor based TCM system 

cost-effective solutions should be provided. 

Cutting force is usually considered as one of the most reliable measurement to 

monitor the tool condition (Cui, 2008). However, cutting force sensors are very 

expensive. If the cost-performance ratio of TCM system is very high due to the 

expensive sensors, industry may not accept the well-known TCM method to prevent 

damage and improve quality in machining. Therefore, inexpensive alternative sensors 

are explored for TCM system. 

Li et al. (Li et al., 2004) developed a hybrid mathematical-fuzzy method to estimate 

the feed-cutting force using inexpensive current sensors. The estimated cutting force 

is employed to monitor the tool wear in a computerized numerical control (CNC) 

turning center. But the proposed method is not suitable for milling process with 

intermittent nature. It is an interesting research topic to make use of inexpensive 

current sensors to monitor tool condition in milling. 
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Recently, an energy based cutting force model was proposed to estimate cutting force 

using an inexpensive and non-invasive spindle motor power sensor in end milling (Xu 

et al., 2007). One research topic is to explore the reliable correlations between the 

coefficients of cutting force model and tool conditions including the type and extent 

of tool damage (Jerard et al., 2008). Another research topic is to overcome the limited 

bandwidth from the data sources of power sensor. 

6.2.2 Base wavelet selection 

Wavelet selection is an important factor in improving the performance of the SVR 

model. In wavelet analysis any wavelet can be selected as the basis function, but the 

quality of the results depends on the selected wavelet. A suitable wavelet needs to be 

selected to produce the best results for feature extraction in the cutting force signals. 

The family of Daubechies wavelets is chosen as the basis functions in most of the 

fault diagnostics applications. Daubechies wavelets are classified according to the 

number of vanishing moments. To investigate the influence of the number of 

vanishing moments, typical wavelets, db4, db8 and db20 have been used to process 

cutting force data for feature extraction. The same testing set was used for the 

comparison of the performance of tool wear estimation by different wavelets. Figure 

6.1 shows that the SVR results are quite different for different wavelets. In these 

results, averaged absolute estimation errors (AAEE) of db2, db4 and db10 are 8.9 μm, 

10.0 μm and 13.6 μm respectively. From the result, it is clear that the AAEE for 

Gaussian kernel with db2 wavelet is 8.9 μm. This AAEE value is the smallest 

compared with those for the other wavelets. Therefore, it will be an interesting 

research topic to choose the most efficient wavelet for tool condition monitoring. 

Base wavelet selection criteria need to be developed to evaluate different wavelets. 
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6.2.3 Extract features using pattern recognition methods 

To determine the tool wear by measured cutting force, the feature will be extracted 

from the measured cutting force and the simulated force with different flank wear. 

The similarity between the feature vectors from measured cutting force and simulated 

cutting force is a kind of sensitive features. When the tool is in good condition, these 

measures have the lower values which show the force signals are well matched.  

(1) Number of vanishing moment is 2 (2) Number of vanishing moment is 4 

(3) Number of vanishing moment is 10 

Figure 6.1  Comparison of SVR results using different wavelet 

for signal processing 
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Let Cm( i ) and Cs( i ) be the wavelet coefficients from measured cutting force and 

simulated cutting force respectively, N be the total number of wavelet coefficients, 

following similarity measures are possible features: 

Relative Residual (RR): 
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Wavelet Distance (DIST): 
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Correlation Coefficient (CC): 
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Residual Difference(RD): 
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6.2.4 Kernel selection 

The kernel function is used for nonlinear mapping the input features into a higher 

dimensional feature space, and thus linear regression in the feature space is feasible. 

The optimal kernel (including the type of kernel and kernel parameters) is needed to 

get the high generalization performance to estimate tool wear. The polynomial kernel, 
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Gaussian kernel, Sigmoid kernel and spline kernel are the commonly used kernels for 

support vector machines. 

The polynomial kernel function is 
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The Gaussian kernel function is 

 

2

2
( , ) exp

2

i

i
K



 
  
 
 

x x
x x  (6.6) 

The Sigmoid kernel function is 
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The spline kernel is 
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A preliminary study was conducted by using 4 different kernels to estimate the tool 

wear for the same data set and same feature extraction methods. The performances are 

quite different when four kinds of kernel are used for tool wear estimation 

applications. To compare the performance of the regression results from different 

kernel, averaged absolute estimation errors (AAEE) are shown in Table 6.1. It can be 

observed from the results that kernel selection will affect the tool wear estimation 

performance. 
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Table 6.1 Comparison of tool wear estimation using different kernel function 

Kernel Function AAEE 

1. The polynomial kernel 6.3 μm 

2. The Gaussian kernel 10.0 μm 

3. The Sigmoid kernel 14.8 μm 

4. The spline kernel 34.1 μm 

One of the possible kernel selection methods is meta-learning for support vector 

machines (Ali and Smith-Miles, 2006). This method is to determine which kernel can 

get optimal performance for specific classification application. To improve this 

approach into regression applications, the performance evaluation function needs to 

be identified to evaluate the performance of SVR with difference kernel functions. 
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