

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING

MASTER’S THESIS

CONTAINER-BASED MICROSERVICE

ARCHITECTURE FOR LOCAL IOT SERVICES

 Author Johirul Islam

 Supervisor Dr. Erkki Harjula

 Second Examiner Prof. Mika Ylianttila

 Technical Advisor Tanesh Kumar

May 2019

Islam J. (2019) Container-based Microservice Architecture for Local IoT services.

University of Oulu, Faculty of Information Technology and Electrical Engineering, Degree

Programme in Wireless Communications Engineering. Master’s Thesis, 68 p.

ABSTRACT

Edge services are needed to save networking and computational resources on higher tiers,

enable operation during network problems, and to help limiting private data propagation

to higher tiers if the function needing it can be handled locally. MEC at access network

level provides most of these features but cannot help when access network is down. Local

services, in addition, help alleviating the MEC load and limit the data propagation even

more, on local level. This thesis focuses on the local IoT service provisioning. Local service

provisioning is subject to several requirements, related to resource/energy-efficiency,

performance and reliability.

This thesis introduces a novel way to design and implement a Docker container-based

micro-service system for gadget-free future IoT (Internet of Things) network. It

introduces a use case scenario and proposes few possible required micro-services as of

solution to the scenario. Some of these services deployed on different virtual platforms

along with software components that can process sensor data providing storage capacity

to make decisions based on their algorithm and business logic while few other services

deployed with gateway components to connect rest of the devices to the system of solution.

It also includes a state-of-the-art study for design, implementation, and evaluation as a

Proof-of-Concept (PoC) based on container-based microservices with Docker. The used

IoT devices are Raspberry Pi embedded computers along with an Ubuntu machine with

a rich set of features and interfaces, capable of running virtualized services.

This thesis evaluates the solution based on practical implementation. In addition, the

thesis also discusses the benefits and drawbacks of the system with respect to the empirical

solution. The output of the thesis shows that the virtualized microservices could be

efficiently utilized at the local and resource constrained IoT using Dockers. This validates

that the approach taken in this thesis is feasible for providing such services and

functionalities to the micro and nanoservice architecture. Finally, this thesis proposes

numerous improvements for future iterations.

Keywords: Virtualization, Containerization, Docker, IoT, Orchestration, Microservices.

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1 INTRODUCTION .. 8

1.1 Purpose and Objective ... 8

1.2 Scope ... 9

2 RELATED WORK ... 10

2.1 Internet of Things .. 10

2.1.1 IoT Protocols ... 11

2.1.1.1 CoAP ... 12

2.1.1.2 MQTT .. 13

2.1.2 M2M Protocols .. 14

2.1.2.1 6LoWPAN ... 14

2.1.2.2 BLE ... 15

2.2 Cloud Computing .. 16

2.2.1 Web Protocols ... 17

2.2.1.1 HTTP ... 17

2.2.1.2 HTTPS ... 18

2.2.1.3 Web Sockets .. 19

2.2.2 APIs ... 20

2.3 Edge, Fog and Mist Computing .. 20

2.3.1 Edge Computing .. 21

2.3.2 Fog Computing .. 22

2.3.3 Mist Computing ... 23

2.4 Virtualization ... 23

2.4.1 Network Virtualization .. 24

2.4.2 Server Virtualization.. 24

2.4.2.1 Hypervisor-based Virtualization ... 24

2.4.2.2 Unikernel-based Virtualization ... 25

2.4.2.3 Container-based Virtualization .. 26

2.4.3 Docker ... 27

2.4.3.1 Docker Image and Docker Container .. 27

2.4.4 Container Orchestration ... 27

2.4.4.1 Docker Swarm ... 28

2.4.4.2 Kubernetes ... 29

2.5 Application Design .. 29

2.5.1 Design Patterns .. 30

2.5.1.1 Monolith Application .. 30

2.5.1.2 Microservice Application .. 31

2.5.2 Mobile Agent ... 31

2.5.3 Actor Model ... 31

3 DESIGN AND IMPLEMENTATION ... 33

3.1 Application Scenario ... 33

3.1.1 Use Case .. 33

3.1.2 Example Scenario .. 33

3.2 Requirements ... 34

3.3 Design .. 35

3.3.1 Service Composition, Modification and Termination 35

3.3.2 Service Design ... 36

3.4 Implementation .. 36

3.4.1 Services .. 36

3.4.1.1 Main Controller Service .. 36

3.4.1.2 Presence Detection Service ... 38

3.4.1.3 BLE Authentication Service .. 41

3.4.1.4 API Service .. 43

3.4.1.5 LED Guidance Service .. 46

3.4.1.6 Meeting Room Service .. 47

3.4.2 Service Interaction ... 48

3.4.3 Deployment and Container Orchestration ... 49

4 EVALUATIONS .. 51

4.1 Evaluation Setup .. 51

4.1.1 Hardware Specifications .. 51

4.1.2 Software Specifications ... 52

4.2 Evaluation Results ... 52

4.2.1 Resource Consumption .. 52

4.2.2 Performance ... 53

4.2.3 Authentication Accuracy ... 54

5 DISCUSSION AND FUTURE WORK ... 56

5.1 Achieving the Thesis Goal .. 56

5.2 Future Work .. 57

6 CONCLUSION ... 58

7 REFERENCES ... 59

8 APPENDICES .. 65

FOREWORD

This thesis has accomplished at Center for Wireless Communications-Networks and Systems

(CWC-NS) research group under Center for Wireless Communications in the University of

Oulu, Finland. It has been funded by the Academy of Finland project for Industrial Edge and

MEC-AI research project collaborated by the Centre for Ubiquitous Computing, Centre for

Wireless Communications; and Research Unit of Mathematical Sciences headed by professors

Jukka Riekki, Mika Ylianttila; and Mikko Sillanpää. I would like to pay special thanks to my

supervisors Dr. Erkki Harjula and Prof. Mika Ylianttila for their direct nonstop support

throughout the entire period of my master’s thesis journey. I am very grateful to my technical

supervisors Tanesh Kumar, Ahsan Manzoor who were doctoral students at CWC-NS research

group in the University of Oulu. I also would like to pay my gratitude to Pekka Karhula,

Research Scientist at VTT Technical Research Centre of Finland Ltd, Finland for his partial

contribution to this PoC implementation.

I am very much grateful to Center for Wireless Communications as well as the University

of Oulu, which provided an academic platform and learning environment to think and grab

actual things behind the scenario as out of the box that enhance my skillset. I would like to

thank all of my family members for their love and support especially my younger brother

Mahidul Islam. I would like to pay thanks to my friends especially Md. Ziaul Hoque, Md

Shofiqul Islam and Md Delowar Hossain for their company and fun throughout my master’s

journey. Finally, I am also grateful to Finnish education authority to provide me the opportunity

to pursue my master’s degree.

Oulu, May, 27 2019

Johirul Islam

LIST OF ABBREVIATIONS AND SYMBOLS

AI Artificial Intelligence

ATT Attribute control

API Application Programming Interface

BLE Bluetooth Low Energy

CC Cloud Computing

CCTV Close Circuit TV

CLI Command Line Interface

CoAP Constrained Application Protocol

CPU Central Processing Unit

CSI Channel State Information

DTLS Datagram Transport Layer Security

EaaS / XaaS Everything as a Service

EC Edge Computing

GAP Generic Access Profile

GATT Generic Attribute Profile

GND Ground

GPIO General Purpose Input Output

GUI Graphical User Interface

HCI Host Controller Interface

HTTP Hyper Text Transfer Protocol

I/O Input / Output

IaaS Infrastructure as a Service

ICT Information and Communication Technology

IETF Internet Engineering Task Force

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IoE / IoX Internet of Everything

IoT Internet of Things

IP Internet Protocol

IR Infrared Radiation

JSON JavaScript Object Notation

L2CAP Logical Link Control and Adaptation Protocol

LED Light Emitting Diode

LXC LinuX Containers

M2M Machine-to-Machine

MC Mist Computing

MEC Mobile Edge Computing, Multi-access Edge Cloud

MITM Man-In-The-Middle

NAT Network Address Translation

NFV Network Function Virtualization

npm node package manager

OOP Object Oriented Programming

OS Operating System

OUT Output

PaaS Platform as a Service

PIR Passive Infrared Radiation

PoC Proof of Concept

RAM Random Access Memory

REST Representation State Transfer

RFC Request for Comments

RFID Radio Frequency Identification

RPi Raspberry Pi

SaaS Software as a Service

SBC Single Board Computer

SDLC Software Development Life Cycle

SMS Short Message Service

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UI User Interface

UID Unique Identifier

UML Unified Modelling Language

URI Universal Resource Identifier

URL Universal Resource Locator

VCC Common Collector Voltage

VM Virtual Machine

VPN Virtual Private Network

WSN Wireless Sensor Network

YAML Yet Another Markup Language

Class Blueprint of an object in OOP paradigm

Client A device that will served by server machine

DevOps Developers + Operations

Host A computer works as server that handles and process requests

kernel Core computer program that control everything of an OS

NoOps Common features in microservices

Port The window that makes communication between server and client

B Byte

kB kilobytes

MB Megabytes

1 INTRODUCTION

The current digital world is mostly surrounded by gadgets. Users get various services using

these smart devices. Gadgets, such as smartphones, tablets, PDAs among others are already

been heavily used in various aspect in daily life. For example, gadgets play a key role in

applications such as banking, healthcare, and logistics. With the evolution of recent enabling

technologies such as IoT, edge/fog computing, virtualization and blockchain together with

high-speed 5G networks are driving this digitalization to the next level. The new digital vision

would assume gadget-free services, i.e. users can able to access all required services which

were previously available through gadgets, now can be accessed without gadgets [14]. The

nearby surroundings will be smart enough to recognize the particular context and offer digital

services accordingly. Various services and computations will be embedded in smart spaces and

services are given to the valid users whenever required and disappeared when not required.

These smart and gadget-free services are also referred to as “Service Bubble” which are

delivered to gadget-free users [23]. The development of such smart services needs various

technological capabilities such as smart and low power sensor and communication

technologies, printed electronics; and cloud computing. Service composition and

decomposition require by various software, hardware resources for computations and

processing as the services should not be interrupted with the mobility of users having no hand-

carry gadgets [45]. Thus, this vision of current gadget-centric world towards future user-centric

world require various advanced technological developments.

1.1 Purpose and Objective

In this time, the digital services reside on the cloud or the edge are accessible with the help of

an active internet connection through several computational resources. These services may

disrupt and face security threats all along the communication path between a remote server and

a client.

Figure 1. Future IoT network architecture [23].

All these obstacles in between a remote server and a client are continuously pushing us to

move services from remote to local subsystem. Currently, there is no such model that could

help us to move services and resolve the above problem. This model should be able to deploy

9

these digital services into the local IoT environment so that it reduces the computational

complexity and hence accessible in “offline” mode too. Here, this thesis proposes a novel way

and shows how to move and deploy services into the local system.

1.2 Scope

A virtualized system of architecture is required for on-demand service composition based on

the available hardware and software resources at the current location of a user. Hence, there is

a need for a novel decentralized service model that suited for gadget-free devices in local IoT

network. Harjula et al. [23] proposed a nanoEdge conceptual model that addresses this problem.

This model will generate on-demand services with the collaboration of network, data

processing, storage; and security services. This thesis is the implementation part of that work.

This PoC exemplifies and provides a reliable and smart solution for future distributed gadget-

free service for local IoT components with a real-world use case scenario.

Rest of this thesis is design as follows – Chapter 2 presents comprehensive related

background technologies related to the fields of the internet of things and wireless sensor

networks. Chapter 3 provides detailed information about the design and implementation of

Docker-based micro-services in IoT. Chapter 4 contains a detailed description of the evaluation

results and comparison of the implemented technologies with similar other IoT technologies.

Finally, the implementation of this thesis is discussed in chapter 5 with possible future

improvements.

10

2 RELATED WORK

This chapter will cover the theoretical part for a better understanding along with the definitions

approaching in this thesis. Then this thesis will study about the chosen technology step by step

and move towards the design and implementation of Docker-based micro-service for IoT with

several protocol stacks.

2.1 Internet of Things

Kevin Ashton [1], co-founder of the Auto-ID Center at MIT, introduced first the term Internet

of Things (IoT) for a presentation he made to Procter & Gamble (P&G). He used this in RFID

technologies in 1999 to grab the attention of P&G's senior management. A couple of years have

been passed after the first appearance of IoT and being major popular research and industrial

topics in the area of Information and Communication Technology (ICT). The IoT term appears

so frequently but not well defined in ICT and raise the doubt of what would be real elements of

the terminology [1]. IoT is a system without requiring human interaction of interrelated

computing devices that are provided with Unique Identifiers (UIDs) with the ability to transfer

data over a network [2]. In general, an IoT system often consists of three basic collective

components such as device, gateway; and cloud [69]. A device includes hardware and software

to interact with the rest of the world whereas a gateway enables devices to connect the internet

to reach cloud services. A cloud is a list of resources to process client request from a device

through a gateway. Figure 2 represents the traditional architecture of an IoT system.

Figure 2. IoT traditional architecture.

Machine-to-Machine (M2M) communication enables ubiquitous connectivity among

autonomous devices without human interaction or with minimal human interaction to support

data transfer among sensors and actuators [65]. It is a major concern to IoT infrastructure. One

of the key challenges in M2M communication is to provide an effective way for multiple access

in the network and to minimize network overload. In M2M communication, a network domain

comprises of a core network, access network, M2M service capabilities, M2M applications.

M2M devices connect to network domain either directly or indirectly through a gateway.

Nowadays, centralized cloud is not enough to describe the IoT architecture. Hence, Edge

Computing (EC), simple form of a cloud with limited computing capacity, has been introduced

to increase the computing capacity and reduce the energy consumption in M2M communication

[65]. Therefore, modern IoT may consist of cloud, edge; and end-devices. Figure 3 shows the

modern architecture of an IoT system.

11

Figure 3. IoT modern architecture.

IoT covers a variety of protocols, domains, and applications. Following subsections describe

the existing technologies that are used in current IoT systems.

2.1.1 IoT Protocols

The main objective of IoT is the integration of billions of smart electronic objects so that they

can communicate and exchange data among them. The key requirements of IoT include low

latency, high bandwidth, privacy and security. To satisfy these requirements, IoT requires a set

of rules or protocols by dividing the entire communication system into different multiple layers,

each having their own challenges and requirements. Researchers and developers have come up

with new IoT communication protocols in order to make successful autonomous connectivity

among IoT devices. These protocols are enabling the empirical communication of IoT devices.

Figure 4 shows the layer-wise heterogenous recent IoT protocol standard.

Figure 4. Heterogeneous IoT standard protocols [41].

12

All these protocols have designed for different purposes that are mostly related to the role of

the specific layer they operate on. On the application layer, MQTT and CoAP are the most

widely used protocols for IoT communications, particularly for low power devices. These

protocols have a small payload that enabling faster communications by using less power to

enhance and prolong battery lifetime.

2.1.1.1 CoAP

HTTP is a resource-consuming internet protocol due to high overhead for e.g. synchronous

operation, text-based format; and header structure. Chan and Kunz et al. [39] proposed CoAP

that allows the simplest communication protocol, especially for electronic devices. IETF

defined this by the open standard RFC 7252, that runs on top of UDP by default but can also

be implemented over TCP, DTLS or SMS. This protocol is designed for low-power devices

such as sensors and actuators. CoAP is affordable with resource constraints when network

bandwidth is critical. Figure 5 represents the network stack offered by CoAP. [42]

Figure 5. Network protocol stack with CoAP [42].

CoAP enables web integration with URIs and MIME types like HTTP. However, CoAP

clients can talk to HTTP servers and vice versa with an interface CoAP and HTTP. Unlike

HTTP, CoAP has its own response codes. This protocol is fit into a single datagram with a

single frame at the IEEE 802.15.4 layer or Ethernet. It can avoid fragmentation at underlying

layers, especially at the link layer. Figure 6 represents the CoAP subsystem architecture. [42]

13

Figure 6. CoAP subsystem architecture.

By default, CoAP uses 5683 and 61616 port for server and client respectively. Exchange

messages are 16-bit with 2-bit message type as conformable or CON (00 or 0), nonconformable

or NON (01 or 1), acknowledged or ACK (10 or 2) and retransmitted (or reset) or RST (11 or

3). CoAP request and response are composed with a 3-bit class (c) and a 5-bit detail (d) in c.dd

format. 0, 2, 4 or 5 value is used for a class for requests, success responses, client error responses

and server error responses respectively. Depending on the class value, a detail holds a request

or response code. CoAP code 0.00 implies an empty message whereas 2.01, 2.02, 2.04, 2.05,

4.04, 4.05 indicates created, deleted, updated, reset content, not found and not allowed

respectively. The message ID is in 16-bit where a token is in 0 to 8 bits [43]. All modern

programming languages like Java, C++, Python and many others have support for CoAP [44].

CoAP has a similarity with HTTP in request and repose. If for example, a client wants to access

a url with GET method allowing param1 and param2 parameters then it could be –

coap://host:port/url?param1=value1¶m2=value2

2.1.1.2 MQTT

Message Queue Telemetry Transport or MQTT is a publish/subscribe messaging protocol that

operates on the application layer which is extremely simple and lightweight for M2M

communications. This is designed for constrained devices concerning issues like low-

bandwidth and high-latency. The design principles of MQTT turn the protocol more precisely

where the bandwidth and the battery power are at a premium. The typical MQTT architecture

is depicted in Figure 7.

14

Figure 7. MQTT subsystem architecture [63].

In general, the MQTT protocol consists of a server (broker) and a huge number of clients

(up to 10k devices). Each client connects to the broker with its own unique identifier (client

ID). A broker manages client’s connections and exchanges messages among them. In addition,

a database persistence often requires in order to keep messages for future reference. A broker

is responsible for distributing messages to all clients reside into a network when those were

temporarily disconnected and returned back into online again. This process of distribution is

called the retain message.

A client must send a keep-alive message periodically to the broker to keep the connection

alive when it is in idle state (not pulling or pushing messages) for a long time, otherwise, the

broker terminates the connection after a timeout [63]. Basically, a connection timeout is

calculated by the following equation –

 CT = 1.5 * KAT (1)

Where, CT is the connection timeout and KAT is the keep alive time [63]. According to the

equation, the connection time is proportional to the keep alive time.

2.1.2 M2M Protocols

Higher-level application-layer protocols are not needed in all communication scenarios. Thus,

few low-level standard rules or protocols are required that enable us to exchange of information

from one machine to another. These should be secure and reliable for low power devices and

prolong the battery life. This section focuses on M2M protocols operating on lower layers.

2.1.2.1 6LoWPAN

IEEE802.15.4 is a standard for low power Wireless Personal Area Network (WPAN) proposed

by 802.15 working group. It operates in 16 channels at 250kbps (over 2.4GHz band), in 10

channels at 40kbps (over the 915MHz band) and in one channel at 20kbps (over the 868MHz

band) with 16- bit or 64-bit addressing mode. This protocol resolves most key challenges of the

WSN related to security, auto networking and low power consumption [70]. Figure 8 shows the

Internet Protocol version 6 (IPv6) over Low power Wireless Personal Area Networks

(6LoWPAN) architecture.

15

Figure 8. 6LoWPAN protocol architecture [77].

The 6LoWPAN developed by the Internet Engineering Task Force (IETF) is in favor of

WSN challenges. It enables the efficient use of IPv6 at low-power device through an adaptation

layer. [70]

2.1.2.2 BLE

Bluetooth Low Energy (BLE) is a protocol used for low powered devices that designed on top

of physical layer and data link layer. The classic Bluetooth then these devices generally face

fast battery drain with the fact of frequent loss of connectivity among those devices. As a result,

these devices require frequent pairing and repairing to share data. BLE is an emerging low

power wireless technology that is developed for short-range network. It provides a single-hop

communication which enables its usability to consumer electronics and security applications.

A typical BLE protocol is shown in Figure 9.

Figure 9. Typical BLE protocol stack [71].

16

A typical BLE stack consists of a controller and a host. Controller part usually forms with

the physical and link layer while the host part forms with a Logical Link Control and Adaptation

Protocol (L2CAP), an Attribute control (ATT), a Generic Attribute Profile (GATT), a Security

Manager (SM) and Generic Access Profile (GAP). Host Controller Interface (HCI) is

standardized with the host and the controller part. [70]

2.2 Cloud Computing

Cloud Computing (CC) is a centralized model that enables global access to configurable

resources and services through applications, networks and storage devices. These resources are

dynamically configured and accessible by any internet connected node, anywhere in the world.

It allows the optimum resource utilization to adjust to an automatic variable load [3]. Figure 10

shows how a user get access to the cloud.

Figure 10. Data processing at the cloud [80].

Service providers can easily deploy their services without having the base setup which is

provided by CC platform [5] – [7]. On demand scalability, storage capacity; and security are

very regular benefits of cloud computing. In addition to these benefits, control of cloud services

in the form of Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as

a Service (IaaS) turns into Everything as a Service (EaaS or XaaS) which fulfil the requirements

of any organization. However, the centralized cloud faces a few key challenges even though it

has a high computational performance at the server. High latency is one of the biggest

challenges due to the very high distance between the client device and the server station. This

is controversial and becomes very problematic in exchanging data from a server when a client

has low-speed internet connection especially for online gaming [8]. Privacy and the public

services provided by CC are vulnerable in the fact of security [9] – [13]. Securing the

confidential data of end-users and organizations is a major concern that propagates with a public

network to the data center [14] – [16]. These are the crucial driving factors to move services

towards Edge Computing which pushes cloud services to the edges of a network [17] – [19].

17

2.2.1 Web Protocols

Typically, a web page is composed of many contents such as text, images, videos, scripts, and

more. These contents may come from either a single server or several many distributed servers.

Figure 11. Client-Server communication with HTTP [40].

Clients and servers exchange messages (as opposed to a stream of data) by a web application.

The client message is called a request whereas the server message as an answer is called

response. [40]

2.2.1.1 HTTP

Hypertext Transfer Protocol is a standard web protocol to specify how content will be

exchanged between a server and a client. It allows a web client to fetch web resources, such as

HTML documents. Theoretically, it uses the Transmission Control Protocol (TCP) over Internet

Protocol or IP. The contents of a server can be sent to the client as HTML, XML, JSON format.

Part of a document can be updated by the client request. Figure 12 presents a typical HTTP

protocol stack. [40]

Figure 12. HTTP protocol stack [40].

A client can access a web resource with a standard method defined for HTTP such as GET,

POST, PUT, DELETE; and many others. Typically, port 80 is allocated for HTTP by default.

18

HTTP GET request url with parameters param1 and param2 can be accessed through a browser

as –

http://host:port/url?param1=value1¶m2=value2

The server sends a status attached to the HTTP header along with the message body in

response to a client. These statuses have a standard format for example – 1xx (informational),

2xx (success), 3xx (redirection), 4xx (client error) and 5xx (server error). Appendix 2 shows

the HTTP status codes.

The HTTP is developed by Tim Berners-Lee over 1989-1991. It has no version since it was

invented and later introduced with HTTP/0.9. The first version of HTTP (0.9) has no support

for other types of documents (as an attachment) and has no headers (status and codes). After

that, HTTP/1.0 has been introduced in 1991-1995 that enables us to add documents along the

text-based messages with Content-Type. It also informs, the browser about the headers (status

and codes) in response to the client request. From 1995, HTTP/1.1 has been started developing

to support caching, chunk response with numerous languages support along with encoding

mechanism. In 2016, HTTP/2 has been released with secured cookie. [78]

2.2.1.2 HTTPS

The text-based HTTP protocol has a bunch of drawbacks in privacy and security, especially for

the online transaction in banking and e-commerce trading. The Man-In-The-Middle (MITM)

attack allows an intruder to steal data passing through the communication channel [72]. Figure

13 indicating the problem space in HTTP and alternative solution to the problem.

(a) (b)

Figure 13. Intruder in (a) HTTP (b) HTTPS.

An HTTP connection basically secured with a certificate provided by Transport Layer

Security (TLS) formerly known as Secure Sockets Layer (SSL). By default, port 443 is reserved

for secure HTTP or HTTPS. The whole communication channel is vulnerable if this certificate

is not trustworthy and the original certificate will be replaced at the server-end by the attacker.

[72]

19

Figure 14. Encryption and decryption process at communication channel over HTTPS [73].

The attack will be successful if a client neglects the browser’s warning without a double

check of the certificate. This will be minimized with the encryption and decryption algorithm.

Both of a client and a server first encrypt the original data by an encryption key before sending

those and decrypt the encrypted data after they received before processing. In encryption

process, a human unreadable cipher text is generated with the original data and an encryption

key. On the other hand, a decryption key is used with the encrypted data (the ciphertext) to get

back the original data at the decryption process. [73]

2.2.1.3 Web Sockets

Typical HTTP communication cycle includes a client request and a server response. In this

communication, a client will not get any update information from the server without making a

new request to the server. Websocket is a protocol similar to HTTP that allows persistent

connectivity under the hood of the web browser. Figure 15 represents how websocket enables

continuous connectivity in between a server and clients.

Figure 15. Websocket in communication.

Websocket consists of an opening handshake and a basic message framing and works over

TCP. It provides a mechanism for browser-based applications that require two-way

communication with servers to exchange data rather opening multiple HTTP connections [74].

It works like a full-duplex phone call where the stream of information is constantly flowing to

a web browser. It is the foundation for the most real-time web application. If there is a change

20

in any device that connected through websocket then other devices connected to the gateway

will be updated automatically. For example, if Desktop has a new state then server, Mobile and

Tablet will be updated automatically. Websockets are mostly used in chat and messaging

applications, many real-time systems like stock exchange applications, and so on.

2.2.2 APIs

Application Programming Interface (API) enables us to store and retrieve data to or from

database irrespective of the access application. It allows us to use a feature that is written by

someone else around the world. For instance, a weather API can help us to know about the

environmental things like the temperature, humidity, etc. API endpoint or url is required to get

access to a piece of information from a server. The information is gathered as key-value paired

which is parsed with JSON or XML or any other suitable format. Figure 16 shows a typical

communication based on API.

Figure 16. Typical communication with an API [81].

Data in a remote datacentre can be accessed from many devices such as a web browser, a

mobile application; etc. All these access devices may not have the same application to the access

data. In such cases, APIs can help us to represent data for different view application.

2.3 Edge, Fog and Mist Computing

Data is continuously being generated at the edges of networks particularly in IoT. On the other

hand, the cloud is generally too far from end-to-end devices meanwhile bandwidth is limited in

the communication system. Moreover, the services will be affected when a lot of requests is

being processed at the remote cloud server beyond the cyber security threats. Considering these

factors, cloud computing is not always efficient model for data processing especially when the

data is generating at the edge of the network [19]. Figure 17 shows the possible problem of

space for cloud computing.

21

Figure 17. Service disruption between the cloud and the end-to-end device.

Therefore, it would be better and more efficient to move remote cloud services those

requiring low latency, high reliability, context information, reduction of data towards the edges

of networks. The next subsections will present the most common alternative models as a

solution to the cloud computing in favor of IoT.

2.3.1 Edge Computing

Edge Computing (EC) introduces a new layer of services between the cloud and the end-to-end

devices at the edge of network that producing data directly. It optimizes the performance of

services resides in the cloud by improving the speed of data processing at the edge of the

network near to end-device.

Figure 18. Data processing at the edge of network.

22

It greatly improves the latency between IoT nodes and servers by reducing the physical

distance. It helps us to resolve security and privacy by limiting the scope of propagation of

private data along the public networks [20].

2.3.2 Fog Computing

Edge is not enough to speed up the data processing at the end-devices especially for industry.

Fog computing is a term closely related to Edge computing and has a stronger focus on

enterprise services especially in the form of SaaS or PaaS [21].

Figure 19. Data processing at the fog layer.

Fog computing is a term proposed by Cisco [76] which enhance the computational capacity

of the edge of network. Basically, it improves the performance of edge and gives resiliency to

the unstable networks [22]. In practice, fog is the virtualized solution to cloud while edge is the

infrastructural solution to cloud computing. So, in essence, fog computing is a standard for IoT

while edge is the backbone concept [76]. Decentralized fog allows a reparative structure in the

edge concept so that enterprises can perform better compared to cloud.

23

2.3.3 Mist Computing

Ultra-low powered devices require more sophisticated services in the local IoT network. These

low powered devices require virtualized service provisioning that taking place at IoT

infrastructures often called as Mist Computing (MC).

Figure 20. Data processing at the mist layer.

It basically introduces another new layer in between edge computing and end-to-end devices

at the local position. It improves the performance of edge computing having the services that

only required to end-to-end devices. [23]

2.4 Virtualization

Virtualization is the core technology behind cloud computing and offers the ability to control

complex systems [4]. It allows us separating the operating system from the underlying hardware

[24]. It creates a virtual version of a resource such as a server, storage device, network or even

an operating system. The framework of this technology divides the resource into one or more

execution environments [25]. It also includes resource optimization, dynamic load balancing,

and application isolation. Typical classification of virtualization shown in Figure 21.

24

Figure 21. General taxonomy of virtualization.

Network virtualization allows to create logical network where server virtualization enables

virtualization of physical hardware devices. Following subsections present server and network

virtualization.

2.4.1 Network Virtualization

Network Virtualization (NV) is the process of separating the network from the underlying

network hardware. It can create logical, virtual networks that are decoupled from the network

devices. It ensures better integration to network and support virtual environments increasingly

like virtual private network or VPN [26]. Network Functions Virtualization (NFV) virtualizes

the typical network elements, such as routing by switches, firewalls by using Network Address

Translation (NAT); and all other core network components [59][60].

2.4.2 Server Virtualization

Server virtualization enables the conversion of a physical server into several multiple virtual

machines that can be deployed on any arbitrary hardware. Each newly created virtual server

acts like a unique physical device. Full virtualization, para virtualization, host OS virtualization,

and containerization are common approaches of server virtualization. [26]

2.4.2.1 Hypervisor-based Virtualization

The hypervisor is computer software or hardware that creates a new partition and introduces

guest OS on top of the physical hardware and host operating system. Figure 22 represents the

architecture of hypervisor-based virtualization on top of physical hardware and the host OS.

25

Figure 22. Typical Hypervisor-based virtualization [34].

Hypervisor requires a management software like Oracle VirtualBox and VMware to create

and manage a new virtual system. The hypervisor has various limitations. The biggest drawback

of this mechanism is that, it reserves resources like CPU and RAM even if they are not in use.

This may cause for a negative impact on host OS with performance degradation. For an

instance, A system has 16 GB of RAM and 3 guests OS is serving on it as Windows, Linux;

and Mac OS where 8 GB, 4 GB; and 4 GB are allocated respectively. In this case, 8 GB that

allocated for Windows OS will not sharable with neither Linux and nor Mac OS. This is also

true for Linux and Mac system. It requires an image for guest OS like iso file used for a real

OS which is another drawback of hypervisor-based virtualization. Start-up booting time and

integration are other two important parameters that cause and lead us to use containerization

solution to virtualization technique.

2.4.2.2 Unikernel-based Virtualization

The traditional hypervisor-based system populates a full guest OS inside a host operating

system and allocates physical and logical resources for that guest OS. Considering these pitfalls

with the issue when the system does not require modification after deployment, unikernel can

be an effective solution [34]. Unikernel is single kernel-based virtualization and is a single-

purpose appliance which is used at compile time. Figure 23 gives an architectural overview of

a unikernel system.

26

Figure 23. Unikernel-based virtualization [34].

Security and unikernels are tightly coupled. Moreover, a unikernel provides high security by

suppressing unnecessary components from the applications and hence reducing the scope of

attacking surface. The scope of attacking surface of a unikernel system is strictly confined to

the embedded application within the system. In a unikernel system, everything is directly

compiled into the application layer separately. As a result, a hacker may able to break a single

unikernel system but not spontaneously to all.

2.4.2.3 Container-based Virtualization

Containerization offers the most effective lightweight virtualization which allows sharing

physical resources like CPU and RAM from the underlying hardware and software [34]. It

wraps all requirements into a software package like an executable file to execute the instructions

given the system using container engine. Figure 24 shows a building block of a container in

containerization technology.

Figure 24. Container-based virtualization [34].

27

Container technologies provide various benefits for example fast construction, instantiation,

and initialization of virtualized instances compared to hypervisors. In addition, systems on IoT

edge can be benefited from the small virtual images of containers. Following subsections

describes further details of lightweight technology.

Docker and container orchestration are major concern of this thesis which very related to

virtualization. Those will be described into separate section rather describing here.

2.4.3 Docker

Hypervisor-based system solutions became problematic in resource allocation, start-up time

and adaptability. Container-based Docker ecosystem offers a better solution to develop and

deploy applications by using containers just requiring Docker on the host machine. It is an open

source platform to build, ship, and run any app, anywhere [35]. Docker containers allow a

developer to package up an application with all requirements, such as libraries and other

dependencies to build software correctly that workable in all other machines and ship that as a

single package. The application will run on any other machine having Docker regardless of the

customized settings. Anyone can contribute to Docker and extend it to meet their own

requirements if they need additional features.

2.4.3.1 Docker Image and Docker Container

A Docker image is an inert and immutable file created from Dockerfile that's essentially a

snapshot or blueprint or template of a Docker container. Dockerfile holds all necessary

commands or instructions to run a software knowing the dependencies of that software using

Docker engine. Every Docker image requires a special image which is called the base image of

that new image which is the first line at Dockerfille. Docker engine starts execution from the

base image and creates an intermediate image and saves the final one by dropping immediate

images. A Docker image is created with the build command and produces a Docker container

when started with run command. A Docker image can be stored in a Docker registry or

repository system like dockerhub for future use and reference. [37]

A container is a runnable instance of an image. Image and container are very similar to class

and object in the Object-Oriented Programming (OOP) paradigm. To use a programming

metaphor, if an image is a class, then a container is an instance of that class which is a runtime

object. An image is a blueprint of a container whereas a container is running instance of that

image. Containers are lightweight and portable encapsulations of an environment where they

could run and deploy applications.

Mouat et al. [37] stated - An image is a template that can be turned into a container by

running the image. Docker engine takes the image, adds a read-write filesystem on top of the

system and initializes various settings on the environment including network details, container

name, ID and other resources to turn an image into a container. In a Docker engine, a container

can be either in running or stopped or even not instantiated or exited state. It can also restart

and will retain its necessary settings if there is a change in the filesystem.

2.4.4 Container Orchestration

Services must be answerable to the fact of - fault-tolerant, on-demand scalability, resource

optimality, can update or rollback without any downtime, able to discover other services

automatically and can communicate with them. However, container orchestration provides us

28

the tool known as container orchestrator to deploy and manage any application on the system

[36]. Figure 25 shows the typical container orchestration proposed by Amazon Web Services

(AWS).

Figure 25. Container orchestration [61].

There are many container orchestrators available such as Swarm, Kubernetes, Marathon; and

ECS. This thesis focuses on Swarm and Kubernetes.

2.4.4.1 Docker Swarm

Docker Swarm is a container management tool for orchestrating Docker containers. Docker

Swarm has a leading node with some other nodes. The leading node is Swarm manager where

other nodes referred to as workers. Swarm managers can execute commands or authorize other

machines to join the swarm as workers. Figure 26 represents the general architecture of a

Docker Swarm system.

Figure 26. Docker Swarm.

A manager has the ability to talk with all the workers and a worker can talk with the manager

but not with other worker nodes. A machine can be turned into a swarm manager simply by

29

enabling the swarm mode on that host machine. From then on, Docker commands can be run

and executed on the swarm that is in all machines, rather than just on the operating manager

machine. [38]

2.4.4.2 Kubernetes

Kubernetes is an underlying technology used for container orchestration. In harmony, it reduces

the operational burden and allows many containers to work together. Kubelets helps Kubernetes

to interacts with Docker engine. Kubelets works under the hood of Kubernetes and can

consolidate with Docker engine to organize the scheduling and execution of containers. Figure

27 portrays an architectural overview of Kubernetes system.

Figure 27. Kubernetes system architecture [62].

Kubernetes handles service-discovery, network policies, and load balancing as well. Both

Swarm and Kubernetes are great tools for container management where the Graphical User

Interface (GUI) adds extra benefit to Kubernetes with Command Line Interface (CLI). [36]

2.5 Application Design

Software Development Life Cycle (SDLC) is usually composed of numerous steps from

planning to maintenance and follows a strategic rule during the entire development life cycle.

Most SDLC includes – studies over requirements, design, implementation, testing, deployment,

maintenance by scaling and many other steps. Personnel (either a developer or a tester) in the

software industry is often facing various problem from testing to maintenance [33]. Figure 28

shows the possible stage of a problem that faces in SDLC.

30

Figure 28. Problem space in SDLC.

A developer developed software that may workable just in his/her own machine. Then s/he

sent that for next phase i.e testing. The software just is broken or crashed when a tester (or

DevOps or other developers) run that on their own machine. There could have several reasons

that cause failure. This failure is reasonable for either

• A developer may not concern with the task(s) that given to his college(s). As a result,

(s)he may not aware of the related dependencies so that the application is workable

to others.

• The dependencies may be defined in terms of

o Hardware (e.g. Memory)

o Software (e.g. OS and version)

Software personnel needs a dynamic novel automated solution that can resolve the above

problems. Virtualization has been introduced in software industry to overcome these problems.

2.5.1 Design Patterns

Monolith and microservice [66] are two popular design patterns have been introduced by

software developers. In this section, the architectural design and practical scope in real the

world will be discussed.

2.5.1.1 Monolith Application

When the entire functionality of the application is packaged together as a single unit or

application then the application is called monolith application. It hooks up all the services of

into a single unit as a large-scale application. For example, an online shopping website will

typically consist of product, cart, payment, and other features. All possible features in a large-

scale monolith application are implemented and packaged together as a single application. [28]

The monolith application contains some advantages including modularity (all codes are in a

single place), IDE-friendly, easy sharing, simplified testing; as well as easy deployment.

Besides that, it has the following disadvantages consisting of limited agility, discontinuous

delivery, sticky to technology stack; and technical debt. [27]

31

2.5.1.2 Microservice Application

Microservices is a software architectural design pattern that decomposes and decouples all the

possible features into several small single pieces of applications with a limited scope of

functionality. Balalaie et al. [29] shows a migration process from a large-scale monolith

application to multiple smaller services. In their architecture, each smaller service deployed on

its own archive with a possible decomposition of dependencies and then builds a single

application. For example, each of online shopping would have services for a product, cart,

payment, and other features.

Kumar et al. [30] shows the use and scope of microservices in his blog post. Domain-driven

design (decentralized data management), single responsibility principle, independently

deployable, upgradable, scalable and replaceable, potentially heterogeneous; and light-

weightiness are the key characteristics and benefits of microservices. NoOps is called common

additional features that are introduced in microservices having service discovery, service

replication, service monitoring; and service resiliency.

2.5.2 Mobile Agent

There is a need for software agent in any Artificial Intelligence (AI) system which is capable

of training from the fact of the environment by observing it [46]. It enables system components

to get and set automatic and intelligent actions on behalf of the system owners. During the

execution of a task, a mobile software agent or mobile agent (in short) can relocate itself by

moving between the two system devices.

Figure 29. Software mobile agent follows user.

IoT devices get and set smart behavior (such as composition, aggregation; and relocation of

services) by implementing mobile functionality into the system domain. An autonomous mobile

agent can be beneficial to the IoT system since it interacts and responds on behalf of the system

[47][48].

2.5.3 Actor Model

A modern Operating System (OS) creates a process as a request to run a program. In particular,

a process is basically a program that is currently executing with one or more local variable and

a counterpoint. Every process should have at least one thread. A process can also have multiple

threads. Multiple threading or multi-threading is a popular approach used in concurrent

computing. Resource overhead is the most common drawback that causes for a thread. It

32

includes memory overhead since it uses local variables in a program. On the other hand, CPU

overhead is another inherent problem introduced in the scheduling of threads by the operating

system. Actor model helps us to resolve this, especially in concurrent computing. [67]

(a) (b)

Figure 30. Actor model (a) message passing (b) internal state.

Actor models are defined as the compositions of several actors that do not have shared state.

These actors communicate by means of exchanging messages among them. Distributed

microservices can take the advantages of the actor model in IoT Edge computing [31].

Haubenwaller and Vandikas have utilized this model in their service composition. They stated

- data may process at the local system by IoT devices rather sending to a central location for

processing [32]. The tasks can be split into smaller tasks and deployed IoT devices efficiently.

In practice, this model is conceptually very close to microservice architecture since the actors

are message-driven having single responsibility to each of them. Therefore, it can be applied to

microservices systems in between microservices.

33

3 DESIGN AND IMPLEMENTATION

This thesis is focused on the implementation using distributed services in favor of the future

gadget free decentralized local IoT edge network. A demo environment has been installed to

demonstrate the operating of this thesis before the actual work. Following subsections describe

the action plans taken for IoT distributed services.

3.1 Application Scenario

In order to define the requirements of the system, a use case scenario has defined. Following

section describes the use case scenario with the service model that launches for the completion

of the use case.

3.1.1 Use Case

This thesis takes the use case scenario defined in Harjula et al. [23] as the basis for the

implementation. In the use case scenario, Alice organizes a team with Bob, Carl, and David.

Then she creates a meeting event and sends a request to her team members. Each participant

needs to be verified and authenticated with their identity by the system or the participants before

entering the meeting room since highly confidential topics will be discussed in the meeting.

Now she needs a secured system that deployed locally which will lead a participant from the

entrance to the meeting room. In this secured system, it can have 3 major services for a

successful meeting as authentication, guidance; and meeting contents. Gadget-free devices such

as smart ring could be used for identification [45].

3.1.2 Example Scenario

At first, Alice activates the presence detection by a motion sensor which will detect movement

at the corridor. User authentication will be activated when movement detected by the movement

sensor. Multimodal user authentication, used in the implementation, consists of three separate

and independent authentication functions, including WiFi Channel State Information (CSI),

Bluetooth Low Energy (BLE); and Video Surveillance authentication. Every 3 authentications

can be applied to the participants.

WiFi CSI is the combined effect of fading, scaring and power decay along with distance and

describes the signal strength and its propagation in between the transmitter and the receiver. It

could be used in the authentication. A user can be identified with the help of channel estimation

and by matching the average walking speed of a user with the user’s profile. Bob visited this

place before and his profile has saved into this CSI log. So, the system can identify Bob

delegation to the meeting.

Many tracking and security system requires continuous communication with low powered

devices. Bluetooth Low Energy (BLE) is one of the most emerging technologies which is used

in wireless Personal Area Network (PAN). Bluetooth Special Interest Group (Bluetooth SIG)

introduces novel use of BLE in positioning and tracking with proximity sensing and BLE based

electronic key in security. The second authentication of the system is BLE ID-based

authentication. Carl never visited the location before. A BLE device is provided to authenticate

him by the system itself by the host Alice. WiFi CSI takes time into the authentication process.

Hence, the system starts WiFi CSI and BLE simultaneously when movement is detected on the

corridor.

34

Video Surveillance Camera or Closed-Circuit Television (CCTV) is mostly used in many

security systems for identification of an object. The popularity of this manual recognition is

being increasing day by day from the last few decays. David also never visited the location

before and has no BLE. So, he could be authenticated by neither WiFi CSI nor BLE. Therefore,

he could be identified merely by Alice with a surveillance camera placed at the corridor.

Once a participant is recognized by the system then the system then guides a participant to

the meeting room. A mobile agent could introduce into the system to guide the participant [46]

– [48].

When a person is detected in front of the meeting room the system again identifies the first

participant. The system must hide the personal stuff and download and present the meeting

content by the storage service as soon as the first participant arrives at the meeting room. The

real picture for the aforementioned scenario is reflected in Figure 31.

Figure 31. Real picture of the PoC scenario [23].

3.2 Requirements

In the above scenario, the IoT network is formed with many constrained devices along with

various sensors and actuators. Since the above scenario is assumed for the local network, thus

the interoperability and the resource consumption got the maximum priority over other

challenges for the IoT network. The constrained devices used at the local layer brings the

limitation to the storage, data processing; and computations. Therefore, the main challenge is

to provide an efficient way to utilize local resources without compromising the performance of

the services. These services must be efficient in resource consumption, authentication, quick

deployable and initiable. Moreover, scalability and security are also two fundamental

requirements for local IoT network among others, but these are not focus for this thesis.

In this context, container-based lightweight virtualization of services may provide the

maximum efficiency at the resource consumption. This architecture should be deployable and

re-deployable based on the requirement. Docker containers could be useful for the demo

scenario. Either Docker Swarm or Kubernetes could be used as container management tools but

here Docker Swarm will be used for the rest of the implementation.

35

3.3 Design

In this thesis, the following services have been defined to implement the PoC for the nanoEdge

concept, defined in [23]: 1) presence detection service placed at the entrance point to detect and

authenticate arriving users, 2) a controller service to keep a status log when the system is

processing a request to lead a participant from entrance to the meeting room, 3) BLE scanning

service installed into entrance and in front of meeting room to authenticate a user. Two other

authentication mechanisms such as WiFi-CSI, Surveillance Camera-based authentication has

been left out of this PoC, 4) API service as part of authentication where BLE IDs belong to

specific participants, 5) LED guidance which enlightens the way to meeting from entering point

and 6) meeting room service which includes presence detection service to detect a person in

front of the meeting room using a PIR motion sensor, and also hide personal content then

presents the meeting contents after downloading those from the storage for the first attendant.

This thesis has defined the service model for this demo project. The service model of this

architecture demonstrates how entire system will work for the scenario. Then it has also defined

the required services to satisfy the project requirements.

3.3.1 Service Composition, Modification and Termination

At first, Alice follows few steps to define and start the required services [23]. These steps

include – 1) create the meeting event with an online (e.g. cloud) service management tool

connected to the nanoEdge API gateway, 2) choose a meeting service template, 3) selects an

available meeting room from a calendar view, 4) start defining the service based on those.

Figure 32. Service creation, modification and termination [23].

In this model, a service administrator or admin can create a service, add and remove

functionality, and terminate services. Five services for a system has been created (deployed)

initially as for the requirement of the system by the system admin. Next, the system admin

realizes to add BLE service as a functionality to the authentication process. Then he realizes to

put down the API service from this architecture. Finally, the system can have an automatic

backup process for storage, data, code and so on before termination of service.

36

3.3.2 Service Design

The conceptual actor model has been applied to manage concurrent request from client devices.

According to this model, an actor can define some general rules so that the components of a

system could asynchronously behave and interact with each other. Generally, it processes a

request with a message as a parameter from a mailbox having a queue of multiple messages. In

this thesis, it has tried to design the example scenario as maximum as possible decoupling of

services from each other which is presented in Figure 33 in favor of microservices.

Figure 33. Design of the PoC scenario.

In the implementation, it processes the request with a message at every service to activate

the next level of service to process. When a participant enters the corridor, presence detection

service (PDS) will be activated automatically and sent a request to the main controller service

(MCS) to activate BLE scanning. BLE sends encoded list of BLE device in response to the

request of main controller service. API service further let informs the main controller service

whether a BLE devices is authenticated or not in response to it. Then LED service will enlighten

the way to meeting room like a mobile agent. When a participant is in front of the meeting room

then meeting room service (MRS) will be activated and authenticates the participant again and

do numerous tasks as described above in this section.

3.4 Implementation

This thesis implemented all the required 6 services as stated in the previous section. Every

service can talk to each other with CoAP messaging protocol and can exchange information

with GET request. Following sections in this chapter will describe implementation details with

associated appropriate subsections.

3.4.1 Services

All the required services have their own loyalty in minimal scope. Here, this thesis described

all of them one by one into the following subsections.

3.4.1.1 Main Controller Service

A special service is required that cares about the Machine-to-Machine (M2M) communication

and routes the incoming request to appropriate resource. Main controller service introduces the

CoAP server for M2M communication. Figure 34 shows the overall request and response along

with their method that happens in this project scenario.

37

Figure 34. Messaging among of services in demo scenario.

There are 4 resources and all of them is handled by a GET method besides a POST method.

This service records current processing status about every request that is in progress. Table 1

shows list of resources along with Uniform Resource Locator (URL) and logged a successful

status after processing the request. The initial status is defined as INIT.

Table 1. Available CoAP resources in main controller service

URL Method Resource Status

/detect GET DetectionResource DETECTED

/scan GET ScanningResource SCANNED

/api GET APIResource AUTHENTICATED

/guide POST GuideResource GUIDED

/meet GET MeetingResource PRESENTED

Main controller service takes the control when it gets a request from Presence Detection

Service (PDS) and starts processing the request to handle. Then it automatically sends a request

to BLE scanning server to activate and start scanning. The main controller does this internally

with popen [54] and transfer control to the BLE scanning service. BLE scanner further transfers

the control back to the main controller with scanned encoded BLE devices as a response. MCS

then sends the encoded BLE devices to API service to verify them by letting control to it. API

returns the control back to the main controller with the appropriate status of the BLE

authentication. The main controller sends a request to LED guidance with control to enlighten

the meeting room path with the mobile agent. The main controller gets back the control from

LED guidance when the authenticated user finally reaches in front of the meeting room. The

main controller finally transfers the control to the Meeting Room Service (MRS) and hence do

its tasks and then returns the control to the main controller service. MCS keeps track of

successful status as shown in Table 1Table 1. It also keeps track of fail status and store in log

prepending NOT to each successful status. For example, if a user is not authenticated with BLE

key, then the main controller service will store the keep log the status as NOT

AUTHENTICATED. All the device to device communication done with CoAP protocol.

38

3.4.1.2 Presence Detection Service

Presence Detection Service (PDS) is the very first service that detects presence of a warm body

in the entrance. This uses PIR motion sensor as a hardware component. This component uses

Infrared Radiation technology to detect a warm body passing through it. Infrared Radiation

(IR) has a wavelength from about 800 nm to 1 mm greater than the red end of the visible light

spectrum but less than microwaves and is emitted particularly by heated objects. Passive

Infrared Radiation (PIR) motion sensor made of IR sensitive two material slots.

Figure 35. Presence detection with PIR motion sensor [51].

When a warm body like a human pass by the detecting area of PIR movement detection

sensor, it first intercepts one half (material slot) of the PIR sensor, which causes a positive

differential change between the two halves and hence rises voltage up into electrical circuit. It

goes reverse back when the warm body leaves the sensing area whereby the sensor generates a

negative differential change and hence again voltage goes down to zero levels into the electrical

circuit. These change in voltage deference in the circuit make pulses are what is detected.

In this implementation, RPi3 and a PIR motion detection sensor as a physical apparatus has

been used for presence detection. There are 3 pins in PIR sensor denoted as GND (ground),

VCC (Common Collector Voltage); and OUT (Output of the sensor reading). It is required to

access RPi’s pin for General Purpose Input Output (GPIO) to read the output from PIR as

motion detected in PIR. GPIO has 3 mode which includes BOARD, WiringPi; and BCM. GPIO

pin config is not same in practice and hence need to set mode first to access the pin in RPi as

GPIO such as GPIO4 is pin 4 in BCM mode while BOARD and WiringPi show it pin 7. There

are a couple of ways to check RPi’s pin config, but pinout [52] is most popular Command Line

Interface (CLI) tool beside RPi’s pinout [53] that described in detail. Figure 36 shows the pinout

of BCM2837 RPi3 that used for presence detection service.

39

Figure 36. Pin configuration in Raspberry Pi 3 model B.

Connection configuration has been accomplished with RPi’s pinout and BCM is used as pin

mode to access RPi’s pin for GPIO which is shown in Table 2. Here RPi’s pin 1 and 7 provides

3.3 V to PIR and GPIO4 is used as input to RPi 3 as an output from PIR respectively.

Table 2. Connection configuration between PIR and Raspberry Pi 3 (RPi)

PIR pin RPi pin

GND 9 (GND)

VCC 1 (3V3)

OUT 7 (GPIO4)

Finally, an event handler and a callback function help us when an object is detected around

the PIR motion sensor. The event handler function checks if there is a voltage rise on the RPi

GPIO4 where the callback function sent a CoAP request to main controller service to activate

BLE scan service for scanning BLE devices along the corridor. Figure 37 shows code snippet

that used to handle an event when there is a motion in PIR motion sensor.

40

Figure 37. Code for motion event in PIR detection area.

CoAP client code to activate BLE scanning is written in Twisted framework which is very

similar to Hyper Text Transfer Protocol in (HTTP) (REpresentation State Transfer) REST

architecture. The code segment clearly demonstrates CoAP request function named

activateBLEScanningService() written for BLE scanning in sendRequest(channel) callback

function. The callback function call when there is a voltage up in GPIO_PIN into the GPIO

event. Figure 38 illustrates that a GET request will send from presence service to main

controller service.

Figure 38. Request from PDS to MCS.

PDS aware of motion and periodically checks motion PIR sensor’s effective area. If there is

a change in sensor data, it gets control and then it sends a request to MCS to activate BLE

service with a message status. Initially, PDS sets this INIT which will update to DETECTED

and transfer control to MCS. The status record will be reset to INIT after sending the request to

MCS. The main controller also keeps the status before processing BLE service for future

reference. The entire procedure illustrated in the following Figure 39. The entire processing is

handled in PDS.

41

Figure 39. Workflow for a request originated from PDS to MCS.

3.4.1.3 BLE Authentication Service

Bluetooth Low Energy (BLE) service gets control from the main controller to scan available

BLE by advertising packet. Figure 40 depicts the connectivity between the main controller

service and BLE authentication service.

Figure 40. Communication between MCS and BLE service.

This service starts scanning usually scan for 3 seconds by default and encrypts all BLE

devices after successful completion of encryption by using a modern algorithm. It requires

network administration capacity to enable BLE scanning as root user [55]. Figure 41 depicts

the connectivity between the main controller service and BLE authentication service.

42

Figure 41. BLE service server code segment.

The main controller sends this request to BLE scanning service with popen and it gets back

the control as a response from BLE scanning service. In the main controller service, the coap

subprocess is responsible for this internal communication between MCS and BLE

authentication services. Here, MCS or main controller service and BLE authentication service

can exchange the information with the help of CoAP messaging protocol.

Figure 42. BLE client code written in MCS.

BLE service gets control when it gets a request from main controller service i.e MCS. It

encrypts BLE device ID if it found any devices at the entrance. MCS keeps either DETECTED

or NOT DETECTED based on the response of BLE service.

43

Figure 43. Status record in MCS & BLE.

 Solid lines indicate that actions were taken by main controller service whereas dashes are

for BLE service.

3.4.1.4 API Service

In the demo project, Application Programming Interface (API) service has been implemented

as another microservice so that the meeting events stuff can be kept for future record. It gets

control from main controller service or MCS having list of BLE devices to check delegates or

guests of a meeting event. Figure 44 denotes the exchange of information between main

controller service and the API.

44

Figure 44. Messaging between MCS and API microservices in PoC.

In all Object-Oriented Programming (OOP), classes are the blueprint of objects consisting

of properties and methods [56]. API service has few classes having an appropriate logical

relationship. Appendix 1 represents the relationship among the entities that made for this

implementation whereas the following Figure 45 shows UML class diagrams of the API service.

Figure 45. UML class diagram for API service.

Constrained Application Protocol (CoAP) was used to make a communication in the main

controller service and the API service. CoAP itself is on top of user datagram protocol or UDP.

The API works as a server machine where the main controller service or MCS acts as a client

that request resources for BLE authentication. Following Table 3 denotes the available

resources into API service.

45

Table 3. API resources available in API service

URL Method Resource Purpose

/api/persons GET, POST PersonsResource Check list, create new

/api/persons/{id} GET, PUT PersonResource Check & update

/api/rooms GET, POST RoomsResource Check list, create new

/api/rooms/{id} GET, PUT RoomResource Check & update

/api/tags GET, POST TagsResource Check list, create new

/api/tags/{id} GET, PUT TagResource Check & update

/api/events GET, POST EventsResource Check list, create new

/api/events/{id} GET, PUT EventResource Check & update

The API service is completely made of python with flask framework. The incoming request

from MCS is received at API with contained application protocol. The request is further

processes with popen that uses curl to access TagResource uniform resource locator or URL.

These URLs are in REST architecture. Figure 46 shows what status will be stored at main

controller when the request starts from MCS that sends to API service which finally stops at

MCS.

Figure 46. MCS log status as a response from API.

Every solid line into the above flow chart is the request that occurs from MCS while the rest

of the dash lines are processed at API for responding to the request of main controller service.

46

3.4.1.5 LED Guidance Service

Light Emitting Diode (LED) is used for guiding a guest from entrance corridor to the meeting

room. The LED has been used as a component and placed many locations along the entire path

from source i.e entrance to destination i.e meeting room. LED guidance service will be activated

by the main controller service or MCS. Figure 47 represents the communication state with

request and response.

Figure 47. Request vs response in between MCS and LED guidance.

Mobile agent algorithm [46] – [48] has been implemented to the LED guidance service.

MCS keeps a status record for MCS – LED communication. It involves, 1) MCS sends a CoAP

GET request to LED, 2) set STATUS = NOT GUIDED, 3) blink LEDs until a guest or

participant does not reach to meeting room, 4) stop LED if guest reach and sends payload

message to MCS as response; and 5) update STATUS = GUIDED. Figure 48 shows how status

changes in this case.

Figure 48. Status at MCS - LED communication.

47

Here solid lines refer to the actions taking place at the main controller service while dash

lines indicate the steps performed at LED guidance.

3.4.1.6 Meeting Room Service

Meeting Room Service or MRS is used for authentication, hide personal contents, download

and presents meeting contents. This service is activated automatically when the MCS – LED

process has been over. Figure 49 shows the request and response between MCS and MRS.

Figure 49. MCS – MRS communication state.

MCS gets control from prior state and upgrades status as NOT PRESENTED primarily at

the. After that, it sends a request to finish further processes i.e authentication, content related

subprocesses. Authentication is done by authentication service described at the earlier. Status

is updated as soon it hides private contents and presents meeting document after downloading

from the server. Figure 50 represents the workflow that carried out at MCS – MRS.

Figure 50. MCS – MRS workflow.

48

Solid lines and dashes are presented for work action at MCS and MRS services.

3.4.2 Service Interaction

An example use case scenario has been set at the very beginning of the implementation as a

proof of concept to contribute to the decentralized IoT edge nanoservice architecture for future

gadget-free computing. Practical use case scenario of the PoC implementation is presented in

the following Figure 51.

Figure 51. Example scenario for proof of concept [23].

Presence detection service will be activated automatically when a participant is detected by

PIR motion sensor that put on the entrance. PDS will create an actor that set a command

message to start the automatic authentication by BLE and this message to MCS. After that,

MCS will create another actor that put a command message to BLE to scan Bluetooth devices

around the location of the scanner and get the list of scanned devices from BLE. MCS then

creates another actor that sends these to API to recognize a participant with a BLE-ID. When a

participant is authorized by the system then MCS will create a new actor that put a command

message to LED to guide the participant to the meeting room. Lastly, MCS will create an actor

with a command message to MRS to display meeting content at the monitor when a person is

detected for the first time at the meeting room. The whole scenario is presented below.

49

Figure 52. Internal service interaction.

3.4.3 Deployment and Container Orchestration

A new container image is constructed for each required microservice that developed for this

demo scenario. Every container image is based on an appropriate base image that satisfies the

requirements of a service which is called a base image of that container. The summary of the

final deployment is concluded in Table 6.

Figure 53. Container orchestration for the PoC.

50

In the implementation, each service is deployed in a separate Docker host. In this system,

services are isolated and mostly decoupled. This architecture is known as an overlay network.

This network is best when containers are running on different Docker hosts, or when multiple

applications work together using swarm services [68]. Container orchestration has been done

with Docker Swarm and Kubernetes. The PoC implementation required 6 services. These

services were orchestrated by the following procedure:

1. Deploying Services: Deploying each service into the associated host.

o PDS, MCS, BLE, LED; and MRS on 5 RPis.

o Deploy API on Linux machine.

2. VM Creation: Create 7 different VMs where

o 6 of them for services as worker nodes; and

o 1 for manager node.

3. Attaching VMs: Attach each service to a separate VM.

4. Joining Nodes: join each worker node to the manager node.

51

4 EVALUATIONS

During the prototyping work, some observations were made in favor of the implementation for

the demo scenario, although the focus of this paper is on deployment for local IoT edge services.

Some common observations were made based on the implementations and its functionality with

the resource consumption with few performance metrics. These studies are fit for the empirical

design based on the available resources that have shown a significant performance. Following

sections describe parametric case studies that taken at simulations.

4.1 Evaluation Setup

Six microservices were developed for the demo scenario which is demonstrated in section 4.1.1.

REST API deployed into ubuntu 18.04 and LED guidance deployed into Raspberry 2 Model B.

Rest of the four micro-services deployed into Raspberry Pi 3 Model B+. Recall section 4.1.2

again where a rough technical specification discussed for the implementation of the demo

project. Each micro-service uses CoAP protocol for M2M communication. Here every micro-

service primarily required a client script also beside the server script and deployed separately

except presence detection service or PDS. Both client and server script were written in Python

2. In the demo scenario, the client and server were handled with subprocess pythons’ module

which introduces complicacy and not recommended [64]. Node-based CoAP CLI is used to

process client request into the dependant server as discussed in Sola’s article [42] requiring

node installation additional rather having Python-based client container. In addition, this

process significantly reduces the number of containers which save memory.

Container orchestration has been implemented into Oracle VirtualBox with version 5.2. In

the microservice deployment, Docker Swarm and Kubernetes is used. Docker swarm and

Kubernetes are two platforms for orchestrating containers. However, Docker swarm is

completely based on command line interface or CLI while Kubernetes came up with CLI as

well as GUI. CLI based application has great performance over GUI though GUI gets better

user experience over CLI. Docker Swarm is integrated into the Docker ecosystem with its own

API. In practice, Kubernetes is ahead of Swarm in an average. Largest open source community.

4.1.1 Hardware Specifications

This thesis has installed a physical hardware setup for the entire system to fulfil Alice’s

requirements. Physical setup requires a Passive Infrared Radio (PIR) sensor for motion

detection or presence detection service. In this system, authentication service includes BLE

beacon to authenticate a participant. This thesis will focus on only BLE based authentication

for this PoC, instead of multimodal authentication mechanism proposed by Harjula et al. [23].

LED was needed for mobile agents and require UI devices like monitor for authentication; and

projector for screening the meeting content. A host machine is required to deploy API for

authentication and storage services and a WiFi access point (router) to deploy all services under

the same network. Design section of this chapter illustrates possible microservices and

implementation section describes the technical requirements to ended up a successful project

for the demo case. Table 4 shows service oriented physical equipment to design a fully

functional scenario.

52

Table 4. Tentative physical requirements for services in PoC implementation

Services Requirements

Presence Detection Service (PDS) PIR sensor, RPi3

Main Controller Service (MCS) RPi3

Bluetooth Low Energy (BLE) BLE, RPi3

Application Programming Interface (API) Linux machine

Light Emitting Diode (LED) Arduino shield, LED, RPi3

Meeting Room Service (MRS) BLE, RPi3, UI (e.g monitor)

4.1.2 Software Specifications

The implementation also figures out all the required technologies subject to the PoC

implementation. Table 5 shows service oriented technically specified terminologies used to

design a fully functional PoC implementation.

Table 5. Service oriented technical specifications for PoC implementation

Services Requirements

Presence Detection Service (PDS) CoAP, Python

Main Controller Service (MCS) CoAP, Python, NodeJs

Bluetooth Low Energy (BLE) CoAP, Python

Application Programming Interface (API) Python, Flask, MySQL, CoAP

Light Emitting Diode (LED) C++, Python, CoAP

Meeting Room Service (MRS) Python, CoAP

To establish machine to machine communication, it has used the Constrained Application

Protocol (CoAP). The protocol itself is on top of a well-known framework. Thanks to txThings

[50] and CoAPthon [49] developers’ team for their great contribution. LED guidance service

implemented with CoAPthon where rest of the services are implemented with txThings. Here

presence detection service is fully designed as CoAP client whereas the main controller service

is a mixer of server and client request simultaneously. Rest of the microservices is developed

for handling client request as separated service-oriented server.

4.2 Evaluation Results

The implementation has an evaluation setup for the experiment during the deployment. The

evaluation is carried mainly for measuring the source consumption, the performance of a

microservice. Following sections describe the optioned evaluation results.

4.2.1 Resource Consumption

It is important to keep track of storage consumption of the microservices since they are

deployed locally on IoT edge. Table 6 shows the resource consumption of deployed

microservices at the demo scenario implementation. Here, Dockerfile and Docker-compose

indicate the actual reading. Although every device allocates at least 4 kB for a file if that is not

empty. On the other hand, database (DB) persistence is an on-demand service that deployed

with API service.

53

Table 6. Resource consumption

The demo application has been developed on top of Docker ecosystem and container

orchestration has been done in Docker swarm as well as Kubernetes. Docker ecosystem

includes Docker and Docker-compose to build and run Docker images into Docker daemon

inside a host operating system and consumed about 96 MB. The version of Docker was 18.03.1-

ce (for Ubuntu) as well as 18.09.0 (for RPi) and Docker-compose was 1.23.1. On the other

hand, the entire Kubernetes ecosystem (includes kubeadm, kubectl, kubelet; and kubernetes-

cni) consumed about 196 MB having version 1.13.1.

4.2.2 Performance

This implementation has performed the evaluation of the model after the successful equipment

setup including hardware and software. It also observed overall start-up time to initialize a

service. All microservices in the demo scenario has a great performance at boot up stage. The

overall experimental outcome was taken from the deployed microservices. In the

implementation, six microservices were used for the demo scenario. Figure 54 presents the

overall deployment time of during the service deployment.

Figure 54. Service deployment time.

According to Figure 54, Presence Detection Service (PDS), Main Controller Service (MCS),

BLE service (BLE), API service (API), LED service (LED) and Meeting Room Service (MRS)

Name Size (MB) Shared (MB) Run
Docker 95 480 kB
Kubernetes 195 998 kB
DB mysql 0 MB 485.5 MB 7 B
API python:3-onbuild 690.5 MB 88.18 MB 414 kB 1 213 B 2 546 B 223 kB
MCS arm32v7/python:2.7.15-jessie 557.3 MB 42.31 MB 231 kB 418 B 321 B 73.8 kB
PDS arm32v7/python:2.7.15-jessie 557.3 MB 42.34 MB 235 kB 613 B 309 B 34.3 kB
BLE arm32v7/python:2.7.15-jessie 557.3 MB 52.49 MB 860 kB 791 B 514 B 62.5 kB
LED resin/rpi-raspbian:jessie 128.2 MB 276.5 MB 148.3 MB 476 B 189 B 2.76 MB
MRS arm32v7/python:2.7.15-jessie 557.3 MB 54.94 MB 1245 kB 975 B 719 B 67.6 kB

Component / service
Space on disk

Base Image Container SizeInstallation Dockerfile Docker-compose Source code

54

took 2m 13s, 2m 55s, 2 m 31s, 5m 22s, 2m 11s, and 2m 41s respectively at the deployment

process. The deployment time is mostly depending on the available resources where a service

is being deployed and the available bandwidth of the internet connection. During building a

Docker image, a Docker daemon will first download the dependencies regarding the

specification. In general, a deployment process takes less amount of time if there is already

have a base image on a Docker daemon. In the implementation, the Docker daemon has no base

image. For this reason, it took much time to deploy a service on a Docker engine. The effect on

service deployment time for an existing image would evaluate in future.

The service initiation time was also observed after a successful deployment. These deployed

services take roughly 11-15 seconds on an average when they are ready to use after a successful

deployment.

Figure 55. Service initiation time.

According to Figure 55, six services such as Presence Detection Service (PDS), Main

Controller Service (MCS), BLE service (BLE), API service (API), LED service (LED) and

Meeting Room Service (MRS), took roughly 13s, 15s, 14s, 1m 35s, 11s, and 14s respectively

for service initiation. Here, API took maximum service initiation time among 6 services. API

is dependent on the database (DB) component which takes around 1 minute extra to start

working. Therefore, API is waiting for DB and this takes around 1.5 minutes to work if DB is

not in service or not in a downstate.

4.2.3 Authentication Accuracy

This PoC has implemented with BLE-based authentication. This authentication process gives

100% accuracy on the average network condition. It took 3 seconds on an average to

authenticate a person. The summary of the experiment is shown in Table 7.

Table 7. Averaging the authentication time

Serial Number Authentication Time (xi) Average (∑ xi / N)

1 4s
3s 2 3s

3 2s

55

BLE devices send packets to others to let them know about its existence known as packet

advertising. Technically, it works in the range of 300 feet or 100 meters but practically it is

quite challenging to work over 10 meters or 20 meters [82].

In the implementation, authentication is done in two separate processes: 1) BLE scanning

which takes place in between MCS and BLE services; and 2) authentication with API which

takes place in between MCS and API services. In the experiment, the total time to authenticate

a person is depends on the quality of the packet advertising, physical distance between the BLE-

based authentication server and the BLE key; and the overall internal processes of the MCS-

BLE and the MCS-API. Any of these can affect the authentication process and hence increase

the total authentication time.

56

5 DISCUSSION AND FUTURE WORK

The IoT network comprises of several resources such as sensors, actuators; and other

constrained devices. The key challenges for such an IoT network include resource and energy

consumptions, low latency, high bandwidth, reliability, scalability, interoperability, security,

and privacy among others. The gadget-free vision assumes secure access to ubiquitous user-

friendly digital services without using explicit gadgets. IoT networks are considered to be vital

for developing such gadget-free and smart systems. The major requirements include inter-

operable service provisioning and availability of un-interrupted secure services during the

transition of a user in smart spaces. The other requirements are authentication of valid users

through the capabilities available in the nearby smart surroundings and provide low latency

aware secure services. Thus, the vital challenge is how to utilize local resources efficiently in

order to fulfill these requirements. The main problem is the limitation of hardware resources at

the local layer which brings a limitation to the storage, processing, and computations. Hence,

because of restricted resources, there may cause various issues to the local processes in terms

of, for example, may not be secure, unavailability of the service or might take longer delays

executing processes. In this context, a microservices architecture is required for such context-

aware inter-active smart environment that utilizes local resources but can provide various

virtualized services at the local layer. This architecture should be deployable and re-deployable

based on the requirement. In this thesis, an implementation carried out in favor of this

architecture. This chapter highlights the outcome of this thesis with its target point. Finally, a

goal is set for future improvements for this thesis.

5.1 Achieving the Thesis Goal

The target of this thesis was to design a local system to improve service provisioning at the

local IoT network by utilizing local resources and surroundings. In chapter 2, the existing

models and related work has been reviewed first before going into in-depth implementation for

prototyping. It has discussed various modern terminology in the field of communication

technology such as Cloud, Edge, Fog, and latest Mist computing. The IoT protocols, application

design patterns and other correlated technologies described in related work help us to achieve

the thesis goal. Then, several IoT protocols have been introduced for the implementation of the

work. The entire IoT protocols have been broken down into five several layers. These five

layers include application, transport, network, datalink, and the physical layer. Here, it has

discussed numerous advanced protocols used in the application layer. Container-based

lightweight virtualization brings the opportunity to use local resources efficiently. Container

orchestration tools such as Docker Swarm and Kubernetes has been demonstrated with mobile

agent and actor model.

In chapter 3, this thesis set a use case scenario to satisfy the implementation. In the thesis

flowchart, UML, activity; and sequence diagrams has been used for a successful demonstration.

The big challenge in the implementation was to choose an appropriate protocol for the

applications required for this demo scenario. since it uses several constrained devices such as

RPis and others, Constrained Application Protocol or CoAP at the application layer, got the

best fit for the demo project. Microservices design approach provided maximum flexibility to

the development. This approach helps us at the design of services by decoupling them on a

logical level. Each service deployed as a single application in microservice paradigm into

separate container. Interoperability has been reached by the conceptual actor model whereas

the mobile agent helped us in the mobility of smart services. In the implementation, it has used

57

IoT devices like PIR motion detection sensor and surveillance camera for the demo project.

These devices were embedded with the Raspberry Pi, Single Board Computers (SBCs). The

overlay network design enabled us to access these devices with their respected IP address.

During the implementation, it has made a few scripts for those devices to configure and redefine

features along with the devices.

In chapter 4, evaluation of the work has been done for the implementation. At first, the

hardware and the software setup for the evaluation of the implementation has discussed. The

entire hardware system was on Unix OS i.e RPi (the Raspbian Jessie OS) and Ubuntu (Linux).

For simplicity, a few shell scripts have been written to enhance the implementation with proper

documentation. Those shell scripts make the deployment process easy enough to understand as

well decorated documentations. The implementation has accomplished carefully with Python

code whereas the server and the network virtualization were done with the lightweight Docker-

based containerization technology.

Scalability and security are two important measurement factors to evaluate an IoT network.

Here, this implementation has observed the maximum network size and the security of the demo

scenario though these were not the main goal of this study, but these were important for the

observation. In this demo scenario, it has deployed the required services through an access point

having an IP of C class, hence, it can have 254 hosts at maximum. On the other hand, it has a

great benefit in terms of security without global access to hackers since all the microservices

has deployed into local servers.

5.2 Future Work

In the implementation, a user was verified with only BLE instead of approaching the full

multimodal authentication process which is combination of WiFi CSI, BLE and surveillance

camera, as defined in the concept article [23]. Face detection using surveillance camera is an

advanced and a popular approach that recently applied in modern artificial intelligence system

to identify a person by the system accurately. It could introduce the face detection algorithm

into the demo scenario at the authentication service to identify a user.

The PoC is carried out with official regular base images which consume massive disk spaces

compared to alpine-based images. All these regular images have three basic options such as

Jessie, Wheezy or Slim. These regular images have extra configuration besides the essential OS

libraries [83]. On the other hand, alpine images contain minimum required dependencies along

with the OS libraries and take small hardware resource without extra configurations and settings

[79]. Therefore, alpine-based image could be introduced to the demo project to reduce resource

consumption.

The evaluations have been carried out for 6 - 7 persons in a simple environment setup.

However, it could be evaluated within a complex environment by increasing the number of

participants. It would be more interesting for future work to study with a full simulation about

the scalability, performance, energy efficiency of this PoC implementation. Some other

optimization matrices including latency, bandwidth, throughput, cost, network stability may

also require special attention to build a sustainable IoT infrastructure.

58

6 CONCLUSION

Huge amounts of data are generated constantly at the IoT networks. Cloud services are deployed

to the edges of networks for data processing. In present, edge services may not always be

efficient for data processing generated at the local IoT network. Low power IoT devices

sometimes may not able to communicate with servers due to network problems and hence the

data will be lost forever, or a service execution will fail. To resolve this issue, at least some

parts of services need to move from edge to the local IoT cluster. In particular case, moving

services from a network to another is not an easy process.

The primary target of this thesis was to implement a nanoEdge model that specified for local

IoT service provisioning to minimize the deployment complexity. In this thesis, a PoC has been

implemented for the earlier proposed model. The implementation has presented how local IoT

services could can be deployed with Docker containerization technology with a demo project.

This PoC shows how microservices for IoT devices can be moved from the cloud and edge

ecosystem to the proximity to the local IoT networks and hence microservices can be virtualized

for service provisioning. Since the model is deployed into a local IoT network, hence it can

avoid many security threats and can work on “offline” without having an active internet

connection. The overall performance shows the feasibility of the thesis work which is suitable

for local IoT system and may contribute towards IoT infrastructure for future gadget-free 6G

technology as well.

59

7 REFERENCES

[1] L. Atzori, A. Iera and G. Morabito, "Understanding the Internet of Things: definition,

potentials, and societal role of a fast evolving paradigm", Ad Hoc Networks, vol. 56, pp.

122-140, 2017. Available: 10.1016/j.adhoc.2016.12.004.

[2] "What is internet of things (IoT)? - Definition from WhatIs.com", IoT Agenda, 2019.

[Online]. Available: https://internetofthingsagenda.techtarget.com/definition/Internet-of-

Things-IoT. [Accessed: 25- Feb- 2019].

[3] L. Vaquero, L. Rodero-Merino, J. Caceres and M. Lindner, "A break in the clouds", ACM

SIGCOMM Computer Communication Review, vol. 39, no. 1, p. 50, 2008. Available:

10.1145/1496091.1496100.

[4] "Introduction to Cloud Computing", YouTube, 2019. [Online]. Available:

https://www.youtube.com/watch?v=QYzJl0Zrc4M&list=PLF360ED1082F6F2A5&inde

x=17. [Accessed: 26- Feb- 2019].

[5] M. Monshizadeh, V. Khatri and A. Gurtov, "NFV security considerations for cloud-based

mobile virtual network operators", 2016 24th International Conference on Software,

Telecommunications and Computer Networks (SoftCOM), 2016. Available:

10.1109/softcom.2016.7772161.

[6] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow and P. Polakos, "Wireless sensor

network virtualization: A survey", IEEE Communications Surveys & Tutorials, vol. 18,

no. 1, pp. 553-576, 2016. Available: 10.1109/comst.2015.2412971.

[7] P. Lubomski, A. Kalinowski and H. Krawczyk, "Multi-level Virtualization and Its Impact

on System Performance in Cloud Computing", Computer Networks, pp. 247-259, 2016.

Available: 10.1007/978-3-319-39207-3_22.

[8] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm in cloud gaming:

A measurement study on cloud to end-user latency”, in Proceedings of the 11th Annual

Workshop on Network and Systems Support for Games, ser. NetGames ’12. Piscataway,

NJ, USA: IEEE Press, 2012, pp. 2:1–2:6. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2501560.2501563.

[9] A. Sadeghi, C. Wachsmann and M. Waidner, "Security and privacy challenges in

industrial internet of things", Proceedings of the 52nd Annual Design Automation

Conference on - DAC '15, 2015. Available: 10.1145/2744769.2747942.

[10] "Office of Personnel Management data breach", En.wikipedia.org, 2019. [Online].

Available:

https://en.wikipedia.org/wiki/Office_of_Personnel_Management_data_breach.

[Accessed: 26- Feb- 2019].

[11] P. Kasinathan, C. Pastrone, M. Spirito and M. Vinkovits, "Denial-of-Service detection in

6LoWPAN based Internet of Things", 2013 IEEE 9th International Conference on

Wireless and Mobile Computing, Networking and Communications (WiMob), 2013.

Available: 10.1109/wimob.2013.6673419.

[12] "When 'Smart Homes' Get Hacked: I Haunted A Complete Stranger's House Via The

Internet", Forbes.com, 2019. [Online]. Available:

http://www.forbes.com/sites/kashmirhill/2013/07/26/smart-homes-hack/. [Accessed: 26-

Feb- 2019].

[13] T. Kumar, M. Liyanage, I. Ahmad, A. Braeken, and M. Ylianttila, “User privacy, identity

and trust in 5G,” A Comprehensive Guide to 5G Security, pp. 267–279, 2018.

60

[14] T. Kumar, M. Liyanage, A. Braeken, I. Ahmad and M. Ylianttila, "From gadget to gadget-

free hyperconnected world: Conceptual analysis of user privacy challenges", 2017

European Conference on Networks and Communications (EuCNC), 2017. Available:

10.1109/eucnc.2017.7980650.

[15] M. Liyanage, J. Salo, A. Braeken, T. Kumar, S. Seneviratne and M. Ylianttila, "5G

Privacy: Scenarios and Solutions", 2018 IEEE 5G World Forum (5GWF), 2018.

Available: 10.1109/5gwf.2018.8516981.

[16] V. Ramani, T. Kumar, A. Bracken, M. Liyanage and M. Ylianttila, "Secure and Efficient

Data Accessibility in Blockchain Based Healthcare Systems", 2018 IEEE Global

Communications Conference (GLOBECOM), 2018. Available:

10.1109/glocom.2018.8647221.

[17] “Mobile edge computing a key technology towards 5G”,

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology

_towards_5g.pdf, 2015, eTSI White Paper No. 11[Accessed 26 February 2019].

[18] P. Garcia Lopez et al., "Edge-centric Computing", ACM SIGCOMM Computer

Communication Review, vol. 45, no. 5, pp. 37-42, 2015. Available:

10.1145/2831347.2831354.

[19] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision and Challenges",

IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, 2016. Available:

10.1109/jiot.2016.2579198.

[20] F. Bonomi, R. Milito, P. Natarajan and J. Zhu, "Fog Computing: A Platform for Internet

of Things and Analytics", Big Data and Internet of Things: A Roadmap for Smart

Environments, pp. 169-186, 2014. Available: 10.1007/978-3-319-05029-4_7 [Accessed

26 February 2019].

[21] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog computing and its role in the internet

of things", Proceedings of the first edition of the MCC workshop on Mobile cloud

computing - MCC '12, 2012. Available: 10.1145/2342509.2342513.

[22] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila and T. Taleb, "Survey on Multi-

Access Edge Computing for Internet of Things Realization", IEEE Communications

Surveys & Tutorials, vol. 20, no. 4, pp. 2961-2991, 2018. Available:

10.1109/comst.2018.2849509.

[23] E. Harjula and M. Ylianttila, "Decentralized IoT Edge Nanoservice Architecturefor

Future Gadget-Free Computing".

[24] "Introduction to Virtualization", YouTube, 2019. [Online]. Available:

https://www.youtube.com/watch?v=zLJbP6vBk2M&list=PL3EFBFBCE1249ABC0&in

dex=11. [Accessed: 26- Feb- 2019].

[25] R. Morabito, "Virtualization on Internet of Things Edge Devices With Container

Technologies: A Performance Evaluation", IEEE Access, vol. 5, pp. 8835-8850, 2017.

Available: 10.1109/access.2017.2704444.

[26] "InfoClipz: Server virtualization", YouTube, 2019. [Online]. Available:

https://www.youtube.com/watch?v=L_vRWJiOy40. [Accessed: 26- Feb- 2019].

[27] "Microservices Pattern: Monolithic Architecture pattern", microservices.io, 2019.

[Online]. Available: https://microservices.io/patterns/monolithic.html. [Accessed: 26-

Feb- 2019].

[28] B. Hübner, E. Walhorn and D. Dinkler, "A monolithic approach to fluid–structure

interaction using space–time finite elements", Computer Methods in Applied Mechanics

61

and Engineering, vol. 193, no. 23-26, pp. 2087-2104, 2004. Available:

10.1016/j.cma.2004.01.024.

[29] A. Balalaie, A. Heydarnoori and P. Jamshidi, "Microservices Architecture Enables

DevOps: Migration to a Cloud-Native Architecture", IEEE Software, vol. 33, no. 3, pp.

42-52, 2016. Available: 10.1109/ms.2016.64.

[30] "Microservices Architecture: What, When, and How - DZone Microservices",

dzone.com, 2019. [Online]. Available: https://dzone.com/articles/microservices-

architecture-what-when-how. [Accessed: 26- Feb- 2019].

[31] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism for artificial

intelligence” in IJCAI’73 Proceedings of the 3rd international joint conference on

Artificial intelligence. New York, NY, USA: ACM, 1973, pp. 235–245. [Online].

Available: https://dl.acm.org/citation.cfm?id=1624804.

[32] A. Haubenwaller and K. Vandikas, "Computations on the Edge in the Internet of Things",

Procedia Computer Science, vol. 52, pp. 29-34, 2015. Available:

10.1016/j.procs.2015.05.011.

[33] "Docker Beginner Tutorial 1 - What is DOCKER (step by step) | Docker Introduction |

Docker basics", YouTube, 2019. [Online]. Available:

https://www.youtube.com/watch?v=wi-MGFhrad0&list=PLhW3qG5bs-L99pQsZ74f-

LC-tOEsBp2rK. [Accessed: 26- Feb- 2019].

[34] R. Morabito, V. Cozzolino, A. Ding, N. Beijar and J. Ott, "Consolidate IoT Edge

Computing with Lightweight Virtualization", IEEE Network, vol. 32, no. 1, pp. 102-111,

2018. Available: 10.1109/mnet.2018.1700175.

[35] "What Is Docker & Docker Container | A Deep Dive Into Docker | Edureka", Edureka,

2019. [Online]. Available: https://www.edureka.co/blog/what-is-docker-container.

[Accessed: 26- Feb- 2019].

[36] D. Bernstein, "Containers and Cloud: From LXC to Docker to Kubernetes", IEEE Cloud

Computing, vol. 1, no. 3, pp. 81-84, 2014. Available: 10.1109/mcc.2014.51.

[37] Mouat, A. and Bednark, R. (2019). What is the difference between a Docker image and a

container?. [online] Stack Overflow. Available at:

https://stackoverflow.com/questions/23735149/what-is-the-difference-between-a-

docker-image-and-a-container/26885610#26885610 [Accessed: 26- Feb- 2019].

[38] "Get Started, Part 4: Swarms", Docker Documentation, 2019. [Online]. Available:

https://docs.docker.com/get-started/part4/. [Accessed: 26- Feb- 2019].

[39] Y. Chen and T. Kunz, "Performance evaluation of IoT protocols under a constrained

wireless access network", 2016 International Conference on Selected Topics in Mobile &

Wireless Networking (MoWNeT), 2016. Available: 10.1109/mownet.2016.7496622.

[40] "An overview of HTTP", MDN Web Docs, 2019. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview. [Accessed: 26- Feb-

2019].

[41] B. Ramachandran, "Internet of Things – Unraveling technology demands &

developments", Anything Connected, 2019. [Online]. Available:

https://connectedtechnbiz.wordpress.com/2014/10/17/iot-unraveling-technology-

demands-developments/. [Accessed: 26- Feb- 2019].

[42] R. Sola, "CoAP: Get started with IoT protocols - Open Source For You", Open Source

For You, 2019. [Online]. Available: https://opensourceforu.com/2016/09/coap-get-

started-with-iot-protocols/. [Accessed: 26- Feb- 2019].

62

[43] Z. Shelby, K. Hartke and C. Bormann, "The Constrained Application Protocol (CoAP)",

2014. Available: 10.17487/rfc7252.

[44] "CoAP — Constrained Application Protocol | Implementations", Coap.technology, 2019.

[Online]. Available: http://coap.technology/impls.html. [Accessed: 26- Feb- 2019].

[45] T. Kumar, P. Porambage, I. Ahmad, M. Liyanage, E. Harjula and M. Ylianttila, "Securing

Gadget-Free Digital Services", Computer, vol. 51, no. 11, pp. 66-77, 2018. Available:

10.1109/mc.2018.2876017.

[46] T. Leppänen, J. Riekki, M. Liu, E. Harjula and T. Ojala, "Mobile Agents-Based Smart

Objects for the Internet of Things", Internet of Things, pp. 29-48, 2014. Available:

10.1007/978-3-319-00491-4_2.

[47] T. Leppanen, A. Heikkinen, A. Karhu, E. Harjula, J. Riekki and T. Koskela, "Augmented

Reality Web Applications with Mobile Agents in the Internet of Things", 2014 Eighth

International Conference on Next Generation Mobile Apps, Services and Technologies,

2014. Available: 10.1109/ngmast.2014.24.

[48] T. Leppanen, I. Milara, Jilin Yang, J. Kataja and J. Riekki, "Enabling user-centered

interactions in the Internet of Things", 2016 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), 2016. Available: 10.1109/smc.2016.7844457.

[49] G. Tanganelli, C. Vallati and E. Mingozzi, "CoAPthon: Easy development of CoAP-

based IoT applications with Python", 2015 IEEE 2nd World Forum on Internet of Things

(WF-IoT), 2015. Available: 10.1109/wf-iot.2015.7389028.

[50] M. Wasilak, "mwasilak/txThings", GitHub, 2019. [Online]. Available:

https://github.com/mwasilak/txThings. [Accessed: 26- Feb- 2019].

[51] "Avnet: Quality Electronic Components & Services", Avnet.com, 2019. [Online].

Available: https://www.avnet.com/wps/portal/abacus/resources/engineers-

insight/article/adapting-pir-sensor-technology-to-new-applications/. [Accessed: 26- Feb-

2019].

[52] "8. Command-line Tools — Gpiozero 1.5.0 Documentation", Gpiozero.readthedocs.io,

2019. [Online]. Available: https://gpiozero.readthedocs.io/en/stable/cli_tools.html.

[Accessed: 26- Feb- 2019].

[53] "Raspberry Pi GPIO Pinout", Pinout.xyz, 2019. [Online]. Available: https://pinout.xyz/.

[Accessed: 26- Feb- 2019].

[54] "17.1. subprocess — Subprocess management — Python 2.7.16rc1 documentation",

Docs.python.org, 2019. [Online]. Available:

https://docs.python.org/2/library/subprocess.html. [Accessed: 26- Feb- 2019].

[55] "IanHarvey/bluepy", GitHub, 2019. [Online]. Available:

https://github.com/IanHarvey/bluepy/blob/master/docs/scanner.rst. [Accessed: 26- Feb-

2019].

[56] "Python Classes", W3schools.com, 2019. [Online]. Available:

https://www.w3schools.com/python/python_classes.asp. [Accessed: 26- Feb- 2019].

[57] "Interfacing hardware with the Raspberry Pi", Rs-online.com, 2019. [Online]. Available:

https://www.rs-online.com/designspark/interfacing-hardware-with-the-raspberry-pi.

[Accessed: 26- Feb- 2019].

[58] "Raspberry Pi GPIO Tutorial", Pi My Life Up, 2019. [Online]. Available:

https://pimylifeup.com/raspberry-pi-gpio/. [Accessed: 26- Feb- 2019].

[59] "draft-natarajan-nfvrg-containers-for-nfv-03 - An Analysis of Lightweight Virtualization

Technologies for NFV", Tools.ietf.org, 2019. [Online]. Available:

63

https://tools.ietf.org/html/draft-natarajan-nfvrg-containers-for-nfv-03. [Accessed: 28-

Mar- 2019].

[60] L. Vaquero and L. Rodero-Merino, "Finding your Way in the Fog", ACM SIGCOMM

Computer Communication Review, vol. 44, no. 5, pp. 27-32, 2014. Available:

10.1145/2677046.2677052.

[61] A. Padmanabhan, "Container Orchestration", Devopedia.org, 2019. [Online]. Available:

https://devopedia.org/container-orchestration. [Accessed: 28- Mar- 2019].

[62] M. Otey, "Microsoft Taps Google's Kubernetes for Windows Container Orchestration --

Redmondmag.com", Redmondmag, 2019. [Online]. Available:

https://redmondmag.com/articles/2017/08/01/container-orchestration-with-

kubernetes.aspx. [Accessed: 28- Mar- 2019].

[63] "3.2: Architecture: Clients and Broker", Embedded101, 2019. [Online]. Available:

http://www.embedded101.com/Develop-M2M-IoT-Devices-

Ebook/DevelopM2MIoTDevicesContent/articleid/219?dnnprintmode=true&mid=948&

SkinSrc=[G]Skins%2F_default%2FNo+Skin&ContainerSrc=[G]Containers%2F_defaul

t%2FNo+Container. [Accessed: 28- Mar- 2019].

[64] "Running Bash commands in Python", Stack Overflow, 2019. [Online]. Available:

https://stackoverflow.com/questions/4256107/running-bash-commands-in-

python/51950538#51950538. [Accessed: 29- Mar- 2019].

[65] M. Hasan, E. Hossain and D. Niyato, "Random access for machine-to-machine

communication in LTE-advanced networks: issues and approaches", IEEE

Communications Magazine, vol. 51, no. 6, pp. 86-93, 2013. Available:

10.1109/mcom.2013.6525600.

[66] J. Lumetta, "Monolith vs microservices: which architecture is right for your team?",

freeCodeCamp.org, 2019. [Online]. Available:

https://medium.freecodecamp.org/monolith-vs-microservices-which-architecture-is-

right-for-your-team-bb840319d531. [Accessed: 30- Apr- 2019].

[67] P. Hyde, Java thread programming. Indianapolis, Ind.: Sams, 1999.

[68] "Networking overview", Docker Documentation, 2019. [Online]. Available:

https://docs.docker.com/network/. [Accessed: 30- Apr- 2019].

[69] "Overview of Internet of Things | Solutions | Google Cloud", Google Cloud, 2019.

[Online]. Available: https://cloud.google.com/solutions/iot-overview. [Accessed: 11-

May- 2019].

[70] R. Tabish, A. Ben Mnaouer, F. Touati and A. Ghaleb, "A comparative analysis of BLE

and 6LoWPAN for U-HealthCare applications", 2013 7th IEEE GCC Conference and

Exhibition (GCC), 2013. Available: 10.1109/ieeegcc.2013.6705791.

[71] S. Gupta and R. Kumar, "BLE v4.2: Creating Faster, More Secure, Power-Efficient

Designs—Part 1", Electronic Design, 2019. [Online]. Available:

https://www.electronicdesign.com/communications/ble-v42-creating-faster-more-

secure-power-efficient-designs-part-1. [Accessed: 11- May- 2019].

[72] F. Callegati, W. Cerroni and M. Ramilli, "Man-in-the-Middle Attack to the HTTPS

Protocol", IEEE Security & Privacy Magazine, vol. 7, no. 1, pp. 78-81, 2009. Available:

10.1109/msp.2009.12.

[73] "Understanding HTTPS Protocol", Codeproject.com, 2019. [Online]. Available:

https://www.codeproject.com/Articles/995655/Understanding-HTTPS-Protocol.

[Accessed: 12- May- 2019].

64

[74] I. Fette and A. Melnikov, "The WebSocket Protocol", 2011. Available: 10.17487/rfc6455.

[75] P. Walkar, "What's the difference between edge computing and cloud computing?",

quora, 2019. [Online]. Available: https://www.quora.com/Whats-the-difference-

between-edge-computing-and-cloud-computing. [Accessed: 12- May- 2019].

[76] Linthicum, D. (2019). Edge computing vs. fog computing: Definitions and enterprise

uses. [online] Cisco. Available at: https://www.cisco.com/c/en/us/solutions/enterprise-

networks/edge-computing.html [Accessed 19 May 2019].

[77] Os.mbed.com. (2019). Thread - Reference | Mbed OS 5 Documentation. [online]

Available at: https://os.mbed.com/docs/mbed-os/v5.12/reference/thread-tech.html

[Accessed 26 May 2019].

[78] MDN Web Docs. (2019). Evolution of HTTP. [online] Available at:

https://developer.mozilla.org/en-

US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP [Accessed 26 May 2019].

[79] Stamat, D. (2019). Microcontainers – Tiny, Portable Docker Containers. [online]

blog.iron.io. Available at: https://blog.iron.io/microcontainers-tiny-portable-containers/

[Accessed 27 May 2019].

[80] Nigania, J. (2019). Know The New Cloud Called Edge In 2K19. [online]

Houseofbots.com. Available at: https://www.houseofbots.com/news-detail/11402-1-

know-the-new-cloud-called-edge-in-2k19 [Accessed 27 May 2019].

[81] Javainuse.com. (2019). [online] Available at: https://www.javainuse.com/spring/ang7-

hello [Accessed 27 May 2019].

[82] Learn.adafruit.com. (2019). Bluetooth & BTLE | All the Internet of Things - Episode

One: Transports | Adafruit Learning System. [online] Available at:

https://learn.adafruit.com/alltheiot-transports/bluetooth-btle [Accessed 27 May 2019].

[83] Janetakis, N. (2019). Alpine Based Docker Images Make a Difference in Real World

Apps. [online] via @codeship. Available at: https://blog.codeship.com/alpine-based-

docker-images-make-difference-real-world-apps/ [Accessed 27 May 2019].

65

8 APPENDICES

Appendix 1 Database structure for API service

Appendix 2 HTTP status codes

Appendix 3 RPi pin configuration

66

Appendix 1 Database structure for API service

Figure 56. Database structure for API used in the demo application.

67

Appendix 2 HTTP status codes

Figure 57. HTTP status codes for client response.

68

Appendix 3 RPi pin configuration

(a)

(b)

Figure 58. RPi pin configuration – (a) RPi 3 Model B [57] & (b) RPi, RPi 2 & RPi 3 [58].

