69 research outputs found

    A Transactional Model and Platform for Designing and Implementing Reactive Systems

    Get PDF
    A reactive program is one that has ongoing interactions with its environment. Reactive programs include those for embedded systems, operating systems, network clients and servers, databases, and smart phone apps. Reactive programs are already a core part of our computational and physical infrastructure and will continue to proliferate within our society as new form factors, e.g. wireless sensors, and inexpensive (wireless) networking are applied to new problems. Asynchronous concurrency is a fundamental characteristic of reactive systems that makes them difficult to develop. Threads are commonly used for implementing reactive systems, but they may magnify problems associated with asynchronous concurrency, as there is a gap between the semantics of thread-based computation and the semantics of reactive systems: reactive software developed with threads often has subtle timing bugs and tends to be brittle and non-reusable as a holistic understanding of the software becomes necessary to avoid concurrency hazards such as data races, deadlock, and livelock. Based on these problems with the state of the art, we believe a new model for developing and implementing reactive systems is necessary. This dissertation makes four contributions to the state of the art in reactive systems. First, we propose a formal yet practical model for (asynchronous) reactive systems called reactive components. A reactive component is a set of state variables and atomic transitions that can be composed with other reactive components to yield another reactive component. The transitions in a system of reactive components are executed by a scheduler. The reactive component model is based on concepts from temporal logic and models like UNITY and I/O Automata. The major contribution of the reactive component model is a formal method for principled composition, which ensures that 1) the result of composition is always another reactive component, for consistency of reasoning; 2) systems may be decomposed to an arbitrary degree and depth, to foster divide-and-conquer approaches when designing and re-use when implementing; 3)~the behavior of a reactive component can be stated in terms of its interface, which is necessary for abstraction; and 4) properties of reactive components that are derived from transitions protected by encapsulation are preserved through composition and can never be violated, which permits assume-guarantee reasoning. Second, we develop a prototypical programming language for reactive components called rcgo that is based on the syntax and semantics of the Go programming language. The semantics of the rcgo language enforce various aspects of the reactive component model, e.g., the isolation of state between components and safety of concurrency properties, while permitting a number of useful programming techniques, e.g., reference and move semantics for efficient communication among reactive components. For tractability, we assume that each system contains a fixed set of components in a fixed configuration. Third, we provide an interpreter for the rcgo language to test the practicality of the assumptions upon which the reactive component model are founded. The interpreter contains an algorithm that checks for composition hazards like recursively defined transitions and non-deterministic transitions. Transitions are executed using a novel calling convention that can be implemented efficiently on existing architectures. The run-time system also contains two schedulers that use the results of composition analysis to execute non-interfering transitions concurrently. Fourth, we compare the performance of each scheduler in the interpreter to the performance of a custom compiled multi-threaded program, for two reactive systems. For one system, the combination of the implementation and hardware biases it toward an event-based solution, which was confirmed when the reactive component implementation outperformed the custom implementation due to reduced context switching. For the other system, the custom implementation is not prone to excessive context switches and outperformed the reactive component implementations. These results demonstrate that reactive components may be a viable alternative to threads in practice, but that additional work is necessary to generalize this claim

    Methods to Improve Applicability and Efficiency of Distributed Data-Centric Compute Frameworks

    Get PDF
    The success of modern applications depends on the insights they collect from their data repositories. Data repositories for such applications currently exceed exabytes and are rapidly increasing in size, as they collect data from varied sources - web applications, mobile phones, sensors and other connected devices. Distributed storage and data-centric compute frameworks have been invented to store and analyze these large datasets. This dissertation focuses on extending the applicability and improving the efficiency of distributed data-centric compute frameworks

    A comparative study of transaction management services in multidatabase heterogeneous systems

    Get PDF
    Multidatabases are being actively researched as a relatively new area in which many aspects are not yet fully understood. This area of transaction management in multidatabase systems still has many unresolved problems. The problem areas which this dissertation addresses are classification of multidatabase systems, global concurrency control, correctness criterion in a multidatabase environment, global deadlock detection, atomic commitment and crash recovery. A core group of research addressing these problems was identified and studied. The dissertation contributes to the multidatabase transaction management topic by introducing an alternative classification method for such multiple database systems; assessing existing research into transaction management schemes and based on this assessment, proposes a transaction processing model founded on the optimal properties of transaction management identified during the course of this research.ComputingM. Sc. (Computer Science

    Query Interactions in Database Systems

    Get PDF
    The typical workload in a database system consists of a mix of multiple queries of different types, running concurrently and interacting with each other. The same query may have different performance in different mixes. Hence, optimizing performance requires reasoning about query mixes and their interactions, rather than considering individual queries or query types. In this dissertation, we demonstrate how queries affect each other when they are executing concurrently in different mixes. We show the significant impact that query interactions can have on the end-to-end workload performance. A major hurdle in the understanding of query interactions in database systems is that there is a large spectrum of possible causes of interactions. For example, query interactions can happen because of any of the resource-related, data-related or configuration-related dependencies that exist in the system. This variation in underlying causes makes it very difficult to come up with robust analytical performance models to capture and model query interactions. We present a new approach for modeling performance in the presence of interactions, based on conducting experiments to measure the effect of query interactions and fitting statistical models to the data collected in these experiments to capture the impact of query interactions. The experiments collect samples of the different possible query mixes, and measure the performance metrics of interest for the different queries in these sample mixes. Statistical models such as simple regression and instance-based learning techniques are used to train models from these sample mixes. This approach requires no prior assumptions about the internal workings of the database system or the nature or cause of the interactions, making it portable across systems. We demonstrate the potential of capturing, modeling, and exploiting query interactions by developing techniques to help in two database performance related tasks: workload scheduling and estimating the completion time of a workload. These are important workload management problems that database administrators have to deal with routinely. We consider the problem of scheduling a workload of report-generation queries. Our scheduling algorithms employ statistical performance models to schedule appropriate query mixes for the given workload. Our experimental evaluation demonstrates that our interaction-aware scheduling algorithms outperform scheduling policies that are typically used in database systems. The problem of estimating the completion time of a workload is an important problem, and the state of the art does not offer any systematic solution. Typically database administrators rely on heuristics or observations of past behavior to solve this problem. We propose a more rigorous solution to this problem, based on a workload simulator that employs performance models to simulate the execution of the different mixes that make up a workload. This mix-based simulator provides a systematic tool that can help database administrators in estimating workload completion time. Our experimental evaluation shows that our approach can estimate the workload completion times with a high degree of accuracy. Overall, this dissertation demonstrates that reasoning about query interactions holds significant potential for realizing performance improvements in database systems. The techniques developed in this work can be viewed as initial steps in this interesting area of research, with lots of potential for future work

    Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Get PDF
    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking
    corecore