1,088 research outputs found

    A Fast and Scalable Authentication Scheme in IoT for Smart Living

    Full text link
    Numerous resource-limited smart objects (SOs) such as sensors and actuators have been widely deployed in smart environments, opening new attack surfaces to intruders. The severe security flaw discourages the adoption of the Internet of things in smart living. In this paper, we leverage fog computing and microservice to push certificate authority (CA) functions to the proximity of data sources. Through which, we can minimize attack surfaces and authentication latency, and result in a fast and scalable scheme in authenticating a large volume of resource-limited devices. Then, we design lightweight protocols to implement the scheme, where both a high level of security and low computation workloads on SO (no bilinear pairing requirement on the client-side) is accomplished. Evaluations demonstrate the efficiency and effectiveness of our scheme in handling authentication and registration for a large number of nodes, meanwhile protecting them against various threats to smart living. Finally, we showcase the success of computing intelligence movement towards data sources in handling complicated services.Comment: 15 pages, 7 figures, 3 tables, to appear in FGC

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    Container-based microservice architecture for local IoT services

    Get PDF
    Abstract. Edge services are needed to save networking and computational resources on higher tiers, enable operation during network problems, and to help limiting private data propagation to higher tiers if the function needing it can be handled locally. MEC at access network level provides most of these features but cannot help when access network is down. Local services, in addition, help alleviating the MEC load and limit the data propagation even more, on local level. This thesis focuses on the local IoT service provisioning. Local service provisioning is subject to several requirements, related to resource/energy-efficiency, performance and reliability. This thesis introduces a novel way to design and implement a Docker container-based micro-service system for gadget-free future IoT (Internet of Things) network. It introduces a use case scenario and proposes few possible required micro-services as of solution to the scenario. Some of these services deployed on different virtual platforms along with software components that can process sensor data providing storage capacity to make decisions based on their algorithm and business logic while few other services deployed with gateway components to connect rest of the devices to the system of solution. It also includes a state-of-the-art study for design, implementation, and evaluation as a Proof-of-Concept (PoC) based on container-based microservices with Docker. The used IoT devices are Raspberry Pi embedded computers along with an Ubuntu machine with a rich set of features and interfaces, capable of running virtualized services. This thesis evaluates the solution based on practical implementation. In addition, the thesis also discusses the benefits and drawbacks of the system with respect to the empirical solution. The output of the thesis shows that the virtualized microservices could be efficiently utilized at the local and resource constrained IoT using Dockers. This validates that the approach taken in this thesis is feasible for providing such services and functionalities to the micro and nanoservice architecture. Finally, this thesis proposes numerous improvements for future iterations

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    corecore