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ABSTRACT 

Edge services are needed to save networking and computational resources on higher tiers, 

enable operation during network problems, and to help limiting private data propagation 

to higher tiers if the function needing it can be handled locally. MEC at access network 

level provides most of these features but cannot help when access network is down. Local 

services, in addition, help alleviating the MEC load and limit the data propagation even 

more, on local level. This thesis focuses on the local IoT service provisioning. Local service 

provisioning is subject to several requirements, related to resource/energy-efficiency, 

performance and reliability. 

This thesis introduces a novel way to design and implement a Docker container-based 

micro-service system for gadget-free future IoT (Internet of Things) network. It 

introduces a use case scenario and proposes few possible required micro-services as of 

solution to the scenario. Some of these services deployed on different virtual platforms 

along with software components that can process sensor data providing storage capacity 

to make decisions based on their algorithm and business logic while few other services 

deployed with gateway components to connect rest of the devices to the system of solution. 

It also includes a state-of-the-art study for design, implementation, and evaluation as a 

Proof-of-Concept (PoC) based on container-based microservices with Docker. The used 

IoT devices are Raspberry Pi embedded computers along with an Ubuntu machine with 

a rich set of features and interfaces, capable of running virtualized services.  

This thesis evaluates the solution based on practical implementation. In addition, the 

thesis also discusses the benefits and drawbacks of the system with respect to the empirical 

solution. The output of the thesis shows that the virtualized microservices could be 

efficiently utilized at the local and resource constrained IoT using Dockers. This validates 

that the approach taken in this thesis is feasible for providing such services and 

functionalities to the micro and nanoservice architecture. Finally, this thesis proposes 

numerous improvements for future iterations. 
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1 INTRODUCTION 

The current digital world is mostly surrounded by gadgets. Users get various services using 

these smart devices. Gadgets, such as smartphones, tablets, PDAs among others are already 

been heavily used in various aspect in daily life. For example, gadgets play a key role in 

applications such as banking, healthcare, and logistics. With the evolution of recent enabling 

technologies such as IoT, edge/fog computing, virtualization and blockchain together with 

high-speed 5G networks are driving this digitalization to the next level. The new digital vision 

would assume gadget-free services, i.e. users can able to access all required services which 

were previously available through gadgets, now can be accessed without gadgets [14]. The 

nearby surroundings will be smart enough to recognize the particular context and offer digital 

services accordingly. Various services and computations will be embedded in smart spaces and 

services are given to the valid users whenever required and disappeared when not required. 

These smart and gadget-free services are also referred to as “Service Bubble” which are 

delivered to gadget-free users [23]. The development of such smart services needs various 

technological capabilities such as smart and low power sensor and communication 

technologies, printed electronics; and cloud computing. Service composition and 

decomposition require by various software, hardware resources for computations and 

processing as the services should not be interrupted with the mobility of users having no hand-

carry gadgets [45]. Thus, this vision of current gadget-centric world towards future user-centric 

world require various advanced technological developments. 

 

1.1 Purpose and Objective 

In this time, the digital services reside on the cloud or the edge are accessible with the help of 

an active internet connection through several computational resources. These services may 

disrupt and face security threats all along the communication path between a remote server and 

a client.  

 

 
 

Figure 1. Future IoT network architecture [23].  

 

All these obstacles in between a remote server and a client are continuously pushing us to 

move services from remote to local subsystem. Currently, there is no such model that could 

help us to move services and resolve the above problem. This model should be able to deploy 
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these digital services into the local IoT environment so that it reduces the computational 

complexity and hence accessible in “offline” mode too. Here, this thesis proposes a novel way 

and shows how to move and deploy services into the local system. 

 

1.2 Scope 

A virtualized system of architecture is required for on-demand service composition based on 

the available hardware and software resources at the current location of a user. Hence, there is 

a need for a novel decentralized service model that suited for gadget-free devices in local IoT 

network. Harjula et al. [23] proposed a nanoEdge conceptual model that addresses this problem. 

This model will generate on-demand services with the collaboration of network, data 

processing, storage; and security services. This thesis is the implementation part of that work. 

This PoC exemplifies and provides a reliable and smart solution for future distributed gadget-

free service for local IoT components with a real-world use case scenario.  

Rest of this thesis is design as follows – Chapter 2 presents comprehensive related 

background technologies related to the fields of the internet of things and wireless sensor 

networks. Chapter 3 provides detailed information about the design and implementation of 

Docker-based micro-services in IoT. Chapter 4 contains a detailed description of the evaluation 

results and comparison of the implemented technologies with similar other IoT technologies. 

Finally, the implementation of this thesis is discussed in chapter 5 with possible future 

improvements. 
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2 RELATED WORK 

This chapter will cover the theoretical part for a better understanding along with the definitions 

approaching in this thesis. Then this thesis will study about the chosen technology step by step 

and move towards the design and implementation of Docker-based micro-service for IoT with 

several protocol stacks.  

 

2.1 Internet of Things 

Kevin Ashton  [1], co-founder of the Auto-ID Center at MIT, introduced first the term Internet 

of Things (IoT) for a presentation he made to Procter & Gamble (P&G). He used this in RFID 

technologies in 1999 to grab the attention of P&G's senior management. A couple of years have 

been passed after the first appearance of IoT and being major popular research and industrial 

topics in the area of Information and Communication Technology (ICT). The IoT term appears 

so frequently but not well defined in ICT and raise the doubt of what would be real elements of 

the terminology [1]. IoT is a system without requiring human interaction of interrelated 

computing devices that are provided with Unique Identifiers (UIDs) with the ability to transfer 

data over a network [2]. In general, an IoT system often consists of three basic collective 

components such as device, gateway; and cloud [69]. A device includes hardware and software 

to interact with the rest of the world whereas a gateway enables devices to connect the internet 

to reach cloud services. A cloud is a list of resources to process client request from a device 

through a gateway. Figure 2 represents the traditional architecture of an IoT system. 

 

 
 

Figure 2. IoT traditional architecture.  

 

Machine-to-Machine (M2M) communication enables ubiquitous connectivity among 

autonomous devices without human interaction or with minimal human interaction to support 

data transfer among sensors and actuators [65]. It is a major concern to IoT infrastructure. One 

of the key challenges in M2M communication is to provide an effective way for multiple access 

in the network and to minimize network overload. In M2M communication, a network domain 

comprises of a core network, access network, M2M service capabilities, M2M applications. 

M2M devices connect to network domain either directly or indirectly through a gateway. 

Nowadays, centralized cloud is not enough to describe the IoT architecture. Hence, Edge 

Computing (EC), simple form of a cloud with limited computing capacity, has been introduced 

to increase the computing capacity and reduce the energy consumption in M2M communication 

[65]. Therefore, modern IoT may consist of cloud, edge; and end-devices. Figure 3 shows the 

modern architecture of an IoT system. 
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Figure 3. IoT modern architecture.  

 

IoT covers a variety of protocols, domains, and applications. Following subsections describe 

the existing technologies that are used in current IoT systems. 

 

2.1.1 IoT Protocols 

The main objective of IoT is the integration of billions of smart electronic objects so that they 

can communicate and exchange data among them. The key requirements of IoT include low 

latency, high bandwidth, privacy and security. To satisfy these requirements, IoT requires a set 

of rules or protocols by dividing the entire communication system into different multiple layers, 

each having their own challenges and requirements. Researchers and developers have come up 

with new IoT communication protocols in order to make successful autonomous connectivity 

among IoT devices. These protocols are enabling the empirical communication of IoT devices. 

Figure 4 shows the layer-wise heterogenous recent IoT protocol standard. 

 

 
 

Figure 4. Heterogeneous IoT standard protocols [41].  
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All these protocols have designed for different purposes that are mostly related to the role of 

the specific layer they operate on. On the application layer, MQTT and CoAP are the most 

widely used protocols for IoT communications, particularly for low power devices. These 

protocols have a small payload that enabling faster communications by using less power to 

enhance and prolong battery lifetime. 

 

2.1.1.1 CoAP 

HTTP is a resource-consuming internet protocol due to high overhead for e.g. synchronous 

operation, text-based format; and header structure. Chan and Kunz et al. [39] proposed CoAP 

that allows the simplest communication protocol, especially for electronic devices. IETF 

defined this by the open standard RFC 7252, that runs on top of UDP by default but can also 

be implemented over TCP, DTLS or SMS. This protocol is designed for low-power devices 

such as sensors and actuators. CoAP is affordable with resource constraints when network 

bandwidth is critical. Figure 5 represents the network stack offered by CoAP. [42] 

 

 
 

Figure 5. Network protocol stack with CoAP [42].  

 

CoAP enables web integration with URIs and MIME types like HTTP. However, CoAP 

clients can talk to HTTP servers and vice versa with an interface CoAP and HTTP. Unlike 

HTTP, CoAP has its own response codes. This protocol is fit into a single datagram with a 

single frame at the IEEE 802.15.4 layer or Ethernet. It can avoid fragmentation at underlying 

layers, especially at the link layer. Figure 6 represents the CoAP subsystem architecture. [42] 
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Figure 6. CoAP subsystem architecture.  

 

By default, CoAP uses 5683 and 61616 port for server and client respectively. Exchange 

messages are 16-bit with 2-bit message type as conformable or CON (00 or 0), nonconformable 

or NON (01 or 1), acknowledged or ACK (10 or 2) and retransmitted (or reset) or RST (11 or 

3). CoAP request and response are composed with a 3-bit class (c) and a 5-bit detail (d) in c.dd 

format. 0, 2, 4 or 5 value is used for a class for requests, success responses, client error responses 

and server error responses respectively. Depending on the class value, a detail holds a request 

or response code. CoAP code 0.00 implies an empty message whereas 2.01, 2.02, 2.04, 2.05, 

4.04, 4.05 indicates created, deleted, updated, reset content, not found and not allowed 

respectively. The message ID is in 16-bit where a token is in 0 to 8 bits [43]. All modern 

programming languages like Java, C++, Python and many others have support for CoAP [44]. 

CoAP has a similarity with HTTP in request and repose. If for example, a client wants to access 

a url with GET method allowing param1 and param2 parameters then it could be – 

 

coap://host:port/url?param1=value1&param2=value2 

 

2.1.1.2  MQTT 

Message Queue Telemetry Transport or MQTT is a publish/subscribe messaging protocol that 

operates on the application layer which is extremely simple and lightweight for M2M 

communications. This is designed for constrained devices concerning issues like low-

bandwidth and high-latency. The design principles of MQTT turn the protocol more precisely 

where the bandwidth and the battery power are at a premium. The typical MQTT architecture 

is depicted in Figure 7.  
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Figure 7. MQTT subsystem architecture [63].  

 

In general, the MQTT protocol consists of a server (broker) and a huge number of clients 

(up to 10k devices). Each client connects to the broker with its own unique identifier (client 

ID). A broker manages client’s connections and exchanges messages among them. In addition, 

a database persistence often requires in order to keep messages for future reference. A broker 

is responsible for distributing messages to all clients reside into a network when those were 

temporarily disconnected and returned back into online again. This process of distribution is 

called the retain message.   

A client must send a keep-alive message periodically to the broker to keep the connection 

alive when it is in idle state (not pulling or pushing messages) for a long time, otherwise, the 

broker terminates the connection after a timeout [63]. Basically, a connection timeout is 

calculated by the following equation –   

 

 CT = 1.5 * KAT (1) 

 

Where, CT is the connection timeout and KAT is the keep alive time  [63]. According to the 

equation, the connection time is proportional to the keep alive time. 

 

2.1.2 M2M Protocols 

Higher-level application-layer protocols are not needed in all communication scenarios. Thus, 

few low-level standard rules or protocols are required that enable us to exchange of information 

from one machine to another. These should be secure and reliable for low power devices and 

prolong the battery life. This section focuses on M2M protocols operating on lower layers. 

  

2.1.2.1 6LoWPAN  

IEEE802.15.4 is a standard for low power Wireless Personal Area Network (WPAN) proposed 

by 802.15 working group. It operates in 16 channels at 250kbps (over 2.4GHz band), in 10 

channels at 40kbps (over the 915MHz band) and in one channel at 20kbps (over the 868MHz 

band) with 16- bit or 64-bit addressing mode. This protocol resolves most key challenges of the 

WSN related to security, auto networking and low power consumption [70]. Figure 8 shows the 

Internet Protocol version 6 (IPv6) over Low power Wireless Personal Area Networks 

(6LoWPAN) architecture. 

 



 

 

15 

 
 

Figure 8. 6LoWPAN protocol architecture [77].  

 

The 6LoWPAN developed by the Internet Engineering Task Force (IETF) is in favor of 

WSN challenges. It enables the efficient use of IPv6 at low-power device through an adaptation 

layer. [70] 

 

2.1.2.2 BLE 

Bluetooth Low Energy (BLE) is a protocol used for low powered devices that designed on top 

of physical layer and data link layer. The classic Bluetooth then these devices generally face 

fast battery drain with the fact of frequent loss of connectivity among those devices. As a result, 

these devices require frequent pairing and repairing to share data. BLE is an emerging low 

power wireless technology that is developed for short-range network. It provides a single-hop 

communication which enables its usability to consumer electronics and security applications. 

A typical BLE protocol is shown in Figure 9. 

 

 
 

Figure 9. Typical BLE protocol stack [71].  



 

 

16 

 

A typical BLE stack consists of a controller and a host. Controller part usually forms with 

the physical and link layer while the host part forms with a Logical Link Control and Adaptation 

Protocol (L2CAP), an Attribute control (ATT), a Generic Attribute Profile (GATT), a Security 

Manager (SM) and Generic Access Profile (GAP). Host Controller Interface (HCI) is 

standardized with the host and the controller part. [70] 

 

2.2 Cloud Computing 

Cloud Computing (CC) is a centralized model that enables global access to configurable 

resources and services through applications, networks and storage devices. These resources are 

dynamically configured and accessible by any internet connected node, anywhere in the world. 

It allows the optimum resource utilization to adjust to an automatic variable load [3]. Figure 10 

shows how a user get access to the cloud. 

 

 
 

Figure 10. Data processing at the cloud [80].  

 

Service providers can easily deploy their services without having the base setup which is 

provided by CC platform [5] – [7]. On demand scalability, storage capacity; and security are 

very regular benefits of cloud computing. In addition to these benefits, control of cloud services 

in the form of Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as 

a Service (IaaS) turns into Everything as a Service (EaaS or XaaS) which fulfil the requirements 

of any organization. However, the centralized cloud faces a few key challenges even though it 

has a high computational performance at the server. High latency is one of the biggest 

challenges due to the very high distance between the client device and the server station. This 

is controversial and becomes very problematic in exchanging data from a server when a client 

has low-speed internet connection especially for online gaming [8]. Privacy and the public 

services provided by CC are vulnerable in the fact of security [9] – [13]. Securing the 

confidential data of end-users and organizations is a major concern that propagates with a public 

network to the data center [14] – [16]. These are the crucial driving factors to move services 

towards Edge Computing which pushes cloud services to the edges of a network [17] – [19].  
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2.2.1 Web Protocols 

Typically, a web page is composed of many contents such as text, images, videos, scripts, and 

more. These contents may come from either a single server or several many distributed servers.  

 

 
 

Figure 11. Client-Server communication with HTTP [40].  

 

Clients and servers exchange messages (as opposed to a stream of data) by a web application. 

The client message is called a request whereas the server message as an answer is called 

response. [40] 

 

2.2.1.1 HTTP 

Hypertext Transfer Protocol is a standard web protocol to specify how content will be 

exchanged between a server and a client. It allows a web client to fetch web resources, such as 

HTML documents. Theoretically, it uses the Transmission Control Protocol (TCP) over Internet 

Protocol or IP. The contents of a server can be sent to the client as HTML, XML, JSON format. 

Part of a document can be updated by the client request. Figure 12 presents a typical HTTP 

protocol stack. [40] 

 

 
 

Figure 12. HTTP protocol stack [40].  

 

A client can access a web resource with a standard method defined for HTTP such as GET, 

POST, PUT, DELETE; and many others. Typically, port 80 is allocated for HTTP by default. 
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HTTP GET request url with parameters param1 and param2 can be accessed through a browser 

as –  

 

http://host:port/url?param1=value1&param2=value2 

 

The server sends a status attached to the HTTP header along with the message body in 

response to a client. These statuses have a standard format for example – 1xx (informational), 

2xx (success), 3xx (redirection), 4xx (client error) and 5xx (server error). Appendix 2 shows 

the HTTP status codes.  

The HTTP is developed by Tim Berners-Lee over 1989-1991. It has no version since it was 

invented and later introduced with HTTP/0.9. The first version of HTTP (0.9) has no support 

for other types of documents (as an attachment) and has no headers (status and codes). After 

that, HTTP/1.0 has been introduced in 1991-1995 that enables us to add documents along the 

text-based messages with Content-Type. It also informs, the browser about the headers (status 

and codes) in response to the client request. From 1995, HTTP/1.1 has been started developing 

to support caching, chunk response with numerous languages support along with encoding 

mechanism. In 2016, HTTP/2 has been released with secured cookie. [78] 

 

2.2.1.2 HTTPS 

The text-based HTTP protocol has a bunch of drawbacks in privacy and security, especially for 

the online transaction in banking and e-commerce trading. The Man-In-The-Middle (MITM) 

attack allows an intruder to steal data passing through the communication channel [72]. Figure 

13 indicating the problem space in HTTP and alternative solution to the problem.  

 

 
 

(a) (b) 

 

Figure 13. Intruder in (a) HTTP (b) HTTPS.  

 

An HTTP connection basically secured with a certificate provided by Transport Layer 

Security (TLS) formerly known as Secure Sockets Layer (SSL). By default, port 443 is reserved 

for secure HTTP or HTTPS. The whole communication channel is vulnerable if this certificate 

is not trustworthy and the original certificate will be replaced at the server-end by the attacker. 

[72] 
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Figure 14. Encryption and decryption process at communication channel over HTTPS [73]. 

 

The attack will be successful if a client neglects the browser’s warning without a double 

check of the certificate. This will be minimized with the encryption and decryption algorithm. 

Both of a client and a server first encrypt the original data by an encryption key before sending 

those and decrypt the encrypted data after they received before processing. In encryption 

process, a human unreadable cipher text is generated with the original data and an encryption 

key. On the other hand, a decryption key is used with the encrypted data (the ciphertext) to get 

back the original data at the decryption process. [73] 

 

2.2.1.3 Web Sockets 

Typical HTTP communication cycle includes a client request and a server response. In this 

communication, a client will not get any update information from the server without making a 

new request to the server. Websocket is a protocol similar to HTTP that allows persistent 

connectivity under the hood of the web browser. Figure 15 represents how websocket enables 

continuous connectivity in between a server and clients. 

  

 
 

Figure 15. Websocket in communication. 

 

Websocket consists of an opening handshake and a basic message framing and works over 

TCP. It provides a mechanism for browser-based applications that require two-way 

communication with servers to exchange data rather opening multiple HTTP connections [74]. 

It works like a full-duplex phone call where the stream of information is constantly flowing to 

a web browser. It is the foundation for the most real-time web application. If there is a change 
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in any device that connected through websocket then other devices connected to the gateway 

will be updated automatically. For example, if Desktop has a new state then server, Mobile and 

Tablet will be updated automatically. Websockets are mostly used in chat and messaging 

applications, many real-time systems like stock exchange applications, and so on.  

 

2.2.2 APIs 

Application Programming Interface (API) enables us to store and retrieve data to or from 

database irrespective of the access application. It allows us to use a feature that is written by 

someone else around the world. For instance, a weather API can help us to know about the 

environmental things like the temperature, humidity, etc. API endpoint or url is required to get 

access to a piece of information from a server. The information is gathered as key-value paired 

which is parsed with JSON or XML or any other suitable format. Figure 16 shows a typical 

communication based on API. 

 

 
 

Figure 16. Typical communication with an API [81]. 

 

Data in a remote datacentre can be accessed from many devices such as a web browser, a 

mobile application; etc. All these access devices may not have the same application to the access 

data. In such cases, APIs can help us to represent data for different view application.  

 

2.3 Edge, Fog and Mist Computing 

Data is continuously being generated at the edges of networks particularly in IoT. On the other 

hand, the cloud is generally too far from end-to-end devices meanwhile bandwidth is limited in 

the communication system. Moreover, the services will be affected when a lot of requests is 

being processed at the remote cloud server beyond the cyber security threats. Considering these 

factors, cloud computing is not always efficient model for data processing especially when the 

data is generating at the edge of the network [19]. Figure 17 shows the possible problem of 

space for cloud computing. 
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Figure 17. Service disruption between the cloud and the end-to-end device. 

 

Therefore, it would be better and more efficient to move remote cloud services those 

requiring low latency, high reliability, context information, reduction of data towards the edges 

of networks. The next subsections will present the most common alternative models as a 

solution to the cloud computing in favor of IoT.   

 

2.3.1 Edge Computing 

Edge Computing (EC) introduces a new layer of services between the cloud and the end-to-end 

devices at the edge of network that producing data directly. It optimizes the performance of 

services resides in the cloud by improving the speed of data processing at the edge of the 

network near to end-device.  

 

 
 

Figure 18. Data processing at the edge of network. 
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It greatly improves the latency between IoT nodes and servers by reducing the physical 

distance. It helps us to resolve security and privacy by limiting the scope of propagation of 

private data along the public networks [20].  

 

2.3.2 Fog Computing 

Edge is not enough to speed up the data processing at the end-devices especially for industry. 

Fog computing is a term closely related to Edge computing and has a stronger focus on 

enterprise services especially in the form of SaaS or PaaS [21].  

 

 
 

Figure 19. Data processing at the fog layer. 

 

Fog computing is a term proposed by Cisco [76] which enhance the computational capacity 

of the edge of network. Basically, it improves the performance of edge and gives resiliency to 

the unstable networks [22]. In practice, fog is the virtualized solution to cloud while edge is the 

infrastructural solution to cloud computing. So, in essence, fog computing is a standard for IoT 

while edge is the backbone concept [76]. Decentralized fog allows a reparative structure in the 

edge concept so that enterprises can perform better compared to cloud.  
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2.3.3 Mist Computing 

Ultra-low powered devices require more sophisticated services in the local IoT network. These 

low powered devices require virtualized service provisioning that taking place at IoT 

infrastructures often called as Mist Computing (MC).  

 

 
 

Figure 20. Data processing at the mist layer. 

 

It basically introduces another new layer in between edge computing and end-to-end devices 

at the local position. It improves the performance of edge computing having the services that 

only required to end-to-end devices. [23] 

 

2.4 Virtualization 

Virtualization is the core technology behind cloud computing and offers the ability to control 

complex systems [4]. It allows us separating the operating system from the underlying hardware 

[24]. It creates a virtual version of a resource such as a server, storage device, network or even 

an operating system. The framework of this technology divides the resource into one or more 

execution environments [25].  It also includes resource optimization, dynamic load balancing, 

and application isolation. Typical classification of virtualization shown in Figure 21. 
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Figure 21. General taxonomy of virtualization. 

 

Network virtualization allows to create logical network where server virtualization enables 

virtualization of physical hardware devices. Following subsections present server and network 

virtualization. 

 

2.4.1 Network Virtualization  

Network Virtualization (NV) is the process of separating the network from the underlying 

network hardware. It can create logical, virtual networks that are decoupled from the network 

devices. It ensures better integration to network and support virtual environments increasingly 

like virtual private network or VPN [26]. Network Functions Virtualization (NFV) virtualizes 

the typical network elements, such as routing by switches, firewalls by using Network Address 

Translation (NAT); and all other core network components [59][60]. 

 

2.4.2 Server Virtualization 

Server virtualization enables the conversion of a physical server into several multiple virtual 

machines that can be deployed on any arbitrary hardware. Each newly created virtual server 

acts like a unique physical device. Full virtualization, para virtualization, host OS virtualization, 

and containerization are common approaches of server virtualization. [26] 

 

2.4.2.1 Hypervisor-based Virtualization 

The hypervisor is computer software or hardware that creates a new partition and introduces 

guest OS on top of the physical hardware and host operating system. Figure 22 represents the 

architecture of hypervisor-based virtualization on top of physical hardware and the host OS.  
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Figure 22. Typical Hypervisor-based virtualization [34].  

 

Hypervisor requires a management software like Oracle VirtualBox and VMware to create 

and manage a new virtual system. The hypervisor has various limitations. The biggest drawback 

of this mechanism is that, it reserves resources like CPU and RAM even if they are not in use. 

This may cause for a negative impact on host OS with performance degradation. For an 

instance, A system has 16 GB of RAM and 3 guests OS is serving on it as Windows, Linux; 

and Mac OS where 8 GB, 4 GB; and 4 GB are allocated respectively. In this case, 8 GB that 

allocated for Windows OS will not sharable with neither Linux and nor Mac OS. This is also 

true for Linux and Mac system. It requires an image for guest OS like iso file used for a real 

OS which is another drawback of hypervisor-based virtualization. Start-up booting time and 

integration are other two important parameters that cause and lead us to use containerization 

solution to virtualization technique.  

 

2.4.2.2 Unikernel-based Virtualization 

The traditional hypervisor-based system populates a full guest OS inside a host operating 

system and allocates physical and logical resources for that guest OS. Considering these pitfalls 

with the issue when the system does not require modification after deployment, unikernel can 

be an effective solution [34]. Unikernel is single kernel-based virtualization and is a single-

purpose appliance which is used at compile time. Figure 23 gives an architectural overview of 

a unikernel system.  
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Figure 23. Unikernel-based virtualization [34].  

 

Security and unikernels are tightly coupled. Moreover, a unikernel provides high security by 

suppressing unnecessary components from the applications and hence reducing the scope of 

attacking surface. The scope of attacking surface of a unikernel system is strictly confined to 

the embedded application within the system. In a unikernel system, everything is directly 

compiled into the application layer separately. As a result, a hacker may able to break a single 

unikernel system but not spontaneously to all. 

 

2.4.2.3 Container-based Virtualization 

Containerization offers the most effective lightweight virtualization which allows sharing 

physical resources like CPU and RAM from the underlying hardware and software [34]. It 

wraps all requirements into a software package like an executable file to execute the instructions 

given the system using container engine. Figure 24 shows a building block of a container in 

containerization technology. 

 

 
 

Figure 24. Container-based virtualization [34].  
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Container technologies provide various benefits for example fast construction, instantiation, 

and initialization of virtualized instances compared to hypervisors. In addition, systems on IoT 

edge can be benefited from the small virtual images of containers. Following subsections 

describes further details of lightweight technology. 

Docker and container orchestration are major concern of this thesis which very related to 

virtualization. Those will be described into separate section rather describing here.  

 

2.4.3 Docker  

Hypervisor-based system solutions became problematic in resource allocation, start-up time 

and adaptability. Container-based Docker ecosystem offers a better solution to develop and 

deploy applications by using containers just requiring Docker on the host machine. It is an open 

source platform to build, ship, and run any app, anywhere [35]. Docker containers allow a 

developer to package up an application with all requirements, such as libraries and other 

dependencies to build software correctly that workable in all other machines and ship that as a 

single package. The application will run on any other machine having Docker regardless of the 

customized settings. Anyone can contribute to Docker and extend it to meet their own 

requirements if they need additional features. 

 

2.4.3.1 Docker Image and Docker Container 

A Docker image is an inert and immutable file created from Dockerfile that's essentially a 

snapshot or blueprint or template of a Docker container. Dockerfile holds all necessary 

commands or instructions to run a software knowing the dependencies of that software using 

Docker engine. Every Docker image requires a special image which is called the base image of 

that new image which is the first line at Dockerfille. Docker engine starts execution from the 

base image and creates an intermediate image and saves the final one by dropping immediate 

images. A Docker image is created with the build command and produces a Docker container 

when started with run command. A Docker image can be stored in a Docker registry or 

repository system like dockerhub for future use and reference. [37] 

A container is a runnable instance of an image. Image and container are very similar to class 

and object in the Object-Oriented Programming (OOP) paradigm. To use a programming 

metaphor, if an image is a class, then a container is an instance of that class which is a runtime 

object. An image is a blueprint of a container whereas a container is running instance of that 

image. Containers are lightweight and portable encapsulations of an environment where they 

could run and deploy applications. 

Mouat et al. [37] stated - An image is a template that can be turned into a container by 

running the image. Docker engine takes the image, adds a read-write filesystem on top of the 

system and initializes various settings on the environment including network details, container 

name, ID and other resources to turn an image into a container. In a Docker engine, a container 

can be either in running or stopped or even not instantiated or exited state. It can also restart 

and will retain its necessary settings if there is a change in the filesystem. 

 

2.4.4 Container Orchestration 

Services must be answerable to the fact of - fault-tolerant, on-demand scalability, resource 

optimality, can update or rollback without any downtime, able to discover other services 

automatically and can communicate with them. However, container orchestration provides us 



 

 

28 

the tool known as container orchestrator to deploy and manage any application on the system 

[36]. Figure 25 shows the typical container orchestration proposed by Amazon Web Services 

(AWS). 

 

 
 

Figure 25. Container orchestration [61].  

 

There are many container orchestrators available such as Swarm, Kubernetes, Marathon; and 

ECS. This thesis focuses on Swarm and Kubernetes. 

 

2.4.4.1 Docker Swarm 

Docker Swarm is a container management tool for orchestrating Docker containers. Docker 

Swarm has a leading node with some other nodes. The leading node is Swarm manager where 

other nodes referred to as workers. Swarm managers can execute commands or authorize other 

machines to join the swarm as workers. Figure 26 represents the general architecture of a 

Docker Swarm system. 

 

 
 

Figure 26. Docker Swarm.  

 

A manager has the ability to talk with all the workers and a worker can talk with the manager 

but not with other worker nodes. A machine can be turned into a swarm manager simply by 
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enabling the swarm mode on that host machine. From then on, Docker commands can be run 

and executed on the swarm that is in all machines, rather than just on the operating manager 

machine. [38] 

 

2.4.4.2 Kubernetes 

Kubernetes is an underlying technology used for container orchestration. In harmony, it reduces 

the operational burden and allows many containers to work together. Kubelets helps Kubernetes 

to interacts with Docker engine. Kubelets works under the hood of Kubernetes and can 

consolidate with Docker engine to organize the scheduling and execution of containers. Figure 

27 portrays an architectural overview of Kubernetes system.  

 

 
 

Figure 27. Kubernetes system architecture [62].  

 

Kubernetes handles service-discovery, network policies, and load balancing as well. Both 

Swarm and Kubernetes are great tools for container management where the Graphical User 

Interface (GUI) adds extra benefit to Kubernetes with Command Line Interface (CLI). [36] 

 

2.5 Application Design 

Software Development Life Cycle (SDLC) is usually composed of numerous steps from 

planning to maintenance and follows a strategic rule during the entire development life cycle. 

Most SDLC includes – studies over requirements, design, implementation, testing, deployment, 

maintenance by scaling and many other steps. Personnel (either a developer or a tester) in the 

software industry is often facing various problem from testing to maintenance [33]. Figure 28 

shows the possible stage of a problem that faces in SDLC. 
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Figure 28. Problem space in SDLC.  

 

A developer developed software that may workable just in his/her own machine. Then s/he 

sent that for next phase i.e testing. The software just is broken or crashed when a tester (or 

DevOps or other developers) run that on their own machine. There could have several reasons 

that cause failure. This failure is reasonable for either  

• A developer may not concern with the task(s) that given to his college(s). As a result, 

(s)he may not aware of the related dependencies so that the application is workable 

to others.  

• The dependencies may be defined in terms of 

o Hardware (e.g. Memory) 

o Software (e.g. OS and version) 

Software personnel needs a dynamic novel automated solution that can resolve the above 

problems. Virtualization has been introduced in software industry to overcome these problems. 

 

2.5.1 Design Patterns 

Monolith and microservice [66] are two popular design patterns have been introduced by 

software developers. In this section, the architectural design and practical scope in real the 

world will be discussed. 

 

2.5.1.1 Monolith Application 

When the entire functionality of the application is packaged together as a single unit or 

application then the application is called monolith application. It hooks up all the services of 

into a single unit as a large-scale application. For example, an online shopping website will 

typically consist of product, cart, payment, and other features. All possible features in a large-

scale monolith application are implemented and packaged together as a single application. [28] 

The monolith application contains some advantages including modularity (all codes are in a 

single place), IDE-friendly, easy sharing, simplified testing; as well as easy deployment. 

Besides that, it has the following disadvantages consisting of limited agility, discontinuous 

delivery, sticky to technology stack; and technical debt. [27] 
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2.5.1.2 Microservice Application 

Microservices is a software architectural design pattern that decomposes and decouples all the 

possible features into several small single pieces of applications with a limited scope of 

functionality. Balalaie et al. [29] shows a migration process from a large-scale monolith 

application to multiple smaller services. In their architecture, each smaller service deployed on 

its own archive with a possible decomposition of dependencies and then builds a single 

application. For example, each of online shopping would have services for a product, cart, 

payment, and other features. 

Kumar et al. [30] shows the use and scope of microservices in his blog post. Domain-driven 

design (decentralized data management), single responsibility principle, independently 

deployable, upgradable, scalable and replaceable, potentially heterogeneous; and light-

weightiness are the key characteristics and benefits of microservices. NoOps is called common 

additional features that are introduced in microservices having service discovery, service 

replication, service monitoring; and service resiliency.  

 

2.5.2 Mobile Agent 

There is a need for software agent in any Artificial Intelligence (AI) system which is capable 

of training from the fact of the environment by observing it [46]. It enables system components 

to get and set automatic and intelligent actions on behalf of the system owners. During the 

execution of a task, a mobile software agent or mobile agent (in short) can relocate itself by 

moving between the two system devices.  

 

 
 

Figure 29. Software mobile agent follows user. 

 

IoT devices get and set smart behavior (such as composition, aggregation; and relocation of 

services) by implementing mobile functionality into the system domain. An autonomous mobile 

agent can be beneficial to the IoT system since it interacts and responds on behalf of the system 

[47][48].  

 

2.5.3 Actor Model 

A modern Operating System (OS) creates a process as a request to run a program. In particular, 

a process is basically a program that is currently executing with one or more local variable and 

a counterpoint. Every process should have at least one thread. A process can also have multiple 

threads. Multiple threading or multi-threading is a popular approach used in concurrent 

computing. Resource overhead is the most common drawback that causes for a thread. It 
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includes memory overhead since it uses local variables in a program. On the other hand, CPU 

overhead is another inherent problem introduced in the scheduling of threads by the operating 

system. Actor model helps us to resolve this, especially in concurrent computing. [67] 

 

  
(a) (b) 

 

Figure 30. Actor model (a) message passing (b) internal state. 

 

Actor models are defined as the compositions of several actors that do not have shared state. 

These actors communicate by means of exchanging messages among them. Distributed 

microservices can take the advantages of the actor model in IoT Edge computing [31]. 

Haubenwaller and Vandikas have utilized this model in their service composition. They stated 

- data may process at the local system by IoT devices rather sending to a central location for 

processing [32]. The tasks can be split into smaller tasks and deployed IoT devices efficiently. 

In practice, this model is conceptually very close to microservice architecture since the actors 

are message-driven having single responsibility to each of them. Therefore, it can be applied to 

microservices systems in between microservices. 



 

 

33 

3 DESIGN AND IMPLEMENTATION 

This thesis is focused on the implementation using distributed services in favor of the future 

gadget free decentralized local IoT edge network. A demo environment has been installed to 

demonstrate the operating of this thesis before the actual work. Following subsections describe 

the action plans taken for IoT distributed services. 

 

3.1 Application Scenario  

In order to define the requirements of the system, a use case scenario has defined. Following 

section describes the use case scenario with the service model that launches for the completion 

of the use case. 

 

3.1.1 Use Case 

This thesis takes the use case scenario defined in Harjula et al. [23] as the basis for the 

implementation. In the use case scenario, Alice organizes a team with Bob, Carl, and David. 

Then she creates a meeting event and sends a request to her team members. Each participant 

needs to be verified and authenticated with their identity by the system or the participants before 

entering the meeting room since highly confidential topics will be discussed in the meeting. 

Now she needs a secured system that deployed locally which will lead a participant from the 

entrance to the meeting room. In this secured system, it can have 3 major services for a 

successful meeting as authentication, guidance; and meeting contents. Gadget-free devices such 

as smart ring could be used for identification [45]. 

 

3.1.2 Example Scenario 

At first, Alice activates the presence detection by a motion sensor which will detect movement 

at the corridor. User authentication will be activated when movement detected by the movement 

sensor. Multimodal user authentication, used in the implementation, consists of three separate 

and independent authentication functions, including WiFi Channel State Information (CSI), 

Bluetooth Low Energy (BLE); and Video Surveillance authentication. Every 3 authentications 

can be applied to the participants.  

WiFi CSI is the combined effect of fading, scaring and power decay along with distance and 

describes the signal strength and its propagation in between the transmitter and the receiver. It 

could be used in the authentication. A user can be identified with the help of channel estimation 

and by matching the average walking speed of a user with the user’s profile. Bob visited this 

place before and his profile has saved into this CSI log. So, the system can identify Bob 

delegation to the meeting.  

Many tracking and security system requires continuous communication with low powered 

devices. Bluetooth Low Energy (BLE) is one of the most emerging technologies which is used 

in wireless Personal Area Network (PAN). Bluetooth Special Interest Group (Bluetooth SIG) 

introduces novel use of BLE in positioning and tracking with proximity sensing and BLE based 

electronic key in security. The second authentication of the system is BLE ID-based 

authentication. Carl never visited the location before. A BLE device is provided to authenticate 

him by the system itself by the host Alice. WiFi CSI takes time into the authentication process. 

Hence, the system starts WiFi CSI and BLE simultaneously when movement is detected on the 

corridor.  
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Video Surveillance Camera or Closed-Circuit Television (CCTV) is mostly used in many 

security systems for identification of an object. The popularity of this manual recognition is 

being increasing day by day from the last few decays. David also never visited the location 

before and has no BLE. So, he could be authenticated by neither WiFi CSI nor BLE. Therefore, 

he could be identified merely by Alice with a surveillance camera placed at the corridor.  

Once a participant is recognized by the system then the system then guides a participant to 

the meeting room. A mobile agent could introduce into the system to guide the participant [46] 

– [48].  

When a person is detected in front of the meeting room the system again identifies the first 

participant. The system must hide the personal stuff and download and present the meeting 

content by the storage service as soon as the first participant arrives at the meeting room. The 

real picture for the aforementioned scenario is reflected in Figure 31. 

 

 
 

Figure 31. Real picture of the PoC scenario [23].  

 

3.2 Requirements 

In the above scenario, the IoT network is formed with many constrained devices along with 

various sensors and actuators. Since the above scenario is assumed for the local network, thus 

the interoperability and the resource consumption got the maximum priority over other 

challenges for the IoT network. The constrained devices used at the local layer brings the 

limitation to the storage, data processing; and computations. Therefore, the main challenge is 

to provide an efficient way to utilize local resources without compromising the performance of 

the services. These services must be efficient in resource consumption, authentication, quick 

deployable and initiable. Moreover, scalability and security are also two fundamental 

requirements for local IoT network among others, but these are not focus for this thesis. 

In this context, container-based lightweight virtualization of services may provide the 

maximum efficiency at the resource consumption. This architecture should be deployable and 

re-deployable based on the requirement. Docker containers could be useful for the demo 

scenario. Either Docker Swarm or Kubernetes could be used as container management tools but 

here Docker Swarm will be used for the rest of the implementation.  

 



 

 

35 

3.3 Design 

In this thesis, the following services have been defined to implement the PoC for the nanoEdge 

concept, defined in [23]: 1) presence detection service placed at the entrance point to detect and 

authenticate arriving users,  2) a controller service to keep a status log when the system is 

processing a request to lead a participant from entrance to the meeting room, 3) BLE scanning 

service installed into entrance and in front of meeting room to authenticate a user. Two other 

authentication mechanisms such as WiFi-CSI, Surveillance Camera-based authentication has 

been left out of this PoC, 4) API service as part of authentication where BLE IDs belong to 

specific participants, 5) LED guidance which enlightens the way to meeting from entering point 

and 6) meeting room service which includes presence detection service to detect a person in 

front of the meeting room using a PIR motion sensor, and also hide personal content then 

presents the meeting contents after downloading those from the storage for the first attendant.  

This thesis has defined the service model for this demo project. The service model of this 

architecture demonstrates how entire system will work for the scenario. Then it has also defined 

the required services to satisfy the project requirements. 

 

3.3.1 Service Composition, Modification and Termination 

At first, Alice follows few steps to define and start the required services [23]. These steps 

include – 1) create the meeting event with an online (e.g. cloud) service management tool 

connected to the nanoEdge API gateway, 2) choose a meeting service template, 3) selects an 

available meeting room from a calendar view, 4) start defining the service based on those.   

 

 
 

Figure 32. Service creation, modification and termination [23].  

 

In this model, a service administrator or admin can create a service, add and remove 

functionality, and terminate services. Five services for a system has been created (deployed) 

initially as for the requirement of the system by the system admin. Next, the system admin 

realizes to add BLE service as a functionality to the authentication process. Then he realizes to 

put down the API service from this architecture. Finally, the system can have an automatic 

backup process for storage, data, code and so on before termination of service. 
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3.3.2 Service Design 

The conceptual actor model has been applied to manage concurrent request from client devices. 

According to this model, an actor can define some general rules so that the components of a 

system could asynchronously behave and interact with each other. Generally, it processes a 

request with a message as a parameter from a mailbox having a queue of multiple messages. In 

this thesis, it has tried to design the example scenario as maximum as possible decoupling of 

services from each other which is presented in Figure 33 in favor of microservices. 

 

 
 

Figure 33. Design of the PoC scenario.  

 

In the implementation, it processes the request with a message at every service to activate 

the next level of service to process. When a participant enters the corridor, presence detection 

service (PDS) will be activated automatically and sent a request to the main controller service 

(MCS) to activate BLE scanning. BLE sends encoded list of BLE device in response to the 

request of main controller service. API service further let informs the main controller service 

whether a BLE devices is authenticated or not in response to it. Then LED service will enlighten 

the way to meeting room like a mobile agent. When a participant is in front of the meeting room 

then meeting room service (MRS) will be activated and authenticates the participant again and 

do numerous tasks as described above in this section.  

 

3.4 Implementation 

This thesis implemented all the required 6 services as stated in the previous section. Every 

service can talk to each other with CoAP messaging protocol and can exchange information 

with GET request. Following sections in this chapter will describe implementation details with 

associated appropriate subsections.   

 

3.4.1 Services 

All the required services have their own loyalty in minimal scope. Here, this thesis described 

all of them one by one into the following subsections. 

 

3.4.1.1 Main Controller Service 

A special service is required that cares about the Machine-to-Machine (M2M) communication 

and routes the incoming request to appropriate resource. Main controller service introduces the 

CoAP server for M2M communication. Figure 34 shows the overall request and response along 

with their method that happens in this project scenario.  
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Figure 34. Messaging among of services in demo scenario.  

 

There are 4 resources and all of them is handled by a GET method besides a POST method. 

This service records current processing status about every request that is in progress. Table 1 

shows list of resources along with Uniform Resource Locator (URL) and logged a successful 

status after processing the request. The initial status is defined as INIT.  

 

Table 1. Available CoAP resources in main controller service 

URL Method Resource Status 

/detect GET DetectionResource DETECTED 

/scan GET ScanningResource SCANNED 

/api GET APIResource AUTHENTICATED 

/guide POST GuideResource GUIDED 

/meet GET MeetingResource PRESENTED 

 

Main controller service takes the control when it gets a request from Presence Detection 

Service (PDS) and starts processing the request to handle. Then it automatically sends a request 

to BLE scanning server to activate and start scanning. The main controller does this internally 

with popen [54] and transfer control to the BLE scanning service. BLE scanner further transfers 

the control back to the main controller with scanned encoded BLE devices as a response. MCS 

then sends the encoded BLE devices to API service to verify them by letting control to it. API 

returns the control back to the main controller with the appropriate status of the BLE 

authentication. The main controller sends a request to LED guidance with control to enlighten 

the meeting room path with the mobile agent. The main controller gets back the control from 

LED guidance when the authenticated user finally reaches in front of the meeting room. The 

main controller finally transfers the control to the Meeting Room Service (MRS) and hence do 

its tasks and then returns the control to the main controller service. MCS keeps track of 

successful status as shown in Table 1Table 1. It also keeps track of fail status and store in log 

prepending NOT to each successful status. For example, if a user is not authenticated with BLE 

key, then the main controller service will store the keep log the status as NOT 

AUTHENTICATED. All the device to device communication done with CoAP protocol.  
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3.4.1.2 Presence Detection Service 

Presence Detection Service (PDS) is the very first service that detects presence of a warm body 

in the entrance. This uses PIR motion sensor as a hardware component. This component uses 

Infrared Radiation technology to detect a warm body passing through it.  Infrared Radiation 

(IR) has a wavelength from about 800 nm to 1 mm greater than the red end of the visible light 

spectrum but less than microwaves and is emitted particularly by heated objects. Passive 

Infrared Radiation (PIR) motion sensor made of IR sensitive two material slots. 

 

 
 

Figure 35. Presence detection with PIR motion sensor [51].  

 

When a warm body like a human pass by the detecting area of PIR movement detection 

sensor, it first intercepts one half (material slot) of the PIR sensor, which causes a positive 

differential change between the two halves and hence rises voltage up into electrical circuit. It 

goes reverse back when the warm body leaves the sensing area whereby the sensor generates a 

negative differential change and hence again voltage goes down to zero levels into the electrical 

circuit. These change in voltage deference in the circuit make pulses are what is detected. 

In this implementation, RPi3 and a PIR motion detection sensor as a physical apparatus has 

been used for presence detection. There are 3 pins in PIR sensor denoted as GND (ground), 

VCC (Common Collector Voltage); and OUT (Output of the sensor reading). It is required to 

access RPi’s pin for General Purpose Input Output (GPIO) to read the output from PIR as 

motion detected in PIR. GPIO has 3 mode which includes BOARD, WiringPi; and BCM. GPIO 

pin config is not same in practice and hence need to set mode first to access the pin in RPi as 

GPIO such as GPIO4 is pin 4 in BCM mode while BOARD and WiringPi show it pin 7. There 

are a couple of ways to check RPi’s pin config, but pinout [52] is most popular Command Line 

Interface (CLI) tool beside RPi’s pinout [53] that described in detail. Figure 36 shows the pinout 

of BCM2837 RPi3 that used for presence detection service. 
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Figure 36. Pin configuration in Raspberry Pi 3 model B.  

 

Connection configuration has been accomplished with RPi’s pinout and BCM is used as pin 

mode to access RPi’s pin for GPIO which is shown in Table 2. Here RPi’s pin 1 and 7 provides 

3.3 V to PIR and GPIO4 is used as input to RPi 3 as an output from PIR respectively. 

 

Table 2. Connection configuration between PIR and Raspberry Pi 3 (RPi) 

PIR pin RPi pin 

GND 9 (GND) 

VCC 1 (3V3) 

OUT 7 (GPIO4) 

 

Finally, an event handler and a callback function help us when an object is detected around 

the PIR motion sensor. The event handler function checks if there is a voltage rise on the RPi 

GPIO4 where the callback function sent a CoAP request to main controller service to activate 

BLE scan service for scanning BLE devices along the corridor. Figure 37 shows code snippet 

that used to handle an event when there is a motion in PIR motion sensor. 
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Figure 37. Code for motion event in PIR detection area.  

 

CoAP client code to activate BLE scanning is written in Twisted framework which is very 

similar to Hyper Text Transfer Protocol in (HTTP) (REpresentation State Transfer) REST 

architecture. The code segment clearly demonstrates CoAP request function named 

activateBLEScanningService() written for BLE scanning in sendRequest(channel) callback 

function. The callback function call when there is a voltage up in GPIO_PIN into the GPIO 

event. Figure 38 illustrates that a GET request will send from presence service to main 

controller service. 

 

 
 

Figure 38. Request from PDS to MCS.  

 

PDS aware of motion and periodically checks motion PIR sensor’s effective area. If there is 

a change in sensor data, it gets control and then it sends a request to MCS to activate BLE 

service with a message status. Initially, PDS sets this INIT which will update to DETECTED 

and transfer control to MCS. The status record will be reset to INIT after sending the request to 

MCS. The main controller also keeps the status before processing BLE service for future 

reference. The entire procedure illustrated in the following Figure 39. The entire processing is 

handled in PDS. 
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Figure 39. Workflow for a request originated from PDS to MCS.  

 

3.4.1.3 BLE Authentication Service 

Bluetooth Low Energy (BLE) service gets control from the main controller to scan available 

BLE by advertising packet. Figure 40 depicts the connectivity between the main controller 

service and BLE authentication service. 

 

 
 

Figure 40. Communication between MCS and BLE service.  

 

This service starts scanning usually scan for 3 seconds by default and encrypts all BLE 

devices after successful completion of encryption by using a modern algorithm. It requires 

network administration capacity to enable BLE scanning as root user [55]. Figure 41 depicts 

the connectivity between the main controller service and BLE authentication service. 
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Figure 41. BLE service server code segment.  

 

The main controller sends this request to BLE scanning service with popen and it gets back 

the control as a response from BLE scanning service. In the main controller service, the coap 

subprocess is responsible for this internal communication between MCS and BLE 

authentication services. Here, MCS or main controller service and BLE authentication service 

can exchange the information with the help of CoAP messaging protocol. 

 

 
 

Figure 42. BLE client code written in MCS.  

 

BLE service gets control when it gets a request from main controller service i.e MCS. It 

encrypts BLE device ID if it found any devices at the entrance. MCS keeps either DETECTED 

or NOT DETECTED based on the response of BLE service.  
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Figure 43. Status record in MCS & BLE.  

 

 Solid lines indicate that actions were taken by main controller service whereas dashes are 

for BLE service. 

 

3.4.1.4 API Service 

In the demo project, Application Programming Interface (API) service has been implemented 

as another microservice so that the meeting events stuff can be kept for future record. It gets 

control from main controller service or MCS having list of BLE devices to check delegates or 

guests of a meeting event. Figure 44 denotes the exchange of information between main 

controller service and the API. 
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Figure 44. Messaging between MCS and API microservices in PoC.  

 

In all Object-Oriented Programming (OOP), classes are the blueprint of objects consisting 

of properties and methods [56]. API service has few classes having an appropriate logical 

relationship. Appendix 1 represents the relationship among the entities that made for this 

implementation whereas the following Figure 45 shows UML class diagrams of the API service. 

 

 
 

Figure 45. UML class diagram for API service.  

 

Constrained Application Protocol (CoAP) was used to make a communication in the main 

controller service and the API service. CoAP itself is on top of user datagram protocol or UDP. 

The API works as a server machine where the main controller service or MCS acts as a client 

that request resources for BLE authentication. Following Table 3 denotes the available 

resources into API service.  

 

 

 

 

 



 

 

45 

Table 3. API resources available in API service 

URL Method Resource Purpose 

/api/persons GET, POST PersonsResource Check list, create new 

/api/persons/{id} GET, PUT PersonResource Check & update  

/api/rooms GET, POST RoomsResource Check list, create new 

/api/rooms/{id} GET, PUT RoomResource Check & update 

/api/tags GET, POST TagsResource Check list, create new 

/api/tags/{id} GET, PUT TagResource Check & update 

/api/events GET, POST EventsResource Check list, create new 

/api/events/{id} GET, PUT EventResource Check & update 

 

The API service is completely made of python with flask framework. The incoming request 

from MCS is received at API with contained application protocol. The request is further 

processes with popen that uses curl to access TagResource uniform resource locator or URL. 

These URLs are in REST architecture. Figure 46 shows what status will be stored at main 

controller when the request starts from MCS that sends to API service which finally stops at 

MCS. 

 

 
 

Figure 46. MCS log status as a response from API.  

 

Every solid line into the above flow chart is the request that occurs from MCS while the rest 

of the dash lines are processed at API for responding to the request of main controller service. 
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3.4.1.5 LED Guidance Service 

Light Emitting Diode (LED) is used for guiding a guest from entrance corridor to the meeting 

room. The LED has been used as a component and placed many locations along the entire path 

from source i.e entrance to destination i.e meeting room. LED guidance service will be activated 

by the main controller service or MCS. Figure 47 represents the communication state with 

request and response. 

 

 
 

Figure 47. Request vs response in between MCS and LED guidance.  

 

Mobile agent algorithm [46] – [48] has been implemented to the LED guidance service. 

MCS keeps a status record for MCS – LED communication. It involves, 1) MCS sends a CoAP 

GET request to LED, 2) set STATUS = NOT GUIDED, 3) blink LEDs until a guest or 

participant does not reach to meeting room, 4) stop LED if guest reach and sends payload 

message to MCS as response; and 5) update STATUS = GUIDED. Figure 48 shows how status 

changes in this case. 

 

 
 

Figure 48. Status at MCS - LED communication.  
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Here solid lines refer to the actions taking place at the main controller service while dash 

lines indicate the steps performed at LED guidance. 

 

3.4.1.6 Meeting Room Service 

Meeting Room Service or MRS is used for authentication, hide personal contents, download 

and presents meeting contents. This service is activated automatically when the MCS – LED 

process has been over. Figure 49 shows the request and response between MCS and MRS. 

 

 
 

Figure 49. MCS – MRS communication state.  

 

MCS gets control from prior state and upgrades status as NOT PRESENTED primarily at 

the. After that, it sends a request to finish further processes i.e authentication, content related 

subprocesses. Authentication is done by authentication service described at the earlier. Status 

is updated as soon it hides private contents and presents meeting document after downloading 

from the server. Figure 50 represents the workflow that carried out at MCS – MRS.  

 

 
 

Figure 50. MCS – MRS workflow.  
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Solid lines and dashes are presented for work action at MCS and MRS services.  

 

3.4.2 Service Interaction 

An example use case scenario has been set at the very beginning of the implementation as a 

proof of concept to contribute to the decentralized IoT edge nanoservice architecture for future 

gadget-free computing. Practical use case scenario of the PoC implementation is presented in 

the following Figure 51. 

 

 
 

Figure 51. Example scenario for proof of concept [23].  

 

Presence detection service will be activated automatically when a participant is detected by 

PIR motion sensor that put on the entrance. PDS will create an actor that set a command 

message to start the automatic authentication by BLE and this message to MCS. After that, 

MCS will create another actor that put a command message to BLE to scan Bluetooth devices 

around the location of the scanner and get the list of scanned devices from BLE. MCS then 

creates another actor that sends these to API to recognize a participant with a BLE-ID. When a 

participant is authorized by the system then MCS will create a new actor that put a command 

message to LED to guide the participant to the meeting room. Lastly, MCS will create an actor 

with a command message to MRS to display meeting content at the monitor when a person is 

detected for the first time at the meeting room. The whole scenario is presented below. 
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Figure 52. Internal service interaction.  

 

 

3.4.3 Deployment and Container Orchestration 

A new container image is constructed for each required microservice that developed for this 

demo scenario. Every container image is based on an appropriate base image that satisfies the 

requirements of a service which is called a base image of that container. The summary of the 

final deployment is concluded in Table 6.  

 

 
 

Figure 53. Container orchestration for the PoC. 
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In the implementation, each service is deployed in a separate Docker host. In this system, 

services are isolated and mostly decoupled. This architecture is known as an overlay network. 

This network is best when containers are running on different Docker hosts, or when multiple 

applications work together using swarm services [68]. Container orchestration has been done 

with Docker Swarm and Kubernetes. The PoC implementation required 6 services. These 

services were orchestrated by the following procedure:  

1. Deploying Services: Deploying each service into the associated host. 

o PDS, MCS, BLE, LED; and MRS on 5 RPis.  

o Deploy API on Linux machine. 

2. VM Creation: Create 7 different VMs where  

o 6 of them for services as worker nodes; and  

o 1 for manager node. 

3. Attaching VMs: Attach each service to a separate VM. 

4. Joining Nodes: join each worker node to the manager node. 
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4 EVALUATIONS 

During the prototyping work, some observations were made in favor of the implementation for 

the demo scenario, although the focus of this paper is on deployment for local IoT edge services. 

Some common observations were made based on the implementations and its functionality with 

the resource consumption with few performance metrics. These studies are fit for the empirical 

design based on the available resources that have shown a significant performance. Following 

sections describe parametric case studies that taken at simulations. 

 

4.1 Evaluation Setup 

Six microservices were developed for the demo scenario which is demonstrated in section 4.1.1. 

REST API deployed into ubuntu 18.04 and LED guidance deployed into Raspberry 2 Model B. 

Rest of the four micro-services deployed into Raspberry Pi 3 Model B+. Recall section 4.1.2 

again where a rough technical specification discussed for the implementation of the demo 

project. Each micro-service uses CoAP protocol for M2M communication. Here every micro-

service primarily required a client script also beside the server script and deployed separately 

except presence detection service or PDS. Both client and server script were written in Python 

2. In the demo scenario, the client and server were handled with subprocess pythons’ module 

which introduces complicacy and not recommended [64]. Node-based CoAP CLI is used to 

process client request into the dependant server as discussed in Sola’s article [42] requiring 

node installation additional rather having Python-based client container. In addition, this 

process significantly reduces the number of containers which save memory. 

Container orchestration has been implemented into Oracle VirtualBox with version 5.2. In 

the microservice deployment, Docker Swarm and Kubernetes is used. Docker swarm and 

Kubernetes are two platforms for orchestrating containers. However, Docker swarm is 

completely based on command line interface or CLI while Kubernetes came up with CLI as 

well as GUI. CLI based application has great performance over GUI though GUI gets better 

user experience over CLI. Docker Swarm is integrated into the Docker ecosystem with its own 

API. In practice, Kubernetes is ahead of Swarm in an average. Largest open source community. 

 

4.1.1 Hardware Specifications 

This thesis has installed a physical hardware setup for the entire system to fulfil Alice’s 

requirements. Physical setup requires a Passive Infrared Radio (PIR) sensor for motion 

detection or presence detection service. In this system, authentication service includes BLE 

beacon to authenticate a participant. This thesis will focus on only BLE based authentication 

for this PoC, instead of multimodal authentication mechanism proposed by Harjula et al. [23]. 

LED was needed for mobile agents and require UI devices like monitor for authentication; and 

projector for screening the meeting content. A host machine is required to deploy API for 

authentication and storage services and a WiFi access point (router) to deploy all services under 

the same network. Design section of this chapter illustrates possible microservices and 

implementation section describes the technical requirements to ended up a successful project 

for the demo case. Table 4 shows service oriented physical equipment to design a fully 

functional scenario.  
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Table 4. Tentative physical requirements for services in PoC implementation 

Services Requirements 

Presence Detection Service (PDS) PIR sensor, RPi3 

Main Controller Service (MCS) RPi3 

Bluetooth Low Energy (BLE) BLE, RPi3 

Application Programming Interface (API) Linux machine 

Light Emitting Diode (LED) Arduino shield, LED, RPi3  

Meeting Room Service (MRS) BLE, RPi3, UI (e.g monitor) 

 

4.1.2 Software Specifications 

The implementation also figures out all the required technologies subject to the PoC 

implementation. Table 5 shows service oriented technically specified terminologies used to 

design a fully functional PoC implementation.  

 

Table 5. Service oriented technical specifications for PoC implementation 

Services Requirements 

Presence Detection Service (PDS) CoAP, Python 

Main Controller Service (MCS) CoAP, Python, NodeJs 

Bluetooth Low Energy (BLE) CoAP, Python 

Application Programming Interface (API) Python, Flask, MySQL, CoAP 

Light Emitting Diode (LED) C++, Python, CoAP 

Meeting Room Service (MRS) Python, CoAP 

 

To establish machine to machine communication, it has used the Constrained Application 

Protocol (CoAP). The protocol itself is on top of a well-known framework. Thanks to txThings 

[50] and CoAPthon [49] developers’ team for their great contribution. LED guidance service 

implemented with CoAPthon where rest of the services are implemented with txThings. Here 

presence detection service is fully designed as CoAP client whereas the main controller service 

is a mixer of server and client request simultaneously. Rest of the microservices is developed 

for handling client request as separated service-oriented server. 

 

4.2 Evaluation Results 

The implementation has an evaluation setup for the experiment during the deployment. The 

evaluation is carried mainly for measuring the source consumption, the performance of a 

microservice. Following sections describe the optioned evaluation results. 

 

4.2.1 Resource Consumption 

It is important to keep track of storage consumption of the microservices since they are 

deployed locally on IoT edge. Table 6 shows the resource consumption of deployed 

microservices at the demo scenario implementation. Here, Dockerfile and Docker-compose 

indicate the actual reading. Although every device allocates at least 4 kB for a file if that is not 

empty. On the other hand, database (DB) persistence is an on-demand service that deployed 

with API service. 
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Table 6. Resource consumption 

 
 

The demo application has been developed on top of Docker ecosystem and container 

orchestration has been done in Docker swarm as well as Kubernetes. Docker ecosystem 

includes Docker and Docker-compose to build and run Docker images into Docker daemon 

inside a host operating system and consumed about 96 MB. The version of Docker was 18.03.1-

ce (for Ubuntu) as well as 18.09.0 (for RPi) and Docker-compose was 1.23.1. On the other 

hand, the entire Kubernetes ecosystem (includes kubeadm, kubectl, kubelet; and kubernetes-

cni) consumed about 196 MB having version 1.13.1.  

 

4.2.2 Performance 

This implementation has performed the evaluation of the model after the successful equipment 

setup including hardware and software. It also observed overall start-up time to initialize a 

service. All microservices in the demo scenario has a great performance at boot up stage. The 

overall experimental outcome was taken from the deployed microservices. In the 

implementation, six microservices were used for the demo scenario. Figure 54 presents the 

overall deployment time of during the service deployment. 

 

 
 

Figure 54. Service deployment time.  

 

According to Figure 54,  Presence Detection Service (PDS), Main Controller Service (MCS), 

BLE service (BLE), API service (API), LED service (LED) and Meeting Room Service (MRS) 

Name Size (MB) Shared (MB) Run
Docker 95 480 kB
Kubernetes 195 998 kB
DB mysql 0 MB 485.5 MB 7 B
API python:3-onbuild 690.5 MB 88.18 MB 414 kB 1 213 B 2 546 B 223 kB
MCS arm32v7/python:2.7.15-jessie 557.3 MB 42.31 MB 231 kB 418 B 321 B 73.8 kB
PDS arm32v7/python:2.7.15-jessie 557.3 MB 42.34 MB 235 kB 613 B 309 B 34.3 kB
BLE arm32v7/python:2.7.15-jessie 557.3 MB 52.49 MB 860 kB 791 B 514 B 62.5 kB
LED resin/rpi-raspbian:jessie 128.2 MB 276.5 MB 148.3 MB 476 B 189 B 2.76 MB
MRS arm32v7/python:2.7.15-jessie 557.3 MB 54.94 MB 1245 kB 975 B 719 B 67.6 kB

Component / service
Space on disk

Base Image Container SizeInstallation Dockerfile Docker-compose Source code
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took 2m 13s, 2m 55s, 2 m 31s, 5m 22s, 2m 11s, and 2m 41s respectively at the deployment 

process. The deployment time is mostly depending on the available resources where a service 

is being deployed and the available bandwidth of the internet connection. During building a 

Docker image, a Docker daemon will first download the dependencies regarding the 

specification. In general, a deployment process takes less amount of time if there is already 

have a base image on a Docker daemon. In the implementation, the Docker daemon has no base 

image. For this reason, it took much time to deploy a service on a Docker engine. The effect on 

service deployment time for an existing image would evaluate in future. 

The service initiation time was also observed after a successful deployment. These deployed 

services take roughly 11-15 seconds on an average when they are ready to use after a successful 

deployment. 

 

 
 

Figure 55. Service initiation time.  

 

According to Figure 55, six services such as Presence Detection Service (PDS), Main 

Controller Service (MCS), BLE service (BLE), API service (API), LED service (LED) and 

Meeting Room Service (MRS), took roughly 13s, 15s, 14s, 1m 35s, 11s, and 14s respectively 

for service initiation. Here, API took maximum service initiation time among 6 services. API 

is dependent on the database (DB) component which takes around 1 minute extra to start 

working. Therefore, API is waiting for DB and this takes around 1.5 minutes to work if DB is 

not in service or not in a downstate. 

 

4.2.3 Authentication Accuracy 

This PoC has implemented with BLE-based authentication. This authentication process gives 

100% accuracy on the average network condition. It took 3 seconds on an average to 

authenticate a person. The summary of the experiment is shown in Table 7.  

 

Table 7. Averaging the authentication time 

Serial Number Authentication Time (xi) Average (∑ xi / N) 

1 4s 
3s 2 3s 

3 2s 
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BLE devices send packets to others to let them know about its existence known as packet 

advertising. Technically, it works in the range of 300 feet or 100 meters but practically it is 

quite challenging to work over 10 meters or 20 meters [82].  

In the implementation, authentication is done in two separate processes: 1) BLE scanning 

which takes place in between MCS and BLE services; and 2) authentication with API which 

takes place in between MCS and API services. In the experiment, the total time to authenticate 

a person is depends on the quality of the packet advertising, physical distance between the BLE-

based authentication server and the BLE key; and the overall internal processes of the MCS-

BLE and the MCS-API. Any of these can affect the authentication process and hence increase 

the total authentication time. 
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5 DISCUSSION AND FUTURE WORK 

The IoT network comprises of several resources such as sensors, actuators; and other 

constrained devices. The key challenges for such an IoT network include resource and energy 

consumptions, low latency, high bandwidth, reliability, scalability, interoperability, security, 

and privacy among others. The gadget-free vision assumes secure access to ubiquitous user-

friendly digital services without using explicit gadgets. IoT networks are considered to be vital 

for developing such gadget-free and smart systems. The major requirements include inter-

operable service provisioning and availability of un-interrupted secure services during the 

transition of a user in smart spaces. The other requirements are authentication of valid users 

through the capabilities available in the nearby smart surroundings and provide low latency 

aware secure services. Thus, the vital challenge is how to utilize local resources efficiently in 

order to fulfill these requirements. The main problem is the limitation of hardware resources at 

the local layer which brings a limitation to the storage, processing, and computations. Hence, 

because of restricted resources, there may cause various issues to the local processes in terms 

of, for example, may not be secure, unavailability of the service or might take longer delays 

executing processes. In this context, a microservices architecture is required for such context-

aware inter-active smart environment that utilizes local resources but can provide various 

virtualized services at the local layer. This architecture should be deployable and re-deployable 

based on the requirement. In this thesis, an implementation carried out in favor of this 

architecture. This chapter highlights the outcome of this thesis with its target point. Finally, a 

goal is set for future improvements for this thesis.  

 

5.1 Achieving the Thesis Goal   

The target of this thesis was to design a local system to improve service provisioning at the 

local IoT network by utilizing local resources and surroundings. In chapter 2, the existing 

models and related work has been reviewed first before going into in-depth implementation for 

prototyping. It has discussed various modern terminology in the field of communication 

technology such as Cloud, Edge, Fog, and latest Mist computing. The IoT protocols, application 

design patterns and other correlated technologies described in related work help us to achieve 

the thesis goal. Then, several IoT protocols have been introduced for the implementation of the 

work. The entire IoT protocols have been broken down into five several layers. These five 

layers include application, transport, network, datalink, and the physical layer. Here, it has 

discussed numerous advanced protocols used in the application layer. Container-based 

lightweight virtualization brings the opportunity to use local resources efficiently. Container 

orchestration tools such as Docker Swarm and Kubernetes has been demonstrated with mobile 

agent and actor model. 

In chapter 3, this thesis set a use case scenario to satisfy the implementation. In the thesis 

flowchart, UML, activity; and sequence diagrams has been used for a successful demonstration. 

The big challenge in the implementation was to choose an appropriate protocol for the 

applications required for this demo scenario. since it uses several constrained devices such as 

RPis and others, Constrained Application Protocol or CoAP at the application layer, got the 

best fit for the demo project. Microservices design approach provided maximum flexibility to 

the development. This approach helps us at the design of services by decoupling them on a 

logical level. Each service deployed as a single application in microservice paradigm into 

separate container. Interoperability has been reached by the conceptual actor model whereas 

the mobile agent helped us in the mobility of smart services. In the implementation, it has used 
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IoT devices like PIR motion detection sensor and surveillance camera for the demo project. 

These devices were embedded with the Raspberry Pi, Single Board Computers (SBCs). The 

overlay network design enabled us to access these devices with their respected IP address. 

During the implementation, it has made a few scripts for those devices to configure and redefine 

features along with the devices.  

In chapter 4, evaluation of the work has been done for the implementation. At first, the 

hardware and the software setup for the evaluation of the implementation has discussed. The 

entire hardware system was on Unix OS i.e RPi (the Raspbian Jessie OS) and Ubuntu (Linux). 

For simplicity, a few shell scripts have been written to enhance the implementation with proper 

documentation. Those shell scripts make the deployment process easy enough to understand as 

well decorated documentations. The implementation has accomplished carefully with Python 

code whereas the server and the network virtualization were done with the lightweight Docker-

based containerization technology.  

Scalability and security are two important measurement factors to evaluate an IoT network. 

Here, this implementation has observed the maximum network size and the security of the demo 

scenario though these were not the main goal of this study, but these were important for the 

observation. In this demo scenario, it has deployed the required services through an access point 

having an IP of C class, hence, it can have 254 hosts at maximum. On the other hand, it has a 

great benefit in terms of security without global access to hackers since all the microservices 

has deployed into local servers.  

 

5.2 Future Work 

In the implementation, a user was verified with only BLE instead of approaching the full 

multimodal authentication process which is combination of WiFi CSI, BLE and surveillance 

camera, as defined in the concept article [23]. Face detection using surveillance camera is an 

advanced and a popular approach that recently applied in modern artificial intelligence system 

to identify a person by the system accurately. It could introduce the face detection algorithm 

into the demo scenario at the authentication service to identify a user. 

The PoC is carried out with official regular base images which consume massive disk spaces 

compared to alpine-based images. All these regular images have three basic options such as 

Jessie, Wheezy or Slim. These regular images have extra configuration besides the essential OS 

libraries [83]. On the other hand, alpine images contain minimum required dependencies along 

with the OS libraries and take small hardware resource without extra configurations and settings 

[79]. Therefore, alpine-based image could be introduced to the demo project to reduce resource 

consumption.  

The evaluations have been carried out for 6 - 7 persons in a simple environment setup. 

However, it could be evaluated within a complex environment by increasing the number of 

participants. It would be more interesting for future work to study with a full simulation about 

the scalability, performance, energy efficiency of this PoC implementation. Some other 

optimization matrices including latency, bandwidth, throughput, cost, network stability may 

also require special attention to build a sustainable IoT infrastructure. 
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6 CONCLUSION 

Huge amounts of data are generated constantly at the IoT networks. Cloud services are deployed 

to the edges of networks for data processing. In present, edge services may not always be 

efficient for data processing generated at the local IoT network. Low power IoT devices 

sometimes may not able to communicate with servers due to network problems and hence the 

data will be lost forever, or a service execution will fail. To resolve this issue, at least some 

parts of services need to move from edge to the local IoT cluster. In particular case, moving 

services from a network to another is not an easy process.  

The primary target of this thesis was to implement a nanoEdge model that specified for local 

IoT service provisioning to minimize the deployment complexity. In this thesis, a PoC has been 

implemented for the earlier proposed model. The implementation has presented how local IoT 

services could can be deployed with Docker containerization technology with a demo project. 

This PoC shows how microservices for IoT devices can be moved from the cloud and edge 

ecosystem to the proximity to the local IoT networks and hence microservices can be virtualized 

for service provisioning. Since the model is deployed into a local IoT network, hence it can 

avoid many security threats and can work on “offline” without having an active internet 

connection. The overall performance shows the feasibility of the thesis work which is suitable 

for local IoT system and may contribute towards IoT infrastructure for future gadget-free 6G 

technology as well. 
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Appendix 1 Database structure for API service 

 

 
Figure 56. Database structure for API used in the demo application. 
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Appendix 2 HTTP status codes 

 

 
 

Figure 57. HTTP status codes for client response. 
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Appendix 3 RPi pin configuration 
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Figure 58. RPi pin configuration – (a) RPi 3 Model B [57] & (b) RPi, RPi 2 & RPi 3 [58]. 

 


